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Sharp Propagation of Chaos for the Ensemble Langevin Sampler

U. Vaes∗

31st March 2024

Abstract

The aim of this note is to revisit propagation of chaos for a Langevin-type interacting particle system used in
the context of sampling. The interacting particle system we consider coincides, in the setting of a log-quadratic
target distribution, with the ensemble Kalman sampler [14], for which propagation of chaos was first proved by
Ding and Li in [10]. Like these authors, we prove propagation of chaos using a synchronous coupling as a starting
point, as in Sznitman’s classical argument. Instead of relying on a boostrapping argument, however, we use a
technique based on stopping times in order to handle the lack of Lipschitz continuity of the coefficients in the
dynamics. This approach originates from numerical analysis [18] and was recently employed to prove mean field
limits for consensus-based optimization and related interacting particle systems [19, 16]. In the context of ensemble
Langevin sampling, it enables proving pathwise propagation of chaos with optimal rate, whereas previous results
were optimal only up to a positive ε. It also allows relaxing the log-quadratic assumption on the target distribution.

1 Introduction

Context. In a wide variety of applications, ranging from Bayesian inference to statistical physics and computational
biology, it is necessary to produce samples from high-dimensional probability distributions of the form

µ =
e−ϕ

Z
, Z =

∫
Rd

e−ϕ . (1.1)

where ϕ : Rd → R is a given function. In [14], the authors propose to simulate the following interacting particle
system in order to generate approximate samples from µ:

dXj = −C(µJ
t )∇ϕ(Xj) dt+

√
2C(µJ

t ) dW
j
t , j ∈ J1, JK, (1.2)

where (W j)j∈J1,JK are independent standard Brownian motions in Rd, µJ
t = 1

J

∑J
j=1 δXj

t
is the associated empirical

measure, and C(µJ
t ) denotes the covariance under µJ

t ; see (1.6) below for the precise definition. They also present
a gradient-free approximation of (1.2) that is well-suited to Bayesian inverse problems for which it is difficult or
undesirable to calculate derivatives of the forward model [11]. Taking formally the limit J → ∞ in (1.2), they
conjecture that the mean field limit of the system is given by the following McKean stochastic differential equation{

dXt = −C(ρt)∇ϕ(Xt) dt+
√
2 C(ρt) dWt,

ρt = Law(Xt) .
(1.3)

For background material on propagation of chaos, we refer to [7, 8]. The mean field equation (1.3) is often simpler to
analyze mathematically than the interacting particle system (1.2), and doing so is useful in order to better understand
the behavior of the particle system for large J . In the setting where ϕ is quadratic, for example, it is possible to show
that the law ρt converges exponentially, in an appropriate sense, to the target distribution [6, 14].

In [24], a correction of (1.2) is proposed to ensure that the interacting particle system possesses as invariant
distribution the tensorized measure µ⊗J for every value of J ⩾ d + 1. The properties of the resulting interacting
particle system, with acronym ALDI, are analyzed in [15].
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Summary of previous work. In [10], Ding and Li study propagation of chaos for (1.2) in the particular situation
where ϕ is quadratic. In the setting of Bayesian inverse problems [25], this situation arises when the forward model
is linear, observational noise is Gaussian and the prior distribution is Gaussian. In order to show convergence, in
an appropriate sense, of the interacting particle system (1.2) to the mean field limit (1.3), they use as a pivot the
following synchronously coupled system, with the same initial condition and the same Brownian motions:dXj = −C(ρt)∇ϕ(X

j
) dt+

√
2C(ρt) dW

j
t , j ∈ J1, JK,

ρt = Law
(
X

j

t

)
.

(1.4)

Using a novel bootstrapping argument, which is summarized in [8, p. 142], they prove that for every ε > 0, there
exists C independent of J such that

sup
t∈[0,T ]

E
[∣∣Xj

t −X
j

t

∣∣2] ⩽ CJ− 1
2+ε. (1.5)

Using results from [13], they then obtain, from a triangle inequality argument, a convergence estimate for E
[
W2(µ

J
t , ρt)

]
in the limit as J → ∞, where W2 is the quadratic Wasserstein distance. This part of the argument is common to all
the proofs of mean field limits relying on a synchronous coupling, and the main difficulty lies in establishing (1.5).

Contributions of this note. The aim of this note is to revisit propagation of chaos for (1.2). For simplicity, we
consider neither the modification proposed in [24, 15] nor gradient-free approximations, but note that the approach we
present generalizes to the ALDI sampler from [15] in a straightforward manner. Our contributions are the following:

• We generalize the work of [10] by relaxing the assumption that ϕ is quadratic. The assumptions made on ϕ in
our main result are the same as in [15].

• Whereas (1.5), in the terminology of [8], may be viewed as a pointwise estimate for the 2 norm, the result we
prove is a general pathwise estimate for the p norm.

• We employ an approach based on appropriate stopping times, which is novel in the context of mean field limits
and may prove useful for the analysis of other interacting particle systems. This enables obtaining an estimate
which is is optimal, in the sense that (1.5) holds with ε = 0.

The rest of this document is organized as follows. Well-posedness results for the interacting particle system and its
formal mean field limit are presented in Section 2. We then present additional auxiliary results in Section 3, and the
main result in Section 4. The appendices contain the proofs of well-posedness results (Appendix A) and auxiliary
results (Appendix B).

Notation. We let N := {0, 1, 2, 3, . . . } and N+ := {1, 2, 3, . . . }. The notation Id ∈ Rd×d refers to the identity
matrix. The Euclidean norm in Rd is denoted by |•|. For a matrix X ∈ Rd×d, the notation ∥X∥F refers to the
Frobenius norm. The set of probability measures over Rd is denoted by P(Rd), and the notation Pp(R

d) ⊂ P(Rd)

refers to the set of probability measures with finite moments up to order p. For a probability measure µ ∈ P(Rd) the
following notation is used to denote the mean and covariance under µ:

M(µ) =

∫
Rd

xµ(dx), C(µ) =
∫
Rd

(
x−M(µ)

)
⊗
(
x−M(µ)

)
µ(dx). (1.6)

For a probability measure µ ∈ P(Rd) and a function f : Rd → R, we use the short-hand notation

µ[f ] =

∫
E

f(x)µ(dx).

By a slight abuse of notation, we sometimes write µ[f(x)] instead of µ[f ] for convenience. For example, for a probability
measure µ ∈ P2(R), the notation µ

[
x2
]

refers to the second raw moment of µ. Finally, throughout this note, the
notation Ω refers to the sample space, and the notation C refers to a constant whose exact value is irrelevant in
the context and may change from occurrence to occurrence. For convenience, we also let |x|∗ = min{1, |x|}, so
that |x|a∗ ⩽ |x|b∗ for all a ⩽ b and all x ∈ R.
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2 Assumption and well-posedness

Throughout this note, we denote by A(ℓ) for ℓ ⩾ 0 the set of negative log-densities ϕ that satisfy the following
assumptions with that value of ℓ.

Assumption H. Without loss of generality, we assume that the function ϕ : Rd → R is bounded from below by 1.
We assume furthermore that ϕ ∈ C2(Rd) and that there are positive constants (cϕ, Cϕ, cg, Cg, ch, Ch) and a compact
set K such that the following inequalities are satisfied for all x ∈ Rd \K:

cϕ|x|ℓ+2 ⩽ ϕ(x) ⩽ Cϕ|x|ℓ+2, (2.1a)

cg|x|ℓ+1 ⩽ |∇ϕ(x)| ⩽ Cg|x|ℓ+1, (2.1b)

ch|x|ℓ Id ≼ D2 ϕ(x) ≼ Ch Id |x|ℓ. (2.1c)

Remark 1. A few comments are in order.

• The upper bound in (2.1c) implies that ∇ϕ is locally Lipschitz continuous: there is Lϕ > 0 such that

∀x, y ∈ Rd,
∣∣∇ϕ(x)−∇ϕ(y)

∣∣ ⩽ Lϕ

(
1 + |x|ℓ + |y|ℓ

)
|x− y|. (2.2)

• Assumptions (2.1a) and (2.1a) imply that there are constants (c̃ϕ, C̃ϕ, C̃g) such that

∀x ∈ Rd,
c̃ϕ|x|ℓ+2

∗ ⩽ ϕ(x) ⩽ C̃ϕ|x|ℓ+2
∗ ,∣∣∇ϕ(x)

∣∣ ⩽ C̃g|x|ℓ+1
∗ .

