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Research Highlights
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• Transfer and prediction of facial expressions
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(a) Mean 4D surprise expressions.

(b) Surprise expression synthesized on a input (most left) hemisphere.

(c) Surprise expression synthesized on a input (most left) statue head.

Figure 1: Learns the mean expression from an input (a) and transfer to (b) or predict (c).
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Abstract

We propose a new framework for modeling surface dynamics, analyzing their
elastic shapes, and predicting future dynamics from a given surface. We repre-
sent a facial expression, hereinafter referred to as a 4D facial surface, using its
initial surface and a sequence of deformation vector fields. We then treat facial
expressions as sampling from a mixture of spatio-temporal stochastic processes.
This fact, in connection with expression’s patterns learning, has made the in-
corporation of meaningful prior knowledge possible. The proposed framework
can be applied to a wide range of applications where the analysis and the pre-
diction of temporal shape dynamics are important. In this paper, we focus on
4D facial expressions and demonstrate the utility of the proposed framework in
performing temporal alignment between facial expressions, deforming one 4D
surface (i.e. a facial expression) onto another, and simulating and synthesizing
4D surfaces.

1 Introduction

Automated analysis of dynamic surfaces, i.e. surfaces that deform and evolve over
time, hereinafter referred to as 4D surfaces, is an important problem in computer
graphics and geometry processing. For instance, anatomical objects such as human
body shapes, and human body parts such as faces, bones, and subcortical structures
in the brain, deform as a result of growth and/or disease progression. In general, one
is interested in understanding and modeling the typical deformation patterns of these
objects and the variability of these deformations within and across subjects. This
is referred to as statistical modeling and analysis of 4D surfaces, where the fourth
dimension corresponds to the temporal component.
In this paper, we focus on facial surfaces that deform due to facial expressions, here-
inafter referred to as 4D expressions, and propose a new framework for their statistical
analysis. Formally, we are given a finite set of 4D expressions where each expression
is represented as a sequence of deforming 3D faces. The goal is to:

• Compute the mean (or average) 4D expression. For example, the same person
can smile in different ways. Similarly, different person smile differently. The
goal is to learn a typical smile from a data set. This is equivalent to computing
a statistical mean from a set of smile observations either on the same person or
on different persons.

• Learn a statistical model from a given set of observations

• Simulate new expressions as predictions or sampling from the statistical model.
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Developing such framework requires solving important fundamental challenges. Faces
exhibit large elastic deformations within the same subject, across different subjects,
within the same expression and across different expressions. Also, expressions exhibit
large variability in execution rate (i.e. speed) within and across subjects. The former
requires spatial elastic registration, i.e. finding a one-to-one correspondence between
two facial surfaces of the same or different individuals. The latter requires accurate
temporal registration, which adds another complexity to the problem.
We propose in this paper a new framework that treats the shape of a 4D surface in the
setting of Riemannian geometry and stochastic processes. This allows solving three
main issues: rate invariant spatio-temporal alignment of facial trajectories, elastic
geodesics (i.e. optimal deformations) between them, and learning a predictive model
from observations. A stochastic process model is then used to learn and simulate new
facial expressions as predicted observations. In this context, the proposed formulation
is well posed, guaranteeing an optimal solution.

We illustrate this framework on various examples of facial expression analysis includ-
ing the synthesis of natural 4D expressions. We also show that the proposed approach
is able to learn long-term dynamic patterns, a problem that was unsolved by previ-
ous state-of-the-art techniques [33, 23, 3]. This allows us to predict an entire facial
expression from just its initial surface.
The remainder of the paper is organized as follows. Section 2 reviews the related
work. Section 3 overviews the proposed method and summarizes the contributions of
this paper. Section 4 presents the different statistical tools needed for the prediction.
In Section 5, we describe efficient numerical methods to this end. Section 6 presents
the proposed prediction method. Section 7 demonstrates the results and discusses
the performance of the proposed framework.

2 Related work

The work presented in this paper can be seen as a generalization of the recent ad-
vances in statistical analysis of the shape of 3D objects to the statistical analysis of
the shape of 4D objects where the fourth dimension refers to time. Thus, in our liter-
ature survey, we first review the techniques that have been used for statistical shape
analysis and then focus on the analysis of dynamic objects such as facial expressions.

