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Abstract. Grating and its well-known diffraction pattern are the basis of

spectrometers to characterize light sources. Reciprocally, periodic peaks in the

diffraction pattern of X-rays scattered by solids bring valuable information about the

internal geometry of the crystal lattice, providing details about the arrangement of

atoms in the solid. In both cases, periodic gratings are considered. What about

non-periodic gratings? Is it possible to reconstruct any grating structure knowing

its diffraction pattern? We answer this question by studying diffraction through the

hologram hidden in a Canadian banknote. We measure the diffraction of near-infrared

light to numerically reconstruct the grating structure using the Gerchberg-Saxton

algorithm. We then compare this reconstructed grating structure with the picture

of the grating structure observed with a phase-contrast microscope. Such an approach

allows us to study diffraction from a perspective different from that usually taught at

university.

Keywords: Diffraction, Fast Fourier Transform, Gerchberg-Saxton algorithm, Diffractive

phase hologram.
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1. Introduction

Although the first paper money was used in China as early as the 7th century, banknotes

did not appear in Europe until the 16th century [1, 2]. If the bills were originally hand-

written on banknote paper, they now use modern printing techniques to make the task

of counterfeiter more difficult [3]. The modern standard techniques include images that

combine technical complexity with visual simplicity, watermarks, security threads, or

secure windows [4]. The first polymer banknotes appeared in the 1980s: as well as being

extremely robust and durable, they have enabled the development of highly complex

diffractive holograms that cannot be seen by the naked eye. These holograms are a new

type of security that is extremely complicated to reproduce due to their intricate and
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complex nature [5]. Australia has been the first country to propose a polymer banknote

with a diffraction grating to deter counterfeiting [6, 7].

The theory of diffraction by periodic structures is of fundamental importance as it is the

building block of spectrometers and the basis of X-ray crystallography [8]. The X-ray

diffraction enabled us to understand the internal geometry of crystals [9, 10] and played

a key role in the discovery of the double-helix structure of DNA [11]. The diffraction

gratings studied in textbooks are usually transmission gratings with periodic surface

grooves to create a simple diffraction pattern that perfectly illustrates the diffraction

formula and its different diffractive orders [12]. Understanding the different orders of

diffraction allows us to determine the structure of a grating from its diffraction pattern.

The reciprocal is rarely addressed in the classroom: what grating should be used to

obtain a given diffraction pattern? The study of the diffractive hologram of a Canadian

banknote enables us to address this question.

The article is organized as follows. (i) First, we observe the Fraunhofer diffraction

pattern of a $5 banknote hologram with a laser. (ii) Using Gerchberg-Saxton’s (GS) al-

gorithm [13], we numerically compute a phase grating using an image of the Fraunhofer

diffraction pattern. (iii) Then, we image the hologram with a phase-contrast microscope

and perform its fast Fourier transform (FFT) [14] to compute the corresponding diffrac-

tion pattern. (iv) We finally compare the numerically reconstructed phase grating to

the one we imaged.

Note that the quantitative experiments described below have been performed using

materials from a university laboratory. However, a laser pointer is enough to reveal the

diffraction pattern of banknotes, as presented on several websites [15, 16].

2. Fraunhofer pattern of the banknote diffractive hologram

The set of Canadian polymer banknotes contains diffractive holograms hidden in the

maple leaf located at the corner of the note (Figure 1(a)). In this first section, we

observe the Fraunhofer diffraction pattern of the phase grating hidden in the maple leaf

of a $5 banknote by illuminating it with a laser.

2.1. Experimental setup

The experimental setup is shown in Figure 1(b). We use a 2.5 cm diameter circular piece

from a $5 bill. The light source is a Thorlabs laser diode L785P090 (λ = 785 nm) coupled

to a single-mode optical fiber (780 - 970 nm). A fiber collimation package with numerical

aperture NA = 0.15 and a focal f = 18.4mm collimates light from the fiber. We assume

the light output from the optical fiber is a Gaussian free-space collimated beam with

amplitude A0(x, y) =
√
I0 exp

[
−x2+y2

w2

]
where (x, y) are the coordinates in the plane
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Figure 1. (a) Canadian five-dollar note, ©Bank of Canada [17]. We use a circular

piece around the frosted maple leaf shape and adjust it in a one-inch optic mount

(black dashed circle). (b) Schematic of the experimental setup. The collimator is used

to bring the laser beam to a parallel configuration and the CMOS camera is located

at the focal plane of the lens L. (c) Intensity I(x, y) of the Gaussian beam in the x

(blue markers) and y (red markers) direction normalized to the maximum intensity I0.