(2.3)

We shall henceforth assume that these inequalities are satisfied with the same constants as in Assumption H.

• When the target distribution (1.1) is the Bayesian posterior associated with an inverse problem with a linear
forward model, Gaussian noise and a Gaussian prior, the function ϕ is quadratic. In this case Assumption H is
indeed satisfied with ℓ = 0.

• In the main result, we will assume that ϕ ∈ A(0), in which case ∇ϕ is globally Lipschitz. For ϕ ∈ A(ℓ) with ℓ > 0,
the technique used in the proof of Proposition 1 to show uniqueness of the solution to the mean field equation (1.4)
does not work, and the proof of Theorem 3 also breaks down. Investigation of this case is left for future work.

Given independent standard Brownian motions
(
W j
)
j∈N+ in Rd and independent random variables

(
Xj

0

)
j∈N+

sampled from some ρ0 ∈ P(Rd), we consider for each J ∈ N+ the following interacting particle system

Xj
t = Xj

0 +

∫ t

0

b
(
Xj

s , µ
J
s

)
ds+

∫ t

0

σ
(
Xj

s , µ
J
s

)
dW j

s , j ∈ J1, JK (2.4)

where the drift b : Rd × P(Rd) → Rd and diffusion σ : Rd × P(Rd) → Rd×d are given by

b(x, µ) := −C(µ)∇ϕ(x), σ(x, µ) :=
√

2C(µ). (2.5)

Following the classical synchronous coupling approach [26], we couple to (2.4) the system of i.i.d. mean-field McKean-
Vlasov diffusions

∀j ∈ J1, JK,

X
j

t = Xj
0 +

∫ t

0

b
(
X

j

s, ρs

)
ds+

∫ t

0

σ
(
X

j

s, ρs

)
dW j

s ,

ρt = Law
(
X

j

t

)
,

(2.6)

driven by the same Brownian motions and with the same initial conditions as (2.4). The well-posedness of (2.4)
and (2.5) follows from Proposition 1 and Proposition 2, stated hereafter and proved in Appendix A.

Proposition 1 (Well-posedness for the interacting particle system). Assume that ϕ ∈ A(ℓ) for some ℓ ⩾ 0 and
that ρ0 ∈ Pp(R

d) for some p ⩾ 2. Then for any J ∈ N+, the stochastic differential equations (2.4) with initial condi-
tion (X

j

0)j∈J1,JK sampled i.i.d. from ρ0 has a unique globally defined strong solutions that is almost surely continuous.
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Furthermore, there is κ = κ(p) > 0 independent of J such that

E

[
sup

t∈[0,T ]

∣∣Xj
t

∣∣p] ⩽ κ. (2.7)

Proof. The proof of well-posedness is essentially that of [15, Proposition 4.4]. The moment estimate (2.7) generalizes
those from [10]. See Appendix A for details.

Proposition 2 (Well-posedness for the mean field dynamics). Suppose that ϕ ∈ A(ℓ), that ρ0 ∈ Pp(R
d) for p ⩾ ℓ+2,

and that C(ρ0) ≻ 0. Fix x0 ∼ ρ0 and T > 0. Then, there exists a strong solution X ∈ C([0, T ],Rd) to (1.3) such
that X0 = x0 and t 7→ C(ρt) is continuous in [0, T ]. Furthermore, there is κ = κ(p) > 0 such that

E

[
sup

t∈[0,T ]

|Xt|p
]
⩽ κ, sup

t∈[0,T ]

∥∥C(ρt)−1
∥∥
F
⩽ κ, (2.8)

and the solution is unique if ϕ ∈ A(0).

Proof. The proof uses a classical fixed-point approach, similar to that used in [5]. See Appendix A for details.

3 Auxiliary results

The proof of the main result relies on the moment bounds (2.6) and (2.7), as well as the following auxiliary lemmas.

Lemma 1 (Bound on the probability of large excursions). Let (Zj)j∈N+ be a family of i.i.d. R-valued random variables
such that E [|Z1|r] < ∞ for some r > 0. Then for all R > E

[
|Z1|

]
, there exists a constant C > 0 such that

∀J ∈ N+, P

 1

J

J∑
j=1

Zj ⩾ R

 ⩽ CJ− r
2 .

Proof. This follows from a generalization of Chebychev’s inequality [23, Exercise 3.21]. Let

X =
1

J

J∑
j=1

Zj .

By the classical Marcinkiewicz–Zygmund inequality, it holds that E
[∣∣X −E[X]

∣∣r] ⩽ CMZ(r)J
− r

2 . Therefore, using
the Markov inequality, we deduce that

P [X ⩾ R] ⩽ P
[∣∣X −E[X]

∣∣r ⩾
(
R−E[X]

)r]
⩽ E

[ ∣∣X −E[X]
∣∣r(

R−E[X]
)r
]
⩽

CMZ(r)(
R−E[X]

)r J− r
2 ,

which concludes the proof.

Lemma 2 (Wasserstein stability estimates). For all (µ, ν) ∈ P2

(
Rd
)
× P2

(
Rd
)
, it holds that∥∥∥C(µ)− C(ν)

∥∥∥
F
⩽ 2
(
W2(µ, δ0) +W2(ν, δ0)

)
W2(µ, ν), (3.1a)∥∥∥√C(µ)−

√
C(ν)

∥∥∥
F
⩽

√
2W2(µ, ν). (3.1b)

Proof. See Appendix B.1.

Lemma 3 (Convergence of the empirical covariance for i.i.d. samples). For all µ ∈ P2p(R
d), there is C depending

only on p and the 2p-th moment of µ such that for all J ∈ N+,

E
∥∥C(µJ)− C(µ)

∥∥p
F
⩽ CJ− p

2 , µJ :=
1

J

J∑
j=1

δ
X

j ,
{
X

j
}
j∈N

i.i.d.∼ µ. (3.2)
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Furthermore, for all µ ∈ P2p(R
d) satisfying C(µ) ≽ η Id ≻ 0, there is C depending only on (p, η) and the 2p-th moment

of µ such that for all J ∈ N+,

E

∥∥∥∥√C(µJ)−
√
C(µ)

∥∥∥∥p
F

⩽ CJ− p
2 . (3.3)

Proof. This is essentially [10, Lemma 3]. We include a short proof in Appendix B.2 for the reader’s convenience.

4 Main result

Theorem 3 (Propagation of chaos for the ensemble Langevin sampler). Suppose that ϕ ∈ A(0), and consider the
systems (2.4) and (2.6) with the coefficients given in (2.5). Assume that ρ0 ∈ Pq(R

d), for some q ⩾ 6. Then for
all p ∈ [2, q

3 ], there is C > 0 independent of J such that

∀J ∈ N+, ∀j ∈ J1, JK, E

[
sup

t∈[0,T ]

∣∣∣Xj
t −X

j

t

∣∣∣p] ⩽ CJ
−min

{
p
2 ,

q−p
2p , q−p

2
√

q

}
. (4.1)

Proof. Fix p ∈ [2, q
3 ] and r ∈ [p, q

3 ] to be determined later. Fix also R ∈ (0,∞) such that

(
R

2

)r

> E

[
sup

t∈[0,T ]

∣∣∣Xj

t

∣∣∣r] . (4.2)

By Proposition 2, the right-hand side is indeed finite. Consider the stopping times

τJ(R) = inf

t ⩾ 0 :
1

J

J∑
j=1

∣∣∣Xj
t

∣∣∣r ⩾ Rr

 = inf
{
t ⩾ 0 : Wr(µ

J
t , δ0) ⩾ R

}
, (4.3a)

τJ(R) = inf

t ⩾ 0 :
1

J

J∑
j=1

∣∣∣Xj

t

∣∣∣r ⩾ Rr

 = inf
{
t ⩾ 0 : Wr(µ

J
t , δ0) ⩾ R

}
, (4.3b)

and let θJ(R) := min
{
τJ(R), τJ(R)

}
. Since R will be fixed until the end of the proof, we omit this dependence in

the notation. By Hölder’s inequality, it holds that

1

2p−1
E

[
sup

t∈[0,T ]

∣∣∣Xj
t −X

j

t

∣∣∣p]

= E

[
sup

t∈[0,T ]

∣∣∣Xj
t −X

j

t

∣∣∣p1{θJ>T}

]
+E

[
sup

t∈[0,T ]

∣∣∣Xj
t −X

j

t

∣∣∣p1{θJ⩽T}

]

⩽ E

[
sup

t∈[0,T ]

∣∣∣Xj
t∧θJ

−X
j

t∧θJ

∣∣∣p]+(E[ sup
t∈[0,T ]

∣∣∣Xj
t −X

j

t

∣∣∣q])
p
q (

P[θJ ⩽ T ]
) q−p

q

, (4.4)

We bound the two terms on the right-hand side separately, and then conclude the proof.

