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Abstract
This paper presents a new model-free methodology to learn Kazantzis-Kravaris-Luenberger (KKL)
observers for nonlinear systems. We address three major difficulties arising in observer design:
the peaking phenomenon, the noise sensitivity and the trade-off between convergence speed and
robustness. We formulate the learning objective as an optimization problem, strictly minimizing
the error of the observer estimates, without the need of adding explicit constraints or regularization
terms. We further improve the performance with a switching approach, efficiently transitioning be-
tween two observers, respectively designed for the transient phase and the asymptotic convergence.
Numerical results on the Van der Pol system, the Rössler attractor and on a bioreactor illustrate the
gain of the method regarding the literature, in term of performance and robustness.
Code available online: https://github.com/jolindien-git/DeepKKL
Keywords: observer, nonlinear systems, deep learning, KKL

1. Introduction

The significance of state estimation algorithms (observer design), and their applications in control
system design, fault detection, and various domains, stems from the fact that in most practical
applications, including robotics, chemical engineering etc., access to the complete state is often
unavailable. Instead, we rely on indirect or partial measurements obtained from sensors. Despite a
growing body of literature, the design of observers for nonlinear systems remains an open problem,
as no universal methods have yet been established (Bernard et al., 2022).

In this context, the extended Luenberger (Kazantzis-Kravaris-Luenberger, “KKL”) theory
emerges as a promising approach that establishes the existence of an observer for a large class of
systems. This method relies on immersing nonlinear systems into a latent linear system of higher di-
mension with an output injection. While numerous papers are dedicated to KKL theory, addressing
both discrete-time (Kazantzis and Kravaris, 2001; Brivadis et al., 2019) and continuous-time (An-
drieu and Praly, 2006; Bernard and Andrieu, 2018) scenarios, practical implementations of such
observers remain limited. The challenge lies in identifying the transformation of the coordinates,
which is particularly difficult because obtaining an explicit representation is non-trivial, except in
certain special cases.

As a consequence, this task has been recently addressed with machine learning, by approximat-
ing the change of coordinates. This involves encoding the original state into a high-dimensional
latent space using neural networks. In recent years, several approaches have been explored, such
as supervised learning (Ramos et al., 2020), physics-informed neural networks (Peralez and Nadri,
2021; Niazi et al., 2023), or neural ODEs (Miao and Gatsis, 2023).
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However, maintaining the desired performance of the observer in presence of measurement
noise and disturbances, particularly outliers, persists as a significant challenge. In this context,
we introduce a flexible observer design methodology based on multi-observer concepts that can
be used to address various trade-offs between robustness to measurement noise and convergence
speed. Consequently, we propose improvements at three levels. First, we formulate the learning
objective as an optimization problem, aiming to minimize the estimation error. Unlike previous
efforts, which also aimed to optimize the latent dynamics (Buisson-Fenet et al., 2023; Miao and
Gatsis, 2023), we enhance the adaptability of linear dynamics to incorporate arbitrary complex
eigenvalues, thereby augmenting overall performance. Next, we improve performance through the
deployment of a multi-observer, designed to optimize both transient phase response and asymptotic
convergence. Finally, the proposed strategy is shown to effectively address the peaking phenomena
through a novel extension of the mappings.

2. Problem statement and background

Let us consider nonlinear dynamical systems under the following general form{
ẋ = f c(x, u)
y = h(x) + w

(1)

where x ∈ Rnx is the state we want to estimate, unknown at test time but supposed to be known
during training, y ∈ Rdy the output corrupted by noise w, and u ∈ Rdu a known control input.
We consider the model-free (data-driven) case, where the functions f c and h are unknown and
where inputs and outputs are sampled at the same time-steps tk. The training data is supposed to be
available as batches of output trajectories Y1:K and associated state trajectories X1:K .

2.1. Estimation problem

The observer task is to provide an online estimate x̂ of the state value given the (past) measurements
y, such that x̂ converges towards x, or towards a neighborhood of x in presence of noise. While we
want to achieve good robustness against measurement noise, our aim is to minimize the estimation
error, i.e. to minimize ||x̂− x||.