Statistical analysis of the shape of 3D objects and surfaces. Statistical anal-
ysis and modeling of shapes of objects take their origin in the work of [13], where
the shape of an object in Euclidean spaces is defined as all the geometrical infor-
mation that remains when location, scale and rotation are factored out. Since then,
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various methods for computing deformations between two shapes as geodesics in the
Kendall shape space have been proposed. [14] investigated a method for computing
minimal geodesics in Kendall shape space based on minimizing sums of squares of the
Procrustes distance. In a regression context, [15] proposed a method for estimating
smoothing splines in the general Kendall shape space using unrolling and unwrapping
procedures [12] on spherical data.
While Kendall’s definition of shape space took major strides in shape analysis, it has
some limitations, especially when dealing with objects that exhibit large elastic defor-
mations, due to the use of landmarks to define the shape space. Much work has been
done in order to find a convenient shape representation that enables simple physical
interpretations of deformations (i.e. bending and stretching) and efficient numerical
methods. Srivastava et al. [27, 11] propose a new geometric representation of sur-
faces based on computational differential geometry. They introduced a Square-Root
Normal Field (SRNF) representation for analyzing shapes of surfaces in Euclidean
spaces under an elastic metric and compute geodesics between hemispherical surfaces
using path-straightening approach [27] and between genus-0 surfaces using SRNF in-
version procedure [18]. Other authors have also presented other alternative methods
in order to find optimal deformations [21, 17, 25].

Analysis and simulation of 4D facial expressions. To the best of our knowl-
edge, statistical modeling and simulation of the trajectories of facial surfaces has not
been addressed in the past. There is however an active research for studying regres-
sion and fitting data on Riemannian manifolds, see [29, 20, 24, 26].
One of the straightforward techniques for simulating facial expressions would consist
of transporting the mean linear deformation to another candidate in order to predict
its dynamics [33, 1]. These methods, however, are only successful when the starting
surface is close to training data. The results are less convincing when the observations
include nonlinear deformations and thus are not similar to the training. Furthermore,
we note that the state-of-the-art methods were widely developed based on short-term
or one-step prediction modeling. In contrast to this generic deformation model, we
propose an adaptive and more flexible way to capture the long-term deformation vec-
tor field.
Expression transfer has been studied for prediction inside the same 4D object [22,
30, 16]. [8] use geodesic segments between successive frames in order to construct
a piecewise-geodesic path. Due to abrupt velocity change, i.e. deformations are not
smooth at intermediate points, they extended their work in order to create a smooth
path using splines [9]. Other alternative techniques like Bezier curves can be applied
for smoothing paths [2]. Although these works achieve good results, they are not
applicable to predicting a new 4D object. [7] overcome this issue by first learning
the deformation of known 4D triangulated objects. A weighted sum of these defor-
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mations is then applied to a new surface in order to predict a new 4D object. This
work, however, does not consider the spatial and temporal registration issue, which
makes it not applicable in general. [19] use a statistical model in order to transmit
an expression. From a reference frame, they compute the shape, pose and expression
variation for generating a new face. Despite this process allows to realistically trans-
mic an expression, this works does not allow to analyse expressions due to the lack
of temporal registration. Moreover, the large uses of facial specific features make this
work not usable for other kind of dynamic surfaces.

3 Overview and contributions

Motivated by the need for accurate statistical modeling and simulation of nonlinear
elasticity of 4D facial shapes, we propose a new framework for modeling surface
dynamics, analyzing their elastic shapes, and predicting future dynamics from a given
surface. The framework takes a set of facial expressions αi and a new neutral surface
α∗(0), and produces an animated facial expression α∗(t), t ∈ [0, 1]. This is achieved
in six steps:

1. Preprocess the parametrized surfaces and paths.

2. Perform spatial registration of the surfaces.

3. Perform temporal registration with geodesics between paths

4. Compute the Fréchet mean per expression.

5. Learn the regression model from the observations. Here, we consider that the
trajectory of a surface (4D expressions for example) have a stochastic charac-
teristic. We assume that each trajectory is a realization of a random function
sampled from a stochastic process.

6. Generate α∗(t), t ∈ [0, 1] from α∗(0) using the regression model.

The proposed prediction model plays a central role in predicting the dynamic patterns
for an unobserved static surface, even far in terms of deformations and parametriza-
tion from a common 3D face. It takes different conditions into account to improve the
prediction accuracy. This will be illustrated on real as well as on synthetic examples.