A. Bounding the first term in (4.4). Since ∥Y ∥La(Ω) ⩽ ∥Y ∥Lb(Ω) for any random variable Y and any a ⩽ b, it
holds that

E

[
sup

t∈[0,T ]

∣∣∣Xj
t∧θJ

−X
j

t∧θJ

∣∣∣p] ⩽

(
E

[
sup

t∈[0,T ]

∣∣∣Xj
t∧θJ

−X
j

t∧θJ

∣∣∣r])
p
r

. (4.5)

Bounding the right-hand side of this inequality is not simpler than bounding the left-hand side directly. However, the
bound we obtain with r ⩾ p will be useful to bound the second term in (4.4). In order to bound the right-hand side
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of (4.5), we adapt Sznitman’s classical argument. We have

1

2r−1

∣∣∣Xj
t∧θJ

−X
j

t∧θJ

∣∣∣r ⩽

∣∣∣∣∣
∫ t∧θJ

0

b
(
Xj

s , µ
J
s

)
− b

(
X

j

s, ρs

)
ds

∣∣∣∣∣
r

+

∣∣∣∣∣
∫ t∧θJ

0

σ
(
Xj

s , µ
J
s

)
− σ

(
X

j

s, ρs

)
dW j

s

∣∣∣∣∣
r

.

Let us introduce the martingale

Mt =

∫ t

0

σ
(
Xj

s , µ
J
s

)
− σ

(
X

j

s, ρs

)
dW j

s .

By Doob’s optional stopping theorem [18, Theorem 3.3], see also [12, Equation 2.29, p.285], the process (Mt∧θJ )t⩾0 is
a martingale, with a quadratic variation process given by (⟨M⟩t∧θJ )t⩾0, where ⟨M⟩ is the quadratic variation of M .
Therefore, by the Burkholder–Davis–Gundy inequality, we have for all t ∈ [0, T ] that

E

[
sup

s∈[0,t]

∣∣∣Xj
s∧θJ

−X
j

s∧θJ

∣∣∣r] ⩽ (2T )r−1E

∫ t∧θJ

0

∣∣∣b (Xj
s , µ

J
s

)
− b

(
X

j

s, ρs

)∣∣∣r ds

+ CBDG2
r−1T

r
2−1E

∫ t∧θJ

0

∥∥∥σ (Xj
s , µ

J
s

)
− σ

(
X

j

s, ρs

)∥∥∥r
F
ds. (4.6)

From the triangle inequality, it holds that

1

2r−1
E

∫ t∧θJ

0

∣∣∣b (Xj
s , µ

J
s

)
− b

(
X

j

s, ρs

)∣∣∣r ds ⩽
∫ t

0

E
∣∣∣b(Xj

s∧θJ
, µJ

s∧θJ

)
− b

(
X

j

s∧θJ , µ
J
s∧θJ

)∣∣∣r ds

+

∫ t

0

E
∣∣∣b(Xj

s, µ
J
s

)
− b

(
X

j

s, ρs

)∣∣∣r ds. (4.7)

Similarly, for the diffusion term, we have

1

2r−1
E

∫ t∧θJ

0

∥∥∥σ (Xj
s , µ

J
s

)
− σ

(
X

j

s, ρs

)∥∥∥r
F
ds ⩽

∫ t

0

E
∥∥∥σ (Xj

s∧θJ
, µJ

s∧θJ

)
− σ

(
X

j

s∧θJ , µ
J
s∧θJ

)∥∥∥r
F
ds

+

∫ t

0

E
∥∥∥σ (Xj

s, µ
J
s

)
− σ

(
X

j

s, ρs

)∥∥∥r
F
ds. (4.8)

Next, we bound the terms on the right-hand side of (4.7) and (4.8).

A.1. Bounding the first term in (4.7). By (2.5) and the triangle inequality, it holds that

E
∣∣∣b(Xj

s∧θJ
, µJ

s∧θJ

)
− b

(
X

j

s∧θJ , µ
J
s∧θJ

)∣∣∣r ⩽ 2r−1E
∣∣∣(C (µJ

s∧θJ

)
− C

(
µJ
s∧θJ

))
∇ϕ

(
Xj

s∧θJ

)∣∣∣r
+ 2r−1E

∣∣∣C (µJ
s∧θJ

) (
∇ϕ

(
Xj

s∧θJ

)
−∇ϕ

(
X

j

s∧θJ

))∣∣∣r .
By (3.1a) in Lemma 2, we obtain∥∥∥C (µJ

s∧θJ

)
− C

(
µJ
s∧θJ

)∥∥∥
F
⩽ 2
(
W2

(
µJ
s∧θJ , δ0

)
+W2

(
µJ
s∧θJ , δ0

))
W2

(
µJ
s∧θJ , µ

J
s∧θJ

)
⩽ 4RW2

(
µJ
s∧θJ , µ

J
s∧θJ

)
,

where we used the definition of the stopping times in the second inequality. Therefore, we deduce that

E
∣∣∣(C (µJ

s∧θJ

)
− C

(
µJ
s∧θJ

))
∇ϕ

(
Xj

s∧θJ

)∣∣∣r ⩽ (4R)rE
∣∣∣W2

(
µJ
s∧θJ , µ

J
s∧θJ

)
∇ϕ

(
Xj

s∧θJ

)∣∣∣r
= (4R)rE

W2

(
µJ
s∧θJ , µ

J
s∧θJ

)r 1

J

J∑
j=1

∣∣∣∇ϕ
(
Xj

s∧θJ

)∣∣∣r
 ,
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where we used exchangeability in the second line. By the assumption (2.1b) of linear growth of ∇ϕ and the definition
of θJ , this leads to

E
∣∣∣(C (µJ

s∧θJ

)
− C

(
µJ
s∧θJ

))
∇ϕ

(
Xj

s∧θJ

)∣∣∣r ⩽ CE

W2

(
µJ
s∧θJ , µ

J
s∧θJ

)r 1

J

J∑
j=1

∣∣∣Xj
s∧θJ

∣∣∣r
∗


⩽ CE

[
W2

(
µJ
s∧θJ , µ

J
s∧θJ

)r (
1 +Wr(µ

J
s∧θJ , δ0)

r
)]

⩽ CE
[
W2

(
µJ
s∧θJ , µ

J
s∧θJ

)r]
. (4.9)

On the other hand, by definition of the stopping time θJ , and the inequality ∥C(µ)∥F ⩽ W2(µ, δ0)
2 which holds for

all µ ∈ P(Rd), it holds that

E
∣∣∣C (µJ

s∧θJ

) (
∇ϕ

(
Xj

s∧θJ

)
−∇ϕ

(
X

j

s∧θJ

))∣∣∣r ⩽ R2rE
∣∣∣∇ϕ

(
Xj

s∧θJ

)
−∇ϕ

(
X

j

s∧θJ

)∣∣∣r ,
⩽ R2rLr

ϕE
∣∣∣Xj

s∧θJ
−X

j

s∧θJ

∣∣∣r . (4.10)

where we used the assumption of Lipschitz continuity on ∇ϕ in Assumption H. In view of the inequalities (4.9)
and (4.10), and of the bound

E
[
Wr

(
µJ
s∧θJ , µ

J
s∧θJ

)r]
⩽ E

 1

J

J∑
j=1

∣∣∣Xj
s∧θJ

−X
j

s∧θJ

∣∣∣r
 = E

∣∣∣Xj
s∧θJ

−X
j

s∧θJ

∣∣∣r , (4.11)

which holds by definition of the Wasserstein distance, we deduce that

E
∣∣∣b(Xj

s∧θJ
, µJ

s∧θJ

)
− b

(
X

j

s∧θJ , µ
J
s∧θJ

)∣∣∣r ⩽ CE
∣∣∣Xj

s∧θJ
−X

j

s∧θJ

∣∣∣r .
A.2. Bounding the second term in (4.7). For this term, we have

E
∣∣∣b(Xj

s, µ
J
s

)
− b

(
X

j

s, ρs

)∣∣∣r = E
∣∣∣(C(µJ

s )− C(ρs)
)
∇ϕ
(
X

j

s

)∣∣∣r
⩽ CE

[∥∥∥C(µJ
s )− C(ρs)

∥∥∥r
F

(
1 +

∣∣Xj

s

∣∣r)]
⩽ C

(
E
∥∥∥C(µJ

s )− C(ρs)
∥∥∥ 3r

2

F

) 2
3 (

E
[
1 +

∣∣Xj

s

∣∣3r]) 1
3

,

where we used (2.1b) in Assumption H and Hölder’s inequality. Using the moment bound in Proposition 2 and then
using Lemma 3, noting that ρ0 ∈ P3r(R

d) by assumption, we deduce that

E
∣∣∣b(Xj

s, µ
J
s

)
− b

(
X

j

s, ρs

)∣∣∣r ⩽ CJ− r
2 .