The waist is given by the width at half-maximum. (d) Fraunhofer diffraction pattern

observed at the focal plane of L.

perpendicular to the beam axis, I0 is the laser intensity, and w is the beam waist. We

characterize it with a CMOS ASI183mm Zwo camera located between the collimation

package and the hologram: we estimate the beam waist diameter w ≃ 1.6mm (Figure

1(c)). The Gaussian approximation is valid, thereby confirming the suitability of the

subsequent numerical approach. The same camera is placed in the back focal plane of a

lens L of focal length f = 75mm to observe the Fraunhofer diffraction pattern, shown

in a 3673×3673 sampled image (Figure 1(d)). This pattern reveals the value of the bill:

two $5 positioned crosswise.

2.2. Fraunhofer diffraction theory

Diffraction occurs when light passes through an aperture of a size comparable to its

wavelength. Huygens postulated that each surface element of a diffracting aperture was

a ”secondary source” of a spherical wavelet of amplitude proportional to that of the inci-
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dent wave. This principle can be derived from Kirchoff’s integral formula on a rigorous

basis assuming that the characteristic dimensions of the diffracting aperture are large

compared with the wavelength [18]. The optical field at the observation point can be

written as the sum of spherical waves radiated by each point of the diffractive aperture.

Each of these waves has an amplitude proportional to the amplitude of the incident wave,

multiplied by a purely geometric factor describing the inclination of the light rays with

respect to the normal of the aperture. Starting from the Huygens approach, Augustin-

Jean Fresnel proposed a mathematical model to calculate the diffraction pattern created

by waves passing through an aperture, when the distances between the diffracting ob-

ject, the light source, and the observation plane are comparable to the wavelength of

light. Fresnel diffraction is thus an approximation for near-field diffraction and treats

the wavefront as a curved surface. The Fresnel integral is the Fourier transform of the

field multiplied by a term, called the Fresnel propagator which depends on the distance

of propagation. Fraunhofer diffraction (named after Joseph von Fraunhofer) corresponds

to the opposite limit (far-field diffraction) and assumes that the wave has propagated

over a sufficiently large distance. The Fraunhofer diffraction integral omits the Fresnel

propagator.

In our experiment, the incident light is perpendicular to the diffractive hologram, and

the diffraction pattern is observed at a sufficiently large distance from the object, as it

is at the focal plane of the imaging lens L, as shown in Figure 1(b). It is thus the case

of Fraunhofer diffraction in the paraxial approximation (small-angle approximation).

Under these assumptions, the complex amplitude A(x, y) of the diffracted wave becomes

an integral of the transparency function multiplied by the illumination beam:

A(x, y) = A0(x, y)
∫
(Σ)

T (x0, y0) exp

[
−i

2π

λf
(x0x+ y0y)

]
dx0dy0, (1)

where λ is the wavelength of the laser, T is the complex transparency function of the

diffractive grating and Σ is the hologram surface located in the (x0, y0) plane. Eq. 1

is the two-dimensional Fourier transform of T . Fourier analysis being at the core of the

Fraunhofer diffraction, readers wishing to know more about the fundamental properties

of Fourier transforms in optics can refer to [19, 20]. The diffraction pattern is given

by the intensity measured by the camera I(x, y) = |A(x, y)|2. Figure 1(d) shows this

diffraction pattern symbolizing the value of the five-dollar banknote, in two copies and

placed crosswise.

3. Reconstruction of the phase grating corresponding to the Fraunhofer diffraction

pattern

We now try to numerically find the phase grating that could give the observed diffraction

pattern using the GS algorithm [13].
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3.1. The Gerchberg–Saxton algorithm

The GS algorithm is an iterative algorithm that converges to a phase grating whose

diffraction pattern is approximately the intensity of a sampled image If . It uses a fast

algorithm to calculate the Fourier transform implemented with O (n log2 n) operations

and memories for an array of n points: the FFT algorithm [14, 21]. In our case, work-

ing with 2d images, we use 2d FFT with the MATLAB function "fft2.m" from Signal

Processing Toolbox.

We first create a binary image If representing the five-dollar positioned crosswise using

vector graphics software (Inkscape), in Arial font, to mimic the diffraction pattern. We

neglect the bright central point visible in Figure 1(d) which corresponds to zeros order

diffraction and does not contain the information we are looking for. This created binary

image If is shown at the bottom corner in Figure 2.

Figure 2. Flowchart associated with the Gerchberg–Saxton algorithm. A and ϕ

designate amplitude and phase in real space, while A and θ refer to them in Fourier

space.