4 Formulation

We are given a finite set αi, i ∈ {1, · · · , n} of independent trajectories on the space
of hemispherical surfaces. A hemispherical surface is defined to be a surface that is

5



homeomorphic to a disc. Then, such surfaces can be represented as:

f : Ω = [0, 1]× [0, 2π] → R3

s = (r, θ) 7→ (x(r, θ), y(r, θ), z(r, θ)), (1)

where r is the parameter along the radial direction and θ is the parameter along
circular direction. We denote by F the space of such surfaces, which we equip with
the L2 metric:

⟨f1, f2⟩ =
∫
Ω

f1(s)f2(s)ds. (2)

The distance between two surfaces f1, f2 ∈ F is then given by:

dF(f1, f2) = ∥f1 − f2∥2. (3)

Let αi an arbitrary trajectory from I = [0, 1] to F . Equivalently, each αi can be
seen as a temporal evolution of a unique surface αi(0) on F whereas all the αi’s are
realizations of a spatio-temporal process A. We assume that T , the space of the αi’s
is endowed with the L2 metric such that ⟨α1, α2⟩ =

∫
I
⟨α1(t), α2(t)⟩dt.

Now, let us assume that α(t) only depends on α(0) and the time instant t ∈ I, i.e.
α(t) = g(α(0))(t)+ δ(t) where δ is a random error and g is the link function. In other
terms, our objective to learning a predictive model becomes a problem of estimating
the link function g from the observations (α1, · · · , αn). We assume that the function
g is a regression function such that g(α(0)) = E(A|A(0) = α(0)).
To solve this problem, we need a set of tools for analyzing facial shapes and trajec-
tories. We propose to solve two main challenging issues. The first one is due to the
parametrization of facial surfaces since each surface may have a different curvilinear
system. For example, let us suppose that we want to compute the optimal defor-
mation from a surface f1 to a surface f2. In addition to translation and pose, we
have to fix their parameterizations (correspondences) before computing the optimal
vector field that deforms one surface onto the other. In this example, assuming that
we have a numerical method to solve the first issue as a cost, we need to define a
good representation and an elastic metric that will allow us to capture diffeomorphic
deformations. The shape of facial surfaces has been extensively studied in the past.
In the next section, we partially review some of the previous methods and summarize
the steps and tools that are required for our study.

5 Analyzing Trajectories of Facial Shapes

The notion of deformation between any two surfaces f1 and f2 ∈ F must be measured
with respect to the deformation between their shapes. To reach such goal one needs
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Figure 2: Examples of geodesic paths between the most left and the most right surfaces
in each row. The intermediate surfaces show the evolving deformation. These deformations
are clearly nonlinear as illustrated by the intermediate surfaces along the geodesic paths.

to consider F as a Riemannian manifold by putting a Riemannian structure on it in
order to define a geodesic distance for our statistical study. In this section, we adapt
the ideas from [11] and [27] to study the geometry of facial shapes.

5.1 Statistical Analysis of Facial Shapes

We assume that spatial registration problems due to translation, rotation, and scal-
ing between surfaces have been already removed using different optimization meth-
ods [5, 32, 6]. We are then interested in finding the best spatial correspondences
between two surfaces f1, f2 ∈ F . This problem is equivalent to looking for the best
re-parameterization of these surfaces, i.e. the reparameterization that minimizes the
L2 distance between them. Recall that the re-parameterization group Γ is defined by:

Γ =
{
γ : Ω → Ω

∣∣ γ(∂Ω) = ∂Ω, |γ̇| > 0
}
, (4)

where Γ is the set of orientation-preserving diffeomorphisms. This optimal re-parameterization
problem can be solved by minimizing the following cost function:

EΓ(γ1, γ2) = dF(f1 ◦ γ1, f2 ◦ γ2). (5)

Since the re-parameterization group Γ does not act on F by isometries, it is hard to
find the optimal solution of EΓ. Indeed, from a practical point of view, one has to
search for a couple of solutions (γ1, γ2), simultaneously. Even if we assume that good
estimates may be computed for each candidate separately, we can deduce that finding
the couple is challenging. Thus, we use another representation in order to find the
optimal solution: the Square-Root Normal Field (SRNF) representation [10]. Here,
we summarize the main ideas for clarity and completeness. We refer the reader to the
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paper [10] for more details. The SRNF representation of a surface f is defined as:

h : F → Q

f 7→ q =
ḟ√
||ḟ ||

where ḟ =
∂f

∂r
× ∂f

∂θ
̸= 0R3 .

It is essentially the normal scaled by the square-root of its normal. The space Q of
SRNFs has a natural L2 metric. Moreover, Γ acts on Q by isometries [10]. So, by
minimizing the L2 cost between q1 and q2, the SRNF representation of surfaces f1 and
f2 respectively, the initial re-parameterization problem becomes tractable. Indeed, we
rewrite the cost Eγ with Ẽγ as follows:

ẼΓ(γ) = ∥q1 − (q2, γ)∥2. (6)

We denote the optimal solution by γ̂ and we further assume that the surfaces f1 and
f̄2 = f2 ◦ γ̄ are spatially registered, accordingly. Once spatially registered, we can
compute the geodesic path between them using Euclidean geometry. Two examples
of such geodesics are illustrated in Figure 2. For each example, the geodesic starts
from the surface at the left and ends at the right. The intermediate points illustrate
the evolving deformation field along the geodesic path.