A.3. Bounding the first term in (4.8). For the first diffusion term, we have that

∥∥∥σ (Xj
s∧θJ

, µJ
s∧θJ

)
− σ

(
X

j

s∧θJ , µ
J
s∧θJ

)∥∥∥r
F
= 2r

∥∥∥∥√C
(
µJ
s∧θJ

)
−
√
C
(
µJ
s∧θJ

)∥∥∥∥r
F

.

Using Lemma 2 together with the bound (4.11), we obtain

E
∥∥∥σ (Xj

s∧θJ
, µJ

s∧θJ

)
− σ

(
X

j

s∧θJ , µ
J
s∧θJ

)∥∥∥r
F
⩽ 2

r+1
2 E

∣∣∣Xj
s∧θJ

−X
j

s∧θJ

∣∣∣r .
A.4. Bounding the second term in (4.8). By Proposition 2, there is η > 0 such that C(ρt) ≽ η Id for all t ∈ [0, T ].
Thus, it follows from Lemma 3 that

E
∥∥∥σ (Xj

s, µ
J
s

)
− σ

(
X

j

s, ρs

)∥∥∥r
F
= 2

r
2E

∥∥∥∥√C
(
µJ
s

)
−
√

C (ρs)

∥∥∥∥r
F

⩽ CJ− r
2 .
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A.5. Concluding part A. Combining the bounds on all terms, we finally obtain from (4.6) that

E

[
sup

s∈[0,t]

∣∣∣Xj
s∧θJ

−X
j

s∧θJ

∣∣∣r] ⩽ CJ− r
2 + C

∫ t

0

E

[
sup

u∈[0,s]

∣∣∣Xj
u∧θJ

−X
j

u∧θJ

∣∣∣r] ds.

By Grönwall’s inequality, this implies that

E

[
sup

t∈[0,T ]

∣∣∣Xj
t∧θJ

−X
j

t∧θJ

∣∣∣r] ⩽ CJ− r
2 . (4.12)

B. Bounding the second term in (4.4). We have by Propositions 1 and 2 that

E

[
sup

t∈[0,T ]

∣∣Xj
t −X

j

t

∣∣q] ⩽ 2q−1

(
E

[
sup

t∈[0,T ]

∣∣Xj
t

∣∣q]+E

[
sup

t∈[0,T ]

∣∣Xj

t

∣∣q]) ⩽ 2q−1
(
κ(q) + κ(q)

)
.

In order to complete the proof of the theorem, it remains to bound the probability P [θJ ⩽ T ], which can be achieved
by noticing that

P
[
θJ ⩽ T

]
= P

[
τJ ⩽ T < τJ

]
+P

[
τJ ⩽ T

]
.

Using the almost sure continuity of the solution to the interacting particle system, together with the triangle inequality,
we bound the first probability as follows:

P[τJ ⩽ T < τJ ] ⩽ P

[
sup

t∈[0,T ]

Wr(µ
J
t∧θJ , δ0) = R

]

⩽ P

[
sup

t∈[0,T ]

Wr(µ
J
t∧θJ , µ

J
t∧θJ ) + sup

t∈[0,T ]

Wr(µ
J
t∧θJ , δ0) ⩾ R

]

⩽ P

[
sup

t∈[0,T ]

Wr(µ
J
t∧θJ , µ

J
t∧θJ ) ⩾

R

2

]
+P

[
sup

t∈[0,T ]

Wr(µ
J
t∧θJ , δ0) ⩾

R

2

]
,

where we used that P[A + B ⩾ k] ⩽ P[A ⩾ k/2] + P[B ⩾ k/2] for any two real-valued random variables A and B,
because {A+B ⩾ k} ⊂ {A ⩾ k/2} ∪ {B ⩾ k/2}. The probability P[θJ ⩽ T ] can then be bounded as follows:

P[θJ ⩽ T ] = P [τJ ⩽ T < τJ ] +P [τJ ⩽ T ]

⩽ P

[
sup

t∈[0,T ]

Wr(µ
J
t∧θJ , µ

J
t∧θJ ) ⩾

R

2

]
+ 2P

[
sup

t∈[0,T ]

Wr(µ
J
t , δ0) ⩾

R

2

]
.

Using (4.11) and Markov’s inequality for the first term, together with the inequality sup
∑

⩽
∑

sup, we then obtain

P[θJ ⩽ T ] ⩽
2r

Rr
E

 1

J

J∑
j=1

sup
t∈[0,T ]

∣∣∣Xj
t∧θJ

−X
j

t∧θJ

∣∣∣r
+ 2P

 1

J

J∑
j=1

sup
t∈[0,T ]

∣∣∣Xj

t

∣∣∣r ⩾
Rr

2r

 . (4.13)

The first term is bounded from above by CJ− r
2 by exchangeability and (4.12). In order to bound the second term,

let us introduce the i.i.d. random variables

Zj = sup
t∈[0,T ]

∣∣∣Xj

t

∣∣∣r , j ∈ J1, JK.

By the moment bounds in Proposition 2 and the assumption that ρ0 ∈ Pq(R
d), the random variable Z1 has finite

moments up to order q
r ⩾ 1. Furthermore, by definition (4.2) of R, it holds that E[Z1] <

Rr

2r . Thus, it follows
from Lemma 1 that there is a constant C independent of J such that

P

 1

J

J∑
j=1

sup
t∈[0,T ]

∣∣∣Xj

t

∣∣∣r ⩾
Rr

2r

 = P

 1

J

J∑
j=1

Zj ⩾
Rr

2r

 ⩽ CJ− q
2r . (4.14)
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C. Concluding the proof. Substituting the bounds (4.12) and (4.14) in (4.4), we finally obtain that

E

[
sup

t∈[0,T ]

∣∣∣Xj
t −X

j

t

∣∣∣p] ⩽ C
(
J− p

2 + J− r(q−p)
2q + J− q−p

2r

)
.

This inequality is true for any r ∈ [p, q
3 ], with a constant C depending on r. The best estimate is obtained when the

powers of the second and third terms are as close to equal as possible, that is to say when r = max{p,√q}, which
leads to the estimate (4.1) and concludes the proof.

Remark 2. A few comments are in order.

• If ρ0 has sufficiently many moments, then (4.1) recovers the optimal convergence rate J− p
2 , which is obtained

in the classical setting with globally Lipschitz coefficients, see [8, Theorem 3.1].

• The probability P[τJ(R) ⩽ T ] was bounded from above in terms of P[τJ(
R
2 ) ⩽ T ] and an appropriate distance

between the stopped particle systems. The probability P[τJ(
R
2 ) ⩽ T ] is simple to bound directly, because the

synchronously coupled mean field particles are independent and identically distributed.

• In order to obtain an estimate with a scaling that is optimal in J , it was crucial to first prove in (4.12) a
propagation of chaos result for the stopped particle system in a metric Lr with r larger than the value p in the
final Lp estimate (4.1).

• As mentioned in Remark 1, for ϕ ∈ A(ℓ) with ℓ > 0, the proof does not go through. The issue in this case is to
obtain a bound similar to (4.10). The approach in [4] could perhaps be employed in order to prove propagation
of chaos with a degraded rate of convergence, but this would require proving exponential moment bounds for the
interacting particle system and mean field dynamics. As a byproduct, uniqueness of the solution to (1.4) would
be obtained.