In the following, for the sake of simplicity, we assume that complex transparency is a
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phase: T (x0, y0) ∝ eiϕ(x0,y0). The input parameters of the GS algorithm are (see eq. (2)):

• the intensity of the illuminating Gaussian beam as an image A0(n,m) of size N×N

with N = 211 pixels giving an image width ∆l = 1mm,

• a created binary image If(p, q), of size N ×N , representing the desired diffraction

pattern,

• an initial random phase for the phase grating ϕ0(n,m) of size N ×N .

The initial phase ϕ0 was randomly generated in [0, 2π]. The flowchart of the algorithm

is shown in Figure 2. The initial field in the lens focal plane is calculated by computing

the FFT of the complex field in the grating plane A0e
iϕ0 where I0 = |A0|2 is the intensity

of the Gaussian laser beam (first iteration). We then compute the Fourier transform

Ap,q of the complex field amplitude An,m and its inverse Fourier transform by using the

2d FFT algorithm:∣∣∣∣∣∣ Ap,q = FFT [A] =
∑N

n=1

∑N
m=1 An,me

−2iπ(np
N

+mq
N )δx2,

An,m = FFT−1 [A] =
∑N

p=1

∑N
q=1Ap,qe

2iπ(np
N

+mq
N )δX2

k ,
(2)

where Xk0 = N × δXk is the spatial dimension of the image in the back-focal plane

(width of the binary image If) and x0 = fλ
δXk

is the spatial dimension of the diffractive

hologram. The magnitude of the calculated amplitude |Ak| is substituted by the target

amplitude
√
If where If corresponds to the wanted picture If . Ak is a 211× 211 image of

length ∆L = λ
π
Nf
∆l

mm. The new complex amplitude
√
Ife

iθk is propagated back to the

pupil plane by the inverse FFT−1 which gives a new magnitude Ak+1 and a new phase

ϕk+1. The algorithm is then repeated considering the diffraction by the grating A0e
iϕk+1 .

The process is repeated until the error ϵ = 2∥|Ap,q |2−If(p,q)∥
∥|Ap,q |2+If(p,q)∥

< ϵ0 with ϵ0 defined by the

user and ∥ · ∥ is the Euclidean norm of the matrix. The output is a phase-diffraction

pattern ϕf(n,m) of size N ×N .

3.2. Case of the Canadian banknote

Using the diffraction pattern representing the five-dollar positioned crosswise we have

created, the phase grating obtained with the GS algorithm is shown in Figure 3(a). As

expected, the FFT of this calculated grating illuminated with the Gaussian beam gives

the diffraction pattern displayed in Figure 3(b), which looks like the experimental one

(Figure 1(d)), except for the central spot, which was not considered in the binary image.

Convergence of the GS algorithm takes 25 minutes on a personal computer with an Intel

i7-8650U processor and 16 GB RAM for an image resolution of 211 × 211 if the accepted

error is ϵ0 = 0.1 (corresponding to 186 iterations). We have arbitrarily chosen this value

of ϵ0 to obtain high-contrasted phase.

Note that the solution is not unique because there are often multiple possible solutions

that can correspond to the same Fourier spectrum [13]. The image resolution δX is

chosen to get a pixel size of the order of the pixel size of the phase-contrast microscope
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Figure 3. (a) Phase grating ϕf(n,m) corresponding to the target image, obtained

using the Gerchberg–Saxton algorithm after 186 iterations. Scale bar: 100µm. (b)

Magnitude of FFT
[
A0(n,m)eiϕf (n,m)

]
where |A0|2 = I0 is the intensity of the

collimated Gaussian beam with a 1.6mm beam radius. Scale bar: 1mm. (c) Histogram

of the image in (b). The blue area corresponds to black pixels while the red one

corresponds to the white pixels multiplied by a factor ×5. (d) Black dots are error ϵ

(see text) as a function of the number of iterations. Red (respectively blue) dots stand

for the mean value of the red (respectively blue) distribution of the panel (c). The

error bars stand for standard deviation.

image (1.82µm/pixel, see Section 4). Figure 3(c) shows the distribution of grayscale

values of Figure 3(b), namely the histogram. It essentially shows a peak centered on

gray level 0 (blue) and another peak centered on gray level 1 (red). The greater the

width of the blue (respectively red) peak, the darker (respectively light) gray levels there

will be in the image: the histogram of a binary image is made up of only two infinitely

fine peaks centered around zero and one. The greater the number of iterations of the

algorithm, the smaller the width of the peaks approaching a binary image. Besides, the

decrease in the standard deviation with the number of iteration of the red histogram

indicates that we approach a black-and-white image (Figure 3(d)).
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4. Grating structure of the Canadian banknote

In this section, we aim at comparing our numerical result to the real hologram, first

qualitatively, and then quantitatively.