In a concrete implementation and from the observer viewpoint, system (1) is equivalently rep-
resented by the following discrete-time system:{

xk+1 = f(xk, uk)
yk = h(xk) + wk

(2)

where f is equivalent to f c, i.e. such that f(x, u) ∆
= x +

∫ δt
0 f c(x, u)dt, resulting in the same

values for x and y at the sampling-times tk. We argue for the benefits of the latter representation
for two reasons, i) potential improvement in accuracy by using an observer designed directly on
the discrete-time representation (Brivadis et al., 2019) ii) expressing the update equation instead of
the derivative bears similarities with recurrent neural networks (Cho et al., 2014; Hochreiter and
Schmidhuber, 1997) and the more recently developed state-space models (Gu et al., 2021).
Notations We denote by Xk(x0) the value at time k of the solution of system (2) evolving in the
compact set X when initialized at x0 ∈ X0, and Yk(x0, wk) the corresponding output. A temporal
sequence Xk for k ∈ J1,KK is denoted X1:K .
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2.2. KKL observer theory

Latent spaceOriginal space Augmented latent spaceOriginal space

Figure 1: KKL observer principle.

The KKL concept as introduced by Kazantzis and
Kravaris (2001) is illustrated in Figure 1: the state
x is transformed into T (x), of higher dimension dz ,
whose linear dynamics defines a contraction with A
a Schur stable matrix1. Hence one can arbitrarily
initialize the latent state z, the contraction properties
guarantees its converge towards T (x). Since T is
continuous and injective, an estimate x̂ = T−1(z)
can be computed which converges towards x. To see
that the latent dynamics zk+1 = Azk+Byk defines a
contraction, one can pick two initial values za0 and zb0
and see that their trajectories will evolve as zak+1 −
zbk+1 = Azak + Byk − (Azbk + Byk) = A(zak − zbk)
that tends to 0 for k → +∞ (as A is Schur stable).

In the autonomous case, under mild assumptions2 on system (2), Brivadis et al. (2019) have
shown that for nearly all Schur stable matrices A ∈ Rdz×dz with dz ≥ dy(2dx + 1) and taking
B = 1dz×dy the mapping T exists and is unique. An observer for (2) is then given by:{

zk+1 = Azk +Byk, z0 ∈ T (X0)
x̂k = T−1(zk).

(3)

Latent spaceOriginal space Augmented latent spaceOriginal space

Figure 2: The main theoretical issue.

However learning a good pair (A, T−1) may not
be sufficient to attain a good behavior during the
transient phase: as illustrated in Figure 2, there is no
guarantee that a latent state z that is not initialized
exactly at T (x0) remains in the set T (X ). In such
situations, the behavior of the observer (3) is unde-
fined as z is outside the definition domain of T−1.

To address this issue, an extension T ∗ of the
mapping T−1 must be defined. To this end, Bernard
and Andrieu (2018) proposed to project z into T (X )
before applying T−1.

Although the theory has proved the existence of
such observers, no general method is given for finding analytic expressions for the transformations
involved. Moreover, the projection method for extending T−1 relies on estimating T (X ), which
is a challenge in the model-free setting. Another open question concerns the choice of matrix A,
about which little is known (Brivadis et al., 2023): we know that the modulus of its eigenvalues
affects convergence speed and sensitivity to noise; but we still don’t know whether optimizing all
the coefficients ofA can significantly improve overall performance. In the next Section, we propose
a novel deep-learning method to answer these questions.

1. A square matrix is Schur stable if the eigen-values of A are inside the unitary circle, i.e. ρ(A) < 1.
2. The system is required to be time reversible and backward distinguishable. f−1 and h are assumed to be continuous.

More formal formulation of these assumptions can be found in (Brivadis et al., 2019).
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3. Method: Neural Networks based KKL observer

In the following, the observer design problem is formalized as an optimal problem. Two distinct
methods are introduced for training deep networks to obtain, respectively, optimized transient and
asymptotic behaviors, which are then efficiently combined through a switching approach.