As noted in [10], using [13, Theorem 1] and Theorem 3 we deduce the following Corollary 4. We refer to [10, 13]
for precise statements on the rate of convergence, which is in general slower than J− p

2 .

Corollary 4. Under the same assumptions as in Theorem 3, it holds that

lim
J→∞

(
sup

t∈[0,T ]

E
[
Wp(µ

J
t , ρt)

p
])

= 0.

We also mention the following corollary, which is similar to [9, Theorem 2] and useful in the context of sampling. It
states that, for the purpose of calculating the average of an observable f : Rd → R with respect to ρt, the interacting
particle system at time t is as good, in terms of convergence rate of the approximation error with respect to J , as an
estimator constructed from J i.i.d. samples from ρt.

Corollary 5 (Lp bound on the sampling error). Suppose that ϕ ∈ A(0), that ρ0 ∈ Pq(R
d) for all q > 0, and that f

satisfies the following local Lipschitz continuity assumption:

∀x, y ∈ Rd,
∣∣f(x)− f(y)

∣∣ ⩽ L
(
1 + |x|s + |y|s

)
|x− y|. (4.15)

Consider the systems (2.4) and (2.6) with the coefficients given in (2.5). Then for any p ⩾ 1, there is C > 0 depending
on (p, L, s) and a finite number of moments of ρ0 such that

E

∣∣∣∣∣∣ 1J
J∑

j=1

f(Xj
t )− ρt[f ]

∣∣∣∣∣∣
p

1
p

⩽ CJ− 1
2 .

Proof. By the triangle inequality, it holds that

E

∣∣∣∣∣∣ 1J
J∑

j=1

f(Xj
t )− ρt[f ]

∣∣∣∣∣∣
p

1
p

⩽

E

∣∣∣∣∣∣ 1J
J∑

j=1

(
f
(
Xj

t

)
− f

(
X

j

t

))∣∣∣∣∣∣
p

1
p

+

E

∣∣∣∣∣∣ 1J
J∑

j=1

f(X
j

t )− ρt[f ]

∣∣∣∣∣∣
p

1
p

. (4.16)
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By Jensen’s inequality, exchangeability, the local Lipschitz continuity of f , the Cauchy–Schwarz inequality, the moment
bound in Proposition 2, and Theorem 3, the first term satisfies

E

∣∣∣∣∣∣ 1J
J∑

j=1

(
f
(
Xj

t

)
− f

(
X

j

t

))∣∣∣∣∣∣
p

1
p

⩽

E

 1

J

J∑
j=1

∣∣∣f(Xj
t

)
− f

(
X

j

t

)∣∣∣p
 1

p

=
(
E
∣∣∣f(X1

t

)
− f

(
X

1

t

)∣∣∣p) 1
p

⩽ L
(
3p−1E

[
1 +

∣∣X1
t

∣∣2ps + ∣∣X1

t

∣∣2ps]) 1
2p

(
E
∣∣∣X1

t −X
1

t

∣∣∣2p) 1
2p

⩽ CJ− 1
2 .

By the Marcinkiewicz–Zygmund inequality and the moment bound in Proposition 2, the second term on the right-hand
side of (4.16) also tends to 0 at the classical Monte Carlo rate J− 1

2 , which concludes the proof.

A Proof of well-posedness and moment bounds

We present first the proof of well-posedness for the interacting particle system in Appendix A.1, then auxiliary results
in Appendix A.2, and finally the proof of well-posedness for the mean field dynamics, relying on these auxiliary results,
in Appendix A.3. In several proofs in this section, we will use that if ϕ ∈ A(ℓ) and f(x) = ϕ(x)q for q > 0, then by
the upper bounds in Assumption H, it holds that

∀x ∈ Rd,
∥∥D2 f(x)

∥∥
F
=
∥∥∥q(q − 1)ϕ(x)q−2∇ϕ(x)⊗∇ϕ(x) + qϕ(x)q−1 D2 ϕ(x)

∥∥∥
F

⩽ C|x|(q−2)(ℓ+2)+2(ℓ+1)
∗ + C|x|(q−1)(ℓ+2)+ℓ

∗ = 2C|x|q(ℓ+2)−2
∗ . (A.1)

In addition, we repeatedly use the following inequality, which is implied by Jensen’s inequality and holds for any
probability distribution µ ∈ Rd, any function h : Rd → R+ and any a, b ∈ R+:

∫
Rd

h(x)a µ(dx)

∫
Rd

h(x)b µ(dx) ⩽

(∫
Rd

h(x)a+bµ(dx)

) a
a+b
(∫

Rd

h(x)a+bµ(dx)

) b
a+b

=

∫
Rd

h(x)a+bµ(dx). (A.2)

A.1 Proof of Proposition 1

We first prove well-posedness, and then the moment bound (2.7).

Well-posedness of the interacting particle system. This part is similar to the proof of [15, Proposition 4.4],
but slightly simpler because we do not need to prove nondegeneracy of the empirical covariance. Let L denote the
generator of the interacting particle system and let X ∈ RdJ be the collection (X1, . . . , XJ). Fix j ∈ J1, JK and q > 0

and let V denote the Lyapunov functional

V (X ) =
1

J

J∑
j=1

ϕ(Xj)q.

Let also f(x) = ϕ(x)q and µJ = 1
J

∑J
j=1 δXj . It holds that

LV (X ) =
1

J

J∑
j=1

(
−∇ϕ(Xj)TC(µJ)∇jV (X ) + C(µJ) : D2

j V (X )
)

=
1

J

J∑
j=1

(
−qϕ(Xj)q−1∇ϕ(Xj)T C(µJ)∇ϕ(Xj) + C(µJ) : D2 f(Xj)

)
⩽

1

J

J∑
j=1

C(µJ) : D2 f(Xj),
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where ∇j denotes the gradient with respect to Xj . Using (A.1), we deduce that

LV (X ) ⩽ C
∥∥∥C(µJ)

∥∥∥
F

(
1

J

J∑
j=1

∣∣Xj
∣∣q(ℓ+2)−2

∗

)
⩽ C

(
1

J

J∑
k=1

∣∣Xj
∣∣2
∗

)(
1

J

J∑
j=1

∣∣Xj
∣∣q(ℓ+2)−2

∗

)

= C

(∫
Rd

|x|2∗ µJ(dx)

)(∫
Rd

∣∣x∣∣q(ℓ+2)−2

∗ µJ(dx)

)
⩽ C

∫
Rd

∣∣x∣∣q(ℓ+2)

∗ µJ(dx),

where we used (A.2) in the last bound. Using (2.1a), we conclude that

∀X ∈ RdJ , LV (X ) ⩽ CV (X ). (A.3)

From this inequality with q = p
ℓ+2 , it then follows from [20, Theorem 3.5], see also [22, Theorem 2.1], that there exists

a unique strong globally-defined solution to the interacting particle system if ρ0 ∈ Pp(R
d), and that furthermore

sup
t∈[0,T ]

E
[
V (Xt)

]
< ∞. (A.4)

Proving the moment bound (2.7). Fix j ∈ J1, JK and let again f(x) = ϕ(x)q. By Itô’s formula and a reasoning
similar to above, it holds that

f(Xj
t ) ⩽ f(Xj

0) +

∫ t

0

C(µJ
s ) : D

2 f(Xj
s ) ds+

∫ t

0

√
2 C(µJ

s )∇f(Xj
s ) dW

j
s .

Taking the square and the supremum, then taking the expectation and using the Burkholder–Davis–Gundy inequality,
we obtain that

1

3
E

[
sup

s∈[0,t]

∣∣f(Xj
s )
∣∣2] ⩽ E

[∣∣f(Xj
0)
∣∣2]+ CT

∫ t

0

E
∣∣Xj

s

∣∣2q(ℓ+2)

∗ ds+ 2CBDG

∫ t

0

E
∣∣∣∇f(Xj

s )
T C(µJ

s )∇f(Xj
s )
∣∣∣ ds. (A.5)

Here we used that, by (A.1) and (A.2),

E
∣∣∣C(µJ

s ) : D
2 f(Xj

s )
∣∣∣ ⩽ CE

∣∣∣∥∥C(µJ
s )
∥∥
F

∣∣Xj
s

∣∣q(ℓ+2)−2

∗

∣∣∣ ⩽ CE
∣∣Xj

s

∣∣q(ℓ+2)

∗ .