4.1. Phase-contrast microscopy of the banknote hologram

We first use a phase-contrast microscope to qualitatively observe the hologram of the

banknote. In a phase-contrast microscope, the phase differences of light waves passing

through different parts of the specimen are converted into visible intensity differences

[22]. We use a Leica DM IRB with a 5x/0.12NA/Ph0 objective. A picture was taken with

a Retiga6000 camera (Qimaging) using a binning of 2 which corresponds to a 1.82µm

pixel size. Figure 4(b) is part of this picture, displaying a part of the banknote diffractive

hologram. This hologram is composed of alternating strips of different orientations, with

each strip causing a different phase delay. This observed grating structure looks like the

one reconstructed by the GS algorithm (Figure 3(a)).

4.2. Calculation of diffraction pattern of imaged phase-structure

The phase-contrast image (Figure 4(b)) and the calculated phase grating (Figure 3(a))

are not identical. To estimate their similarity, we measure the characteristic width of

their strips by calculating the 2d spatial autocorrelation of both images. We start with

the phase-contrast image φ(n,m). To calculate its discrete autocorrelation function, we

first consider the fluctuations:

δφ(n,m) = φ(n,m)− ⟨φ⟩, (3)

where ⟨φ⟩ = 1
N×N

∑N
n=1

∑N
m=1 φ(n,m) is the mean value of the phase-contrast image

with N = 2048 pixels. We then calculate the Fourier transform of δφ(n,m) by using the

FFT algorithm (see Section 3). We finally compute the spatial autocorrelation C(n,m)

using the Wiener - Khintchine theorem [21]:

C(n,m) = real
{
FFT−1 [FFT [δφ]× FFT [δφ∗]]

}
(4)

where ∗ denotes the complex conjugate. Figure 4(c) shows the 2d spatial autocorrelation

of Figure 4(b): it exhibits a central peak whose width gives the characteristic size of

the strips. To deduce the size ∆R of this peak, we calculate the radial autocorrelation

function C(r) = 1
2πr

∫ 2π
0 C(r cos θ, r sin θ) dθ by summing the C(n,m) values over a ring

of radius r and thickness of one pixel. We find ∆R ≃ 18µm, which is consistent with the

characteristic size observed in Figure 4(b). We do the same analysis with the hologram

obtained with the GS algorithm, ϕf(n,m), and find ∆R ≃ 26µm (Figure 4(d)). The

small discrepancy observed between the autocorrelation calculated on the hologram

measured with the phase-contrast microscope and the hologram calculated with the GS

algorithm is attributed to the difference in sampling size and the difference in the target

image.
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Figure 4. (a) One-inch optic mount holding the banknote piece containing the

diffractive hologram hidden in the maple leaf of the $5 banknote (see Figure 1(a)).

(b) Phase-contrast image φ(n,m). Scale bar: 100µm. (c) 2d spatial autocorrelation

C(n,m) of the image in (b). (d) 1d spatial autocorrelation function C(r) corresponding

to the radial average of C(n,m) (blue curve, see text), exhibiting a typical length

∆R ≃ 20µm. The same analysis was done on the phase obtained with the GS algorithm

(orange curve).

4.3. FFT of the observed grating structured

Last, we calculate the diffraction pattern of the observed phase-contrast image shown in

Figure 4(b). We first superimpose this grayscale image and the Gaussian profile of the

laser beam (red spot), as shown in Figure 5(a). By calculating the Fourier transform of

this superposition, we obtain the diffraction pattern shown in Figure 5(b). We logically

note a very good agreement between this pattern and the one we observed (Figure 1(d)).

5. Conclusion

We use two different experimental approaches to investigate the phenomenon of diffrac-

tion by a complex diffraction grating hidden in a banknote. In both cases, we use

numerical tools based on the Fourier transform to explore the link between a small-scale
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Figure 5. (a) Superposition of the phase-contrast image φ(n,m) and the w = 1.6mm

laser spot A0(n,m). Scale bar: 500µm (b). Magnitude of the FFT of A0(n,m)eiφ(n,m).

Scale bar: 1mm

structure and its diffraction pattern. These experimental and numerical investigations

have shown how to deduce a grating structure based on its given diffraction pattern. By

providing some insight into the relationships between diffractive structures and diffrac-

tion patterns, we believe this work will benefit students in their understanding of diffrac-

tion and Fourier transforms.

We are convinced this study can be performed by undergraduate students at university

level to get a wider understanding of diffraction theory by highlighting the importance

of the phase of the optical signal. Besides, such experiments enable students to work

with image processing and numerical computation.
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