Neural network structure. Introducing a switching variable i ∈ {1, 2}, the observer has the
following computational structure. Given a sequence of observations yk,

z0 = ϕ(i)(.), (4)

zk+1 = A(i)zk +Byk, (5)

x̂k = ψ(i)(zk), (6)

where ϕ(i), A(i) and ψ(i) depend on the desired behavior, asymptotic (i = 1) or transient (i = 2),
and ϕ(i) are initialization functions of the latent state based on information available at initialization.
These components will be derived further below for each of the two behaviors (Sections 3.1-3.2).
In what follows we will sometimes omit the superscript (i) to ease notation.
Learning from trajectories. During execution3, at time-step k the observer provides an estimate
X̂k of the state, relying only on the (past) history of the output Y1:k−1. However during the training
phase, the observer leverages insights on the true state values Xk. Following the same model-free
framework as (Miao and Gatsis, 2023), we rely on ground truth state trajectory observations during
training. This assumption corresponds to numerous applications where measurements are available
during the development phase of an industrial product, while a less expensive sensor network is
used for mass production. Another important use case is sim2real transfer, for instance in robotics,
where ground-truth states are available during training in simulation.

3.1. Asymptotic Observer

𝑧𝑘+1 = 𝐴𝑧𝑘 + 𝐵𝑦𝑘  
𝑦1:𝐻 𝑧1:𝐻 

𝑇−1 
𝑥 1:𝐻 

𝑇 

𝑧0 

𝑥0 
(training) 

𝐿𝑜𝑠𝑠 

𝑥1:𝐻 
𝐴 (linear) 

 𝑥 ℎ
𝑡𝑟𝑎𝑛𝑠𝑖𝑒𝑛𝑡 

(execution) 

Figure 3: Asymptotic observer layout.

The asymptotic observer is shown in Figure 3:
the latent space is initialized as z0 = ϕ(1)

∆
=

T (x0), hence the dynamics A(1) is not required
to be fast and is optimized for noise rejec-
tion. During execution, at a time-step h, the
latent state can be initialized with the transient
observer estimation x̂transienth . The transfor-
mation ψ(1) reconstructing the original state x
is defined as the inverse of the first mapping,
ψ(1) ∆

= T−1. The overall asymptotic model is
end-to-end trained, optimizing the components {T, T−1, A(1)}.

3.2. Transient Observer

In contrary to previous work, which initializes the latent state z at a fixed value, we propose to
encode y to the latent state with a trainable function ϕθ, z0 = ϕ(2)

∆
= ϕθ(y0).

3. We refer to execution, as opposed to training, the use of the observer in its nominal operation.
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𝑦0 

𝑧𝑘+1 = 𝐴𝑧𝑘 + 𝐵𝑦𝑘  
𝑦1:𝐻 𝑧1:𝐻 𝑥 1:𝐻 

𝑧0 

𝐿𝑜𝑠𝑠 

𝑥1:𝐻 
𝐴 (linear) 

𝒯∗  

𝜙  

Figure 4: Transient observer layout.

This is motivated by the desire to initial-
ize z close to T (x) (based on the information
available during execution) and then improve
the transient behavior.

The transient variant also learns an exten-
sion ψ(2) ∆

= T ∗ in order to address the practical
problem of peaking; z being initialized only on
the knowledge of the output y0 — i.e. possibly
initialized far from T (x0) — the latent dynam-
ics is driven to be fast. The overall transient model is end-to-end trained, optimizing the components
{ϕ(2), T ∗, A(2)}.
Learned extension T ∗. Let Z(X0, w, z0) be the set of all possible values of z generated by the latent
dynamics zk+1 = Azk + B (h(xk) + wk) initialized at ϕ(2)(z0) coupled to the system dynamics
(2). The adopted neural network scheme, aims to learn the mapping T ∗ : Z → X such that
T ∗(z) = T−1(z) for all z ∈ Z ∩ T (X ). The last component of the computational chain (6) is in
charge to complete the definition of T ∗, by assigning images to all z ∈ Z \ T (X ), i.e. assigning
some estimation x̂ for the points z that are not in T (X ). In contrary to the mapping T−1 that is
unique for a given matrix A, the extension T ∗ is optimized through the computational chain of
Figure 4, offering an additional opportunity to improve the observer behavior during the transient
phase.

3.3. Optimizing the latent dynamics

Optimization problem. System (3) is an observer, meaning that x̂ converges towards x in absence
of noise, with a rate of convergence depending on the matrix A. If the noise is bounded, then the
estimation error will also be bounded with a magnitude that also depends on A. Here appears the
necessary trade-off between convergence speed and robustness: the faster the latent dynamics, the
faster the convergence of the observer value x̂ towards x; on the other hand noise can be more
efficiently filtered at the price of a slower convergence.