Since
∣∣∇f(x)

∣∣ ⩽ C|x|q(ℓ+2)−1
∗ for all x ∈ Rd by (2.1b), we have using exchangeability that

E
∣∣∣∇f(Xj

s )
T C(µJ

s )∇f(Xj
s )
∣∣∣ ⩽ E

∥∥C(µJ
s )
∥∥
F

(
1

J

J∑
j=1

∣∣∣∇f(Xj
s )
∣∣∣2)


⩽ CE

[∫
Rd

|x|2µJ
s (dx)

∫
Rd

|x|2q(ℓ+2)−2
∗ µJ

s (dx)

]
⩽ CE|Xj

s |
2q(ℓ+2)
∗ .

where we used again inequality (A.2). Substituting this bound in (A.5) and using (2.1a), we deduce that

E

[
sup

s∈[0,t]

∣∣Xj
s

∣∣2q(ℓ+2)

∗

]
⩽ E

[∣∣Xj
0

∣∣2q(ℓ+2)

∗

]
+ C

∫ t

0

E
∣∣Xj

s

∣∣2q(ℓ+2)

∗ ds.

The moment bound (2.7) then follows from (A.4), or from an application of Grönwall’s inequality.

A.2 Auxiliary lemmas to establish well-posedness of the mean field dynamics

In the following, we endow the vector space X := Rd×d with the Frobenius norm, and we let R : Rd×d → Rd×d be the
map defined by R(Γ) =

√
ΓΓT. We prove auxiliary lemmas in this section, and postpone the proof of Proposition 2

to Appendix A.3.

Lemma 4. Suppose that ϕ ∈ A(ℓ) and that ρ0 ∈ Pp(R
d) for p ⩾ ℓ+2. Fix Γ ∈ C([0, T ],X ) and y0 ∼ ρ0. Then there
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is a unique strong solution Y ∈ C([0, T ],Rd) to the stochastic differential equation

dYt = −R(Γt)∇ϕ(Yt) dt+
√

2R(Γt) dWt, Y0 = y0 , (A.6)

In addition, the function K : [0, T ] → X given by K(t) = C(ρt), where ρt = Law(Yt), belongs to C1([0, T ],X ), and
there is an increasing function σ : R+ → R+ such that

∥K∥
C1
(
[0,T ],X

) ⩽ σ

(
∥Γ∥

C0
(
[0,T ],X

)) . (A.7)

Proof. The existence of a unique continuous strong solution Y ∈ C([0, T ],Rd) to (A.6) follows from classical theory
of stochastic differential equations, for example from [20, Theorem 3.5] with the Lyapunov function x 7→ ϕ(x)

2
ℓ+2 . It

remains to prove (A.7). By Itô’s formula, it holds with f(x) = ϕ(x)q for any q > 0 that

df(Yt) = −qϕ(x)q−1∇ϕ(Yt)
TR(Γt)∇ϕ(Yt) dt+R(Γt) : D

2 f(Yt) dt+∇f(Yt)
T
√

2R(Γt) dWt. (A.8)

It holds for all x ∈ Rd that
∣∣∇f(x)

∣∣ ⩽ |x|q(ℓ+2)−1. Thus, writing (A.8) in integral form, then taking the supremum
and using the Burkholder–Davis–Gundy inequality, we obtain for all t ∈ [0, T ]

1

3
E

[
sup

s∈[0,t]

∣∣f(Ys)
∣∣2] ⩽ E

∣∣f(Y0)|2 + T

∫ t

0

∥∥∥R(Γs)
∥∥∥2
F
E
∥∥∥D2 f(Ys)

∥∥∥2
F
ds

+ 2CBDG

∫ t

0

E
∣∣∇f(Ys)

TR
(
Γ(s)

)
∇f(Ys)

∣∣ ds
⩽ CE|Y0|2q(ℓ+2) + C

(
∥Γ∥2C([0,T ],X ) + 1

)∫ t

0

E|Ys|2q(ℓ+2)−4
∗ +E|Ys|2q(ℓ+2)−2

∗ ds.

Using the lower bound in (2.1a) and rearranging, we finally obtain

E

[
sup

s∈[0,t]

∣∣Y ∣∣2q(ℓ+2)

∗

]
⩽ CE|Y0|2q(ℓ+2)

∗ + C
(
∥Γ∥2C([0,T ],X ) + 1

)∫ t

0

E

[
sup

u∈[0,s]

|Yu|2q(ℓ+2)
∗

]
ds.

From Grönwall’s inequality, it follows that

E

[
sup

s∈[0,t]

∣∣Y ∣∣2q(ℓ+2)

∗

]
⩽ CE |Y0|2q(ℓ+2)

∗ σ
(
∥Γ∥C([0,T ],X )

)
, (A.9)

for some increasing function σ : R+ → R+. In particular, since ρ0 ∈ Pℓ+2(R
d), we can use this inequality with q = 1

ℓ+2

and dominated convergence to deduce that the functions t 7→ E[Yt] and t 7→ E[Yt ⊗ Yt] are continuous. Furthermore,
using (A.9) with q = 1

2 we deduce that these functions are also differentiable on [0, T ] because, by Itô’s lemma and
dominated convergence,

1

h

(
E[Yt+h]−E[Yt]

)
= − 1

h
E

[∫ t+h

t

R(Γu)∇ϕ(Yu) du

]
−−−→
h→0

E [R(Γt)∇ϕ(Yt)] , (A.10)

and similarly

lim
h→0

1

h

(
E[Yt+h ⊗ Yt+h]−E[Yt ⊗ Yt]

)
= −E

[(
R(Γt)∇ϕ(Yt)

)
⊗ Yt + Yt ⊗

(
R(Γt)∇ϕ(Yt)

)]
+ 2R(Γt). (A.11)

Another application of dominated convergence yields continuity of the derivatives. Finally, we bound the right-hand
side of (A.10) as follows:∣∣∣E [R(Γt)∇ϕ(Yt)]

∣∣∣ ⩽ E
[∥∥Γt

∥∥
F

∣∣∇ϕ(Yt)
∣∣] ⩽ Cg

∥∥Γ∥∥
C([0,T ],X )

E
∣∣Yt

∣∣ℓ+1

∗ .

Employing a similar reasoning for the right-hand side of (A.11), and using (A.9), we finally obtain (A.7).
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Lemma 5. Suppose that ϕ ∈ A(ℓ) for ℓ ⩾ 0 and ρ0 ∈ Pp(R
d) for some p ⩾ 2. Fix x0 ∼ ρ0 and ξ ∈ [0, 1], and suppose

that X ∈ C
(
[0, T ],Rd

)
is a strong solution to

{
dXt = −ξ C(ρt)∇ϕ(Xt) dt+

√
2ξ C(ρt) dWt,

ρt = Law(Xt),
(A.12)

with initial condition X0 = x0. Then there is κ > 0 independent of ξ such that

E

[
sup

t∈[0,T ]

∣∣Xj

t

∣∣p] ⩽ κ, (A.13)

Finally, if p ⩾ ℓ+ 2 and C(ρ0) ≻ 0, then there is η > 0 such that

∀t ∈ [0, T ], C(ρt) ≽ η Id . (A.14)

Proof. The statements (A.13) and (A.14) are obvious if ξ = 0. The proof for a fixed value of ξ ∈ (0, 1] is the same for
all values of ξ, so for simplicity we assume from now on that ξ = 1.

Proof of the bound (A.13). The proof of this bound is similar to the proof of (A.9) in Lemma 4. Let f(x) = ϕ(x)q

for some q > 0. By Itô’s formula, it holds that

df(Xt) = −∇ϕ(Xt)
T C(ρt)∇f(Xt) dt+ C(ρt) : D2 f(Xt) dt+∇f(Xt)

T
√

2 C(ρt) dWt

= −qϕ(Xt)
q−1∇ϕ(Xt)

T C(ρt)∇ϕ(Xt) dt+ C(ρt) : D2 f(Xt) dt+∇f(Xt)
T
√
2 C(ρt) dWt. (A.15)

Writing this equation in integral form, taking the supremum and using the Burkholder–Davis–Gundy inequality, we
obtain that

1

3
E

[
sup

s∈[0,t]

∣∣f(Xt)
∣∣2] ⩽ E

[∣∣f(X0)
∣∣2]+ T

∫ t

0

∥∥C(ρs)∥∥2FE∥∥D2 f(Xs)
∥∥2
F
ds

+ 2CBDG

∫ t

0

E
∣∣∇f(Xs)

T C(ρs)∇f(Xs)
∣∣ ds.