5.2 Statistical Analysis of Trajectories

We extend the geometric tools for facial shape analysis of the previous section to
study variations between trajectories of facial shapes. Let α1, α2 be two different
trajectories on F with the correct spatial registration estimated using the approach
presented in the previous section. Another issue that needs to be solved is how to find
a good temporal alignment between α1 and α2? The problem of temporal alignment
is equivalent to finding the best time-warping function that minimizes the L2 distance
between α1 and α2. To this end, we first define the time-warping group by:

E =
{
ϵ : [0, 1] → [0, 1]

∣∣ ϵ(0) = 0, ϵ(1) = 1 , ϵ̇ > 0
}
, (7)

Using the fact that a spatio-temporal process is a trajectory of surfaces, we estimate
the appropriate temporal correspondences by optimizing the cost function:

EE(ϵ1, ϵ2) =

(∫ 1

0

dF(α1(ϵ1(t)), α2(ϵ2(t)))
2 dt

)1/2

. (8)

This is a complex problem to optimize directly. Since an expression is a path on F ,
which is an Euclidean space, we estimate the temporal alignment using the Square-
Root Vector Field (SRVF) representation [28] and dynamic programming. The tra-
jectories α1 and ᾱ2 = α2 ◦ ϵ̄ are then temporally registered.
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α(0) α(1/7) α(2/7) α(3/7) α(4/7) α(5/7) α(6/7) α(1)

Figure 3: Examples of surprise expressions. The first two rows show two expressions
before temporal registration. The last two rows show the same two expressions but after
temporal alignment. For each case, we highlight, using a bounding box, the face where the
intensity of the expression is maximal.

(a)

(b)

(c)

Figure 4: Estimated Fréchet mean for three prototypical expressions: (a) Angry, (b)
Happy, (c) Surprise.

Figure 3 shows an example of temporal alignment between two different expressions.
This example illustrates the importance of temporal registration in the proposed
framework. The first two rows display a surprise expression from two different per-
sons before temporal alignment. The last two rows show the same expressions after
temporal alignment. We can easily check that the original expressions undergo a
time-shift that has to be corrected before analysis. In particular, the maximum de-
formations, highlighted with boxes, occur at different time instants (t = 3/7 for the

9



first row and t = 6/7 for the second row). Note that this nuisance has been correctly
estimated and corrected using the proposed temporal alignment (time instant t = 4/7
for both).
Once the expressions are spatio-temporally registered, we can compute the Fréchet
mean of each prototypical expression, see Figure 4.

Figure 5: Comparison of the predictive results on two examples: (top) the empirical mean
estimator, and (bottom) the Nadaraya-Watson estimator. Examples of surprise deforma-
tions as ∥D(t)∥2 from t = 0 to t = 0.5: training (black), predicted (blue), and mean (red)
in the right.

6 Parameter Estimation and 4D Expression Sim-

ulation

A dynamic surface α : [0, 1] → F can be interpreted as a trajectory of surfaces. In
what follows we assume that all the surfaces, within a trajectory and across trajec-
tories, are correctly registered, i.e. they have been normalized for translation and
scale, and optimally rotated and re-parameterized. Moreover, we assume that these
trajectories have been also temporally registered using the previous section.
With this representation, one can formulate the problem of statistical analysis of 4D
expressions as the problem of statistical analysis of trajectories in F . However, since
we seek to transmit the deformation due to an expression, we focus on deformation
vector fields. That is, if we assume that the expressions are smooth enough then
α can be interpreted as a continuous sequence of infinitesimal deformations D such

10



that:
α(t) = α(0) +D(t),∀t ∈ [0, 1]. (9)

where D belongs to L2([0, 1],F).
Knowing the first surface α∗(0), predicting a trajectory α∗ is equivalent to predicting
its successive deformationsD∗. Then, instead of solving the original regression estima-
tion g on α’s, we reformulate our problem as a regression function R on deformations
such that:

g(α∗(0))(t) = α∗(0) +R(α∗(0))(t). (10)

Note that the space of Di is Euclidean. Thus, one can exploit the state-of-the-art
processes for Euclidean spaces. In this paper, we will consider two estimators. The
first one is given by:

R̂(α∗(0)) =
1

N

N∑
i=1

Di

We will refer to the resulting deformation as the mean deformation or the generic ex-
pression. As shown in Figure 4, this estimator, or equivalently the Fréchet mean when
it comes to expressions, may successfully learn the common deformations. However,
predicting an expression for a given neutral surface may fail if the input surface is
far from the observed ones. To make the prediction step flexible and more adaptive
to the initial surface, we propose a second estimator based on the Nadaraya-Watson
type kernel estimator [4]:

R̂(α∗(0)) =
N∑
i=1

Kh(dF(αi(0), α∗(0)))
N∑
j=1

Kh(dF(αj(0), α∗(0)))

Di, (11)

where K is a Gaussian kernel and h is a bandwidth. We have choosen here

h2 =
1

N

N∑
i=1

(
dF(αi(0), α∗(0))−

1

N

N∑
i=1

dF(αi(0), α∗(0))

)2

(12)

7 Results

In this section, we apply the proposed framework to learn a 4D expression model
from a collection of 4D facial expressions and then use it to simulate the same expres-
sion from a given neutral surface. All the experiments are conducted on the BP4D
database [31], which N = 6 expressions for each class of expression.
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Spatial and temporal registrations. In the following, we assume that trans-
lation, rotation and scaling variabilities are removed using Generalized Procrustes
Analysis [5]. Before analyzing facial shapes, we need a parameterization for each
face f inside a centred geodesic ball: We computed the radial curves of f at an angle
θ, noted cθ, which is the intersection between f and a rotated half-plane Pθ. Finally,
we parameterized each curve cθ in a way it lies in [0, 1] using the arc-length. This
process allows a full automatic parameterization of f .
After setting the initial parameterizations for facial shapes (spatial) and trajecto-
ries (temporal), we use our method as detailed in Section 5.1 to register two facial
surfaces, and then our method detailed in Section 5.2 for temporal registration of tra-
jectories. Now that each trajectory is spatio-temporally registered, we can learn α∗
from available observations using the estimator R̂. The first model is an estimation
by the empirical mean. As shown in Figure 5, this model correctly predicts a surprise
expression on the first example but resulted in a less convincing simulation for the
second example. This limitation is due to the uniform weights in the model where
close and far faces have the same influence. This is not realistic since the input neu-
tral faces are more likely to behave similarly to ”closer” faces. In order to overcome
this limitation, we use a Nadaraya-Watson estimator as defined in Equation. (11).
As shown by the two examples of Figure 5, this model outperforms the estimation by
empirical mean. This result is also confirmed with Figure 5 right where we display
examples of surprise deformations as ∥D(t)∥ from t = 0 to t = 0.5: training (green),
predicted (blue). The same figure displays the mean without and with the scaled
standard deviation to give a confident interval of level 95% of the mean. We point
out that the predictions are in a small area around the mean.

Extension to more general surfaces. Now we test if the proposed model can be
extended to simulate expressions on input surfaces that are relatively far from being
a human face. To partially answer this question, we simulate expressions from non-
human faces. Recall that the nose tip has been manually extracted but the remaining
tasks remain fully automatic. We display two examples as animated surfaces in
Figure 6. One can note that the predicted expressions have a very good quality.
Note that, in general, learning models require large and complete datasets in order
to capture all variabilities.

8 Summary

We have proposed a novel framework to learn dynamic patterns from 4D expressions
and predict a trajectory from a neutral surface. We have demonstrated the effi-
ciency of the proposed estimator by applying it to learn six mean deformations from
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Figure 6: Examples of surprise expressions simulated on non-human faces: (top)) King
Kong, (bottom) face without mouth. The input surface is the most left one.

Figure 7: Example of simulating the surprise expression on an input (most left) lion head.

a dataset of 4D expressions. From our experiments, we conclude that the proposed
approach can be useful for learning and automatically synthesizing new 4D expres-
sions. The same framework can be adapted to transfer a learned animation from
available spatio-temporal observations to a newly-observed surface. The framework
is sufficiently flexible to be useful in other applications.
We believe that the proposed framework is a promising direction for realistic simula-
tion and synthesis of long-term facial motion and animation. We expect to see more
animation methods using the analysis of trajectories in shape space. For instance,
fitting Bézier and cubic spline curves could be adapted to simulate trajectories on the
shape space from a finite set of indexed control surfaces. The proposed framework
includes a spatio-temporal registration component, which can be extended to more
general surfaces where the notion of expression makes sense. If the registration fails,
the quality of the prediction will drop down. We illustrate this idea in Figure 7 with
an example of a surface representing a lion. As expected, the method fails to esti-
mate an accurate registration on the input surface due to the open mouth and the
mane. We think that an improvement of the registration step can make the proposed
framework more general. Finally, accurate and fast numerical approximation meth-
ods could be investigated for the computational aspect when processing larger data
sets.
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