Hence, we formulate our objective as an optimization problem. The observer parameters,
namely the coefficients of matrix A, must be chosen to minimize the expected error L of the ob-
server along a trajectory:

L = Ew,x0

K∑
k=1

||Xk(x0)− X̂k||2. (7)

Parametrization of the latent dynamics. We propose two representations that both allow A to
possess arbitrary complex eigenvalues. The first one is totally unconstrained: the matrix A ∈
Rdz×dz is viewed as d2z parameters to optimize, allowing the best possible expressivity of the high-
capacity deep network. The drawback is that A is not ensured to be stable. Although in practice
we found that the learned matrices are stable provided training trajectories are sufficiently long (see
Section 4), we propose a second representation that guarantees stability. This second representation
of A is the following parametrized block-diagonal matrix:

A = diag

(
1

1 + exp−α

[
cos(ω) −sin(ω)
sin(ω) cos(ω)

])
, (8)
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where eigenvalues are some pairs of complex conjugates, each of them being parametrized by a
pair of real values (α, ω). Notice that the use of the Sigmoid function — the first factor in (8) —
constrains the eigenvalues to remain inside the unitary circle, while maintaining differentiability.

3.4. Switching approach

Our objective, considering two modes (transient and asymptotic), is to identify an efficient instance
for transitioning between them. We base this decision on a performance evaluation of each mode,
leveraging the information accessible during execution: the output y and the observer internal vari-
able z. Specifically, we build upon the methodology proposed by Petri et al. (2023) that we adapt to
the KKL change of coordinates.

Monitoring variables. Let the monitoring variables η(i) ∈ R⩾0, with dynamics defined by

η
(i)
k+1 = aη

(i)
k + ϵ

(i)⊤
k Λϵ

(i)
k

where 0 ≤ a ≤ 1 and Λ ∈ Rdx×dx a definite positive matrix are parameters, and ϵ(i) a vector
estimating the current performance in the state estimation. Monitoring variables η(i) hence act as
filters on performance estimations, integrating them with a common forgetting factor a. Matrix Λ
can be used as a scaling parameter for each component of the state x (in the case all components of
x are similar in scale, a simple choice for Λ is the Identity matrix).

To design the performance criteria ϵ of a KKL observer, notice that the evolution of the state
can be expressed as

xk+1 = T−1 (T (xk+1)
= T−1 (AT (xk) +Byk) .

(9)

Hence, in absence of error, the state estimation (or open-loop estimate) would evolve as

x̂k+1 = T−1 (AT (x̂k) +Bŷk) , ŷk
∆
= h(x̂k)

= T−1 (Azk +Bŷk) ,
(10)

while from (3) the actual state estimation (or corrected estimate) can be expressed as

x̂k+1 = T−1 (Azk +Byk) . (11)

Considering, the difference between corrected estimate and open-loop dynamics, we obtain the
following approximation on the estimation error:

ϵk+1 = T−1 (Azk +Byk)− T−1 (Azk +Bŷk) , (12)

or, for a specific observer i

ϵ
(i)
k+1 = ψ(i)

(
A(i)z

(i)
k +Byk

)
− ψ(i)

(
A(i)z

(i)
k +Bŷ

(i)
k

)
, ŷ

(i)
k

∆
= h(x̂

(i)
k ). (13)

Switching condition. The monitoring variables η(i) hence provide a filtered estimation of the
error of each observer. The state estimate x̂k of the hybrid observer at time-step k is then the one
corresponding to the lower value η(i)k .

Remark 1 A simpler evaluation than (12) could be used by considering an estimation of the error
T (x) − z in the latent space through the computation of ϵ̃k

∆
= B (yk − h(x̂k)). But this results in

a less reliable estimation of the error, as a lower distance in the latent space does not necessarily
imply a lower distance in the original space.
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4. Numerical results

In this section the proposed switching approach for KKL observers is tested on three different
benchmarks: first two classical systems, namely the Van der Pol system and the Rössler attractor,
illustrate the gain of the method when compared to state-of-art KKL-observers; the third benchmark
is a bioprocess, on which we show that the optimization of latent dynamics significantly improves
the transient behavior compared to existing an analytic KKL observer.