Let us bound the terms in the integrals on the right-hand side. Using the inequality
∥∥C(ρt)∥∥F ⩽ E|Xt|2, the

bound (A.1), and then Jensen’s inequality, we obtain

∥∥C(ρs)∥∥2FE∥∥D2 f(Xs)
∥∥2
F
⩽ C

(
E
[∣∣Xs

∣∣2])2 E∣∣Xs

∣∣2q(ℓ+2)−4

∗

⩽ C
(
E
[∣∣Xs

∣∣2q(ℓ+2)
]) 4

2q(ℓ+2)
(
E
[∣∣Xs

∣∣2q(ℓ+2)

∗

]) 2q(ℓ+2)−4
2q(ℓ+2)

= CE
∣∣Xs

∣∣2q(ℓ+2)

∗ .

By a similar reasoning, it holds that

E
∣∣∇f(Xs)

T C(ρs)∇f(Xs)
∣∣ ⩽ CE

∣∣Xs

∣∣2q(ℓ+2)

∗ .

Therefore, using the lower bound in (2.1a), we deduce that

E

[
sup

s∈[0,t]

∣∣Xs

∣∣2q(ℓ+2)

∗

]
⩽ CE

∣∣X0

∣∣2q(ℓ+2)

∗ + C

∫ t

0

E

[
sup

u∈[0,s]

∣∣Xu

∣∣2q(ℓ+2)

∗

]
ds

Letting q = p
2(ℓ+2) and using Grönwall’s inequality, we obtain (A.13).

Proof of (A.14). Let g(x) = x⊗ x. By Itô’s formula, it holds that

dg(Xt) = −
(
C(ρt)∇ϕ(Xt)

)
⊗Xt dt−Xt ⊗

(
C(ρt)∇ϕ(Xt)

)
dt+ 2C(ρt) dt

+Xt ⊗
(√

2C(ρt) dWt

)
+
(√

2C(ρt) dWt

)
⊗Xt .
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Therefore, taking expectations, we deduce that

Eg(Xt)−Eg(X0) =

∫ t

0

C(ρs)−E
[(
C(ρs)∇ϕ(Xs)

)
⊗Xs +Xs ⊗

(
C(ρs)∇ϕ(Xs)

)]
ds .

On the other hand

E[Xt]−E[X0] = −
∫ t

0

C(ρs)E
[
∇ϕ(Xs)

]
ds.

Combining these equations, and noting that t 7→ C(ρt) is differentiable by Lemma 4, we deduce that

d

dt
C(ρt) = 2C(ρt)−E

[(
C(ρt)∇ϕ(Xt)

)
⊗
(
Xt −M(ρt)

)]
−E

[(
Xt −M(ρt)

)
⊗
(
C(ρt)∇ϕ(Xt)

)]
.

Inspired by [15, Lemma A.1], we define the Lyapunov function

VC(µ) = − log det
(
C(µ)

)
.

Using Jacobi’s formula for the determinant, we deduce that

d

dt
VC(ρt) = tr

(
C(ρt)−1 d

dt
C(ρt)

)
= tr

(
Id −2E

[
∇ϕ(Xt)⊗

(
Xt −M(ρt)

)])
.

It follows that

VC(ρt)− VC(ρ0) ⩽ td+ 2
√
d

∫ t

0

E
[∥∥∇ϕ(Xs)⊗

(
Xs −M(ρs)

)∥∥
F

]
= td+ 2

√
d

∫ t

0

E
[∣∣∇ϕ(Xs)

∣∣ · ∣∣Xs −M(ρs)
∣∣] ds.

The integrand can be bounded from (A.13) with p = ℓ+2, which concludes the proof since for any symmetric positive
definite matrix A it holds that

det(A) ⩽ λmin(A)λmax(A)d−1 ⇒ λmin(A) ⩾
detA

∥A∥d−1
F

,

where λmin(A) and λmax(A) are the minimum and maximum eigenvalues of A.

A.3 Proof of Proposition 2

The proof of well-posedness of the mean field dynamics is based on a classical fixed point argument, applied in the
vector space C

(
[0, T ],Rd×d

)
. Similarly to the proof of [5, Theorem 3.1], we first construct a map

T : C ([0, T ],X ) → C ([0, T ],X )

whose fixed points correspond to solutions of (1.3). This section follows closely the proof of [16, Theorem 2.4].

Step 1: Constructing the map T . Consider the map

T : C([0, T ],X ) → C([0, T ],X )

Γ 7→
(
t 7→ C(ρt)

)
,

where ρt := Law(Yt) and (Yt)t∈[0,T ] is the unique solution to (A.6) with matrix Γ. By Lemma 4, the map T is
well-defined. Fixed points of T correspond to solutions of the McKean-Vlasov SDE (1.3). The existence of a fixed
point follows from applying the Leray-Schauder fixed point theorem [17, Chapter 11] in the space C ([0, T ],X ), once
we have proved that T is compact and that the following set is bounded:{

Γ ∈ C
(
[0, T ],X

)
: ∃ξ ∈ [0, 1] such that Γ = ξT (Γ)

}
. (A.16)
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Step 2: Showing that T is compact. To prove that T is a compact operator, fix R > 0 and consider the ball

BR :=
{
Γ ∈ C([0, T ],X ) : ∥Γ∥C([0,T ],X ) ⩽ R

}
.

By the Arzelà–Ascoli theorem, we have a compact embedding

C1 ([0, T ],X ) ↪→ C ([0, T ],X ) .

Thus, it suffices to show that T (BR) is bounded in C1 ([0, T ],X ), which follows immediately from the assertion (A.7)
in Lemma 4.

Step 3: Showing that the set (A.16) is bounded. To this end, assume that Γ ∈ C([0, T ],X ) satisfies

Γ = ξT (Γ) (A.17)

for some ξ ∈ [0, 1], and let (Yt) denote the corresponding solution to (A.6). By (A.17), the stochastic process (Yt) is
also a solution to

dYt = −ξ C(ρt)∇ϕ(Yt) dt+
√

2ξ C(ρt) dWt, ρt = Law(Yt) .

By Lemma 5, it holds that ∥C(ρt)∥ is bounded uniformly in [0, T ] by a constant independent of ξ, and so the set (A.16) is
indeed bounded. This establishes the existence of a fixed point of T , and Lemma 5 yields the moment bounds in (2.8).

Step 4: Showing uniqueness when ϕ ∈ A(0). Let Γ and Γ̂ be two fixed points of T with corresponding
solutions Yt, Ŷt of (A.6). By definition of T and since C(µ) is symmetric and positive semidefinite for all µ ∈ P2(R

d),
it holds that R (Γt) = Γt and R

(
Γ̂t

)
= Γ̂t for all t ∈ [0, T ]. Let ρt, ρ̂t ∈ P(Rd) denote the marginal laws of Yt and Ŷt,

respectively. By the Burkholder–Davis–Gundy inequality, we have for all t ∈ [0, T ]

1

2p−1
E

[
sup

s∈[0,t]

∣∣Ys − Ŷs

∣∣p] ⩽ T p−1

∫ t

0

E
∣∣∣C(ρs)∇ϕ(Ys)− C(ρ̂s)∇ϕ(Ŷs)

∣∣∣p ds

+ CBDG2
p
2 T

p
2−1

∫ t

0

∥∥∥√C(ρs)−
√

C(ρ̂s)
∥∥∥p
F
ds. (A.18)

By Lemma 2, together with the inequality Wp(ρs, ρ̂s)
p ⩽ E|Ys − Ŷs|p, which follows from the definition of the

Wasserstein distance, we have that∥∥∥√C(ρs)−
√
C(ρ̂s)

∥∥∥p
F
⩽ 2

p
2W2

(
ρs, ρ̂s

)p
⩽ E|Ys − Ŷs|p.