Example 1 (Van der Pol) We consider the Van der Pol oscillator as seen, for example, by Ramos
et al. (2020); Peralez and Nadri (2021); Miao and Gatsis (2023):

ẋ1 = x2
ẋ2 =

(
1− x21

)
x2 − x1

y = x1

(14)

To apply the methodology presented in Section 3, a set of training trajectories are generated over
the time interval [0, 4], with initial states picked from a uniform random distribution. To demon-
strate the gain of the method regarding the literature, the performance of transient, asymptotic and
hybrid observers are assessed following the same procedure as in (Miao and Gatsis, 2023): the root
mean square error (RMSE) over the time interval [0, 50] for a batch of 1000 initial conditions are
reported in Table 1. When compared to best known results, the RMSE for our hybrid strategy is
reduced by a factor of 2 in presence of noise and by a factor of 40 without noise. The transient
and asymptotic observers behavior is further illustrated in Figure 5: while the transient observer
is the faster, the asymptotic one exhibits a better accuracy and a better robustness with respect to
measurement noises, particularly in presence of outliers.

No noise
Observer RMSE on time intervals:

[0, 50] [0, 4] [4, 50]
Supervised∗ 0.0548 n.a.∗∗ n.a.

Neural ODEs∗ 0.0603 n.a. n.a.
Transient 0.0018 0.0069 0.0013

Asymptotic 0.0068 0.0626 0.0007
Hybrid 0.0014 0.0069 0.0008

Noisy measurements
Observer RMSE on time intervals:

[0, 50] [0, 4] [4, 50]
Supervised∗ 0.1160 n.a. n.a.

Neural ODEs∗ 0.0667 n.a. n.a.
Transient 0.0715 0.121 0.0660

Asymptotic 0.0532 0.701 0.0275
Hybrid 0.0340 0.121 0.0244

Table 1: Van der Pol benchmark results: comparison of root mean square error (RMSE).
∗ Results presented by Miao and Gatsis (2023). ∗∗ Not available.

Example 2 (Rössler attractor) We consider the following nonlinear system, where the parameter
values are fixed as Niazi et al. (2023) (a = 0.2, b = 0.2, and c = 5.7):

ẋ1 = −x2 − x3
ẋ2 = x1 + a x2
ẋ3 = x3 (x1 − c)
y = x2

(15)
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Figure 5: Illustration of Van der Pol observers with noisy measurement: w ∼ N (0, 0.5). Some
measurement outliers are introduced at t = 42 and t = 43 to test their robustness.

Following the procedure from Niazi et al. (2023), we train our observers on a set of trajectories
initialized from X0 = [−1, 1]3 over the time interval [0, 50] as illustrated in Figure 6. We compare
the performance with two (model-based) physically informed neural networks (PINN), obtained
with the code provided by Peralez and Nadri (2021) and Niazi et al. (2023). These two methods
being not intended to learn the latent dynamics, the same matrix A as the one proposed in Niazi
et al. (2023) is used. Although our method is model-free, it allows a drastic reduction in estimation
errors as shown in Table 2.

No noise
Observer RMSE on time intervals:

[0, 50] [0, 4] [4, 50]
dPINN∗ 0.340 0.172 0.453
cPINN∗∗ 0.335 0.217 0.348
Transient 0.0146 0.0361 0.0113

Asymptotic 0.0324 0.202 0.0062
Hybrid 0.0131 0.0361 0.0065

Noisy measurements
Observer RMSE on time intervals:

[0, 50] [0, 4] [4, 50]
dPINN∗ 1.220 1.0649 1.3241
cPINN∗∗ n.a. n.a. n.a.
Transient 0.210 0.269 0.201

Asymptotic 0.218 0.435 0.185
Hybrid 0.198 0.269 0.187

Table 2: Rössler benchmark results: comparison of root mean square error (RMSE). ∗Code avail-
able online: https://github.com/jolindien-git/DeepKKL. ∗∗Code available online: https:

//github.com/Mudhdhoo/ACC_KKL_Observer

Example 3 (Bioprocess) We consider a bioreactor which consists of a microbial culture which
involves a biomass x1 growing on a substrate of concentration x2. This bioprocess is fed with
an input substrate concentration x2in at a time-varying dilution rate u. Following the ”Contois”
growth rate, a classical dynamical model of the process is

ẋ1 = K1x2
K2x1+x2

x1 − ux1
ẋ2 = −K3

K1x2
K2x1+x2

− u(x2 − x2in)

y = x1

(16)
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Figure 6: The Rössler attractor example.

where Ki are constants that are fixed at 1 while x2in = 0.1 as in Bernard and Andrieu (2018).