For the first term on the right-hand side of (A.18), we use the triangle inequality to obtain

1

2p−1
E
∣∣∣C(ρs)∇ϕ(Ys)− C(ρ̂s)∇ϕ(Ŷs)

∣∣∣p
⩽ E

∣∣(C(ρs)− C(ρ̂s)
)
∇ϕ(Ys)

∣∣p +E
∣∣∣C(ρ̂s)(∇ϕ(Ys)−∇ϕ(Ŷs)

)∣∣∣p
⩽ C

∥∥C(ρs)− C(ρ̂s)
∥∥p
F
E|Ys|p∗ + Lϕ

∥∥C(ρ̂s)∥∥pF E
∣∣∣Ys − Ŷs

∣∣∣p
⩽ C

(
W2(ρs, δ0) +W2(ρ̂s, δ0)

)p
Wp(ρs, ρ̂s)

p + CE
∣∣∣Ys − Ŷs

∣∣∣p ⩽ CE
∣∣∣Ys − Ŷs

∣∣∣p ,
where we used the Lipschitz continuity (2.2), the Wasserstein stability estimate for the covariance in Lemma 2, and
the moment bound established in Lemma 5. We conclude that for all t ∈ [0, T ], it holds that

E

[
sup

s∈[0,t]

∣∣Ys − Ŷs

∣∣p] ⩽ C

∫ t

0

E

[
sup

u∈[0,s]

∣∣Yu − Ŷu

∣∣p] ds.

By Grönwall’s lemma, it follows that the left-hand side is 0 for all t ∈ [0, T ], which concludes the proof of uniqueness.
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B Proof of auxiliary results

B.1 Proof of Lemma 2

We prove the statements separately, using exactly the same approach as in [16].

Proof of (3.1a). By the triangle inequality, it holds that

∥∥C(µ)− C(ν)
∥∥
F
⩽
∥∥µ[x⊗ x]− ν[x⊗ x]

∥∥
F
+
∥∥M(µ)⊗M(µ)−M(ν)⊗M(ν)

∥∥
F
. (B.1)

Let π ∈ Π(µ, ν) denote an arbitrary coupling between µ and ν. By Jensen’s inequality, it holds that

∥∥µ[x⊗ x]− ν[x⊗ x]
∥∥
F
⩽
∫∫

Rd×Rd

∥x⊗ x− y ⊗ y∥F π(dxdy).

Recall that for all (x, y) ∈ Rd ×Rd, it holds that

∥x⊗ x− y ⊗ y∥F =
∥∥x(x− y)T + (x− y)yT

∥∥
F

⩽
∥∥x(x− y)T

∥∥
F
+
∥∥(x− y)yT

∥∥
F
= |x| · |x− y|+ |y| · |x− y| =

(
|x|+ |y|

)
|x− y|. (B.2)

Therefore, we deduce that

∥∥µ[x⊗ x]− ν[x⊗ x]
∥∥
F
⩽

√∫∫
Rd×Rd

(
|x|+ |y|

)2
π(dxdy)

√∫∫
Rd×Rd

|x− y|2 π(dx dy).

Infimizing over all couplings π ∈ Π(µ, ν), we conclude that

∥∥µ[x⊗ x]− ν[x⊗ x]
∥∥
F
⩽
(
W2(µ, δ0) +W2(ν, δ0)

)
W2(µ, ν).

Applying a similar reasoning to the second term on the right-hand side of (B.1), we deduce (3.1a).

Proof of (3.1b). It is sufficient to check the claim for measures µ and ν of the form

µJ =
1

J

J∑
j=1

δXj , νJ =
1

J

J∑
j=1

δY j , J ∈ N+. (B.3)

Indeed, assume that the statement holds for all such pairs of probability measures, and take (µ, ν) ∈ P2(R
d)×P2(R

d).
By [28, Theorem 6.18], there exists a sequence

{
(µJ , νJ)

}
J∈N+ in P2(R

d) × P2(R
d) such that W2(µ

J , µ) → 0

and W2(ν
J , ν) → 0 in the limit as J → ∞. Then

∥∥∥√C(µ)−
√
C(ν)

∥∥∥
F
⩽

∥∥∥∥√C(µJ)−
√

C(νJ)
∥∥∥∥
F

+

∥∥∥∥√C(µ)−
√
C(µJ)

∥∥∥∥
F

+

∥∥∥∥√C(ν)−
√
C(νJ)

∥∥∥∥
F

.

The first term is bounded from above by
√
2W2(µ

J , νJ) by the base case, while the other two terms converge to 0 in
the limit as J → ∞ by (3.1a) in Lemma 2. Taking the limit J → ∞, we deduce that∥∥∥√C(µ)−

√
C(ν)

∥∥∥
F
⩽

√
2W2(µ, ν).

Proof of the statement for empirical measures. By [29, p.5], the Wasserstein distance between empirical
measures µJ and νJ of the form (B.3) is equal to

W2(µ
J , νJ) = min

σ∈SJ

 1

J

J∑
j=1

∣∣∣Xj − Y σ(j)
∣∣∣2
 1

2

,
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where SJ denotes the set of permutations in {1, . . . , J}. Thus, the claim will follow if we can prove that, for any pair
of probability measures (µJ , νJ) ∈ P2(R

d)× P2(R
d) of the form (B.3), it holds that

∥∥∥∥√C(µJ)−
√
C(νJ)

∥∥∥∥
F

⩽
√
2

 1

J

J∑
j=1

∣∣Xj − Y j
∣∣p 1

p

. (B.4)

We henceforth drop the superscript J in µJ , νJ for simplicity, and write X =
(
X1, . . . , XJ

)
and Y =

(
Y 1, . . . , Y J

)
.

The proof of (B.4) presented below follows the lines of a proof shown to me by N. J. Gerber, who proved this inequality
in preliminary work with F. Hoffmann which eventually lead to the preprint [16]. First note that

C(µ) = MXMT
X, MX :=

1√
J

((
X1 −M(µ)

)
. . .

(
XJ −M(µ)

))
.

Proceeding in the same manner, we construct a matrix MY ∈ Rd×J such that M(ν) = MYMT
Y. A result by Araki

and Yamagami [1], later generalized by Kittaneh [21] and Bhatia [3], states for any two matrices A and B with the
same shape, it holds that ∥∥∥√ATA−

√
BTB

∥∥∥
F
⩽

√
2 ∥A−B∥F .

See also [2, Theorem VII.5.7] for a textbook presentation. This result, applied with A = MX and B = MY, yields

∥∥∥√C(µ)−
√
C(ν)

∥∥∥
F
⩽

√
2

 1

J

J∑
j=1

∣∣∣(Xj −M(µ)
)
−
(
Y j −M(ν)

)∣∣∣2
 1

2

= min
a∈Rd

√
2

 1

J

J∑
j=1

∣∣∣Xj − Y j − a
∣∣∣2
 1

2

⩽
√
2

 1

J

J∑
j=1

∣∣Xj − Y j
∣∣2 1

2

,

which shows (B.4) and completes the proof.

B.2 Proof of Lemma 3

Equation (3.3) follows from (3.2), and from an inequality due to van Hemmen and Ando [27, 2], which in of view the
assumption C(µ) ≽ η Id ≻ 0, gives that∥∥∥∥√C(µJ)−

√
C(µ)

∥∥∥∥
F

⩽
1

η

∥∥∥C(µJ)− C(µ)
∥∥∥
F
.

The bound (3.2) follows from usual Monte Carlo estimates. Using the triangle inequality, we have that∥∥∥C(µJ)− C(µ)
∥∥∥p
F
=
∥∥∥µJ [x⊗ x]− µ [x⊗ x]−M(µJ)⊗M(µJ) +M(µ)⊗M(µ)

∥∥∥p
F

⩽ 2p−1
∥∥∥µJ [x⊗ x]− µ [x⊗ x]

∥∥∥p
F
+ 2p−1

∥∥∥M(µJ)⊗M(µJ)−M(µ)⊗M(µ)
∥∥∥p
F
.

Convergence to zero of the expectation of the first term with rate J− p
2 follows from the Marcinkiewicz–Zygmund

inequality. For the second term, we use (B.2) to obtain that

E
∥∥∥M(µJ)⊗M(µJ)−M(µ)⊗M(µ)

∥∥∥p
F

⩽ E
[(∣∣M(µJ)

∣∣+ |M(µ)|
)p|M(µJ)−M(µ)|p

]
⩽
(
E
[(∣∣M(µJ)

∣∣+ |M(µ)|
)2p]

E
[
|M(µJ)−M(µ)|2p

]) 1
2

⩽ CJ− p
2

(
E
[(∣∣M(µJ)

∣∣+ |M(µ)|
)2p]) 1

2

,

where we used again the Marcinkiewicz–Zygmund inequality. The claim follows since E
[∣∣M(µJ)

∣∣2p] ⩽ E
[∣∣Xj∣∣2p] by

Jensen’s inequality.
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