To handle this non autonomous system, the latent dynamicsA is first optimized on data obtained
for a constant dilution rate u0 = 0.05h−1, following a similar methodology to the two previous
examples. Then to test the observer behavior in realistic scenarios, i.e. for a time-varying u, the
observer (3) is adapted as proposed by Peralez and Nadri (2021):{

zk+1 = Azk +Byk +Ψ(zk, uk)
x̂k = T−1(zk)

(17)

with Ψ(zk, uk) := T (f(T−1(zk), uk)) − T (f(T−1(zk), u
0)). Note that to apply (17), knowledge

of the system dynamics f is assumed (the problem of a model-free method for the non-autonomous
case will be addressed in a future work). To demonstrate the benefits of optimizing the latent dy-
namics, the resulting observer is compared to the KKL observer proposed by Bernard and Andrieu
(2018). Therein, analytic expressions for the mappings T and T−1 are found in the case of di-
agonal matrices A. Their result is reproduced in Figure 7 and compared to our hybrid observer.
Interestingly, our learned latent dynamics exhibit a similar convergence speed, but with a significant
improvement during the transient phase, where the peaking phenomenon is prevented.

5. Related work

Theory on KKL-observers. This paper uses the sufficient conditions for the existence of an ob-
server of the form (3) proved for the autonomous case by Brivadis et al. (2019). However therein,
no constructive method is given to find the involved transformation, except for the class of system
with linear dynamics and polynomial output. Peralez and Nadri (2021) adapted this observer for the
non-autonomous case, giving some convergence guarantees for sufficiently small control values. In
the continuous-time-KKL framework, Bernard and Andrieu (2018) proposed a method to extend
the mapping T−1 by projection in the latent space.
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Figure 7: The Bioprocess example.

Deep learning on KKL-observers. Similarly to our work Peralez and Nadri (2021) and Peralez
et al. (2022) invoked the discrete-time KKL theory, but developed model-based methods. Peralez
et al. (2022) proposed a (model-based) method to learn the extension of T−1 by projection. They
also exhibited significant gains in asymptotic accuracy thanks to model ensembling that use a set
of similar observers. In contrary our approach rely on finding different observers with different
properties specialized to different conditions (convergence speed, peaking magnitude, asymptotic
accuracy, noise rejection). Miao and Gatsis (2023) developed a data-driven method based on Neural
ODEs, learning the latent dynamics, but restricting the choice to some diagonal matrices. Like in
our approach they also aimed to minimize the observer error, hence we compared the results of both
approaches in Section 4. There are still very few articles devoted to the implementation of Deep-
KKL methods for realistic systems (Wang et al., 2022; Li et al., 2023; Buisson-Fenet et al., 2023),
which motivated us to consider a bioprocess (example 3). It is worth noting that a few works outside
the observers domain use the KKL theory, see e.g. (Janny et al., 2021) for the output prediction or
Buisson-Fenet et al. (2022) for system identification.

6. Conclusion

We propose a new model-free methodology to learn the Kazantzis-Kravaris-Luenberger (KKL) ob-
server by addressing three major challenges in observer design: the peaking phenomenon, noise
rejection, and the trade-off between convergence speed and robustness. We provide a general
framework where two observers are learned for both the transient phase and asymptotic conver-
gence. Subsequently, we design a switching criterion, based on monitoring variables, that selects
one mode at any given time by evaluating their performance in the presence of disturbances. This
ensures effective noise rejection and alleviates the need for a trade-off between convergence speed
and robustness. The gain of the method regarding the literature is illustrated on three classical
benchmarks.

Two natural direction for further exploration arise within this established framework: i) Extend-
ing the proposed algorithm to encompass a set of more than two observers. ii) Given the fundamental
role of state estimation in output regulation issues, a logical extension of this study would involve
developing a model-free method tailored for the non-autonomous case.
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