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Abstract 14 

Background  15 

Severe thermal discomfort may increase risk of drowning due to hypothermia or 16 

hyperthermia from prolonged exposure to noxious water temperatures. The 17 

importance of using a behavioral thermoregulation model with thermal sensation may 18 

predict the thermal load that the human body receives when exposed to various 19 

immersive water conditions. However, there is no thermal sensation "gold standard" 20 

model specific for water immersion. This scoping review aims to present a 21 

comprehensive overview regarding human physiological and behavioral 22 

thermoregulation during whole-body water immersion and explore the feasibility for 23 

an accepted defined sensation scale for cold and hot water immersion. 24 

  25 

Methods 26 

A standard literary search was performed on PubMed, Google Scholar, and SCOPUS. 27 

The words “Water Immersion,” “Thermoregulation,” “Cardiovascular responses” 28 

were used either as independent searched terms and MeSH terms (Medical Subject 29 

Headings) or in combination with other text words. The inclusion criteria for clinical 30 

trials terms to thermoregulatory measurements (core or skin temperature), whole-body 31 

immersion, 18-60 years old and healthy individuals. The prementioned data were 32 

analyzed narratively to achieve the overall study objective. 33 

 34 

Results 35 
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Twenty-three published articles fulfilled the review inclusion/exclusion criteria (with 36 

nine measured behavioral responses). Our outcomes illustrated a homogenous thermal 37 

sensation in a variety of water temperatures ranges, that was strongly associated with 38 

thermal balance, and observed different thermoregulatory responses. This scoping 39 

review highlights the impact of water immersion duration on human thermoneutral 40 

zone, thermal comfort zone, and thermal sensation.  41 

 42 

Conclusion 43 

Our findings enlighten the significance of thermal sensation as a health indicator for 44 

establishing a behavioral thermal model applicable for water immersion. This scoping 45 

review provides insight for the needed development of subjective thermal model of 46 

thermal sensation in relation to human thermal physiology specific to immersive 47 

water temperature ranges within and outside the thermal neural and comfort zone. 48 

 49 

Keywords: thermal perception, thermal sensation, whole-body immersion, 50 

thermoregulation, temperature ranges 51 

 52 

1. Introduction 53 

Extreme environmental conditions during whole-body water immersion increases 54 

the risk of dangerously high and low body temperatures, in which thermosensation 55 

and feelings of euphoria/dysphoria are important indicators of thermal load for 56 

physicians since early times (Galen, De Sanitate Tuenda; Calthrop 1928). Thermal 57 

injuries occur in extreme ranges of water conditions, that are dependent on water 58 

temperature and immersion duration, that can cause injuries such as frostbites, burns, 59 

and drowning (Kappel et al., 1997; Fujishima, 1986; Nimmo, 2004; An et al., 2019; 60 

Tipton et al., 2017). The first defense against maintaining normal body temperature 61 

and preventing thermal injuries from the external environment is behavioral 62 

thermoregulation via skin thermoreceptors and perceptual feelings, that signal the 63 

brain to behaviorally thermoregulate. These behaviors include moving environmental 64 

location such as escaping from a hot or cold pool or changing clothes, increasing fluid 65 

intake, and self-selecting intensity of swimming work rate (Flouris and Schlader, 66 

2015: Guéritée et al., 2014). Thermal perception is defined as the mental state of how 67 
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a person experiences ambient temperature and is composed of two basic elements: 68 

thermal sensation and thermal comfort (Lv et al., 2017; Flouris and Schlader, 2015). 69 

The thermal sensation is the conscious state of distinguishing hot and cold stimuli, 70 

while thermal comfort is the mental state related to ambient temperature satisfaction 71 

(Aizawa, 2019; Chatonnet and Cabanac, 1965; Olausson et al., 2005; Lv et al., 2017; 72 

Flouris and Schlader, 2015). Therefore, a major emphasis should be given to thermal 73 

perception as a dominant behavioral driver for health and aquatic safety because it 74 

could be used to prevent the dangerous thermal loads that a human body receives in a 75 

variety of environmental conditions (Hayasaka et al., 2010). However, the current 76 

models of thermal sensation and comfort relate to ambient conditions. There is a 77 

current gap in knowledge on how these relate to immersion in hot or cold water 78 

temperatures. 79 

 The thermal subjective evaluation involves a common neurophysiological 80 

mechanism. While current understanding of whether transient receptor potential ion 81 

channels (TRP) are thermostats or thermosensors, it is widely accepted that TRPs play 82 

a key role in thermoregulation for humans and other mammals (Kobayashi, 2015; Li, 83 

2017, Romanovsky, 2007; Tan and Knight, 2018; Wang and Siemens, 2015). In 84 

general, the heat signal transduction through skin TRPs to specific brain regions 85 

controls many physiological and cognitive functions (Flouris and Schlader, 2015; 86 

Romanovsky, 2007; Wang and Siemens, 2015). Some of the TRPs are implicated in 87 

temperature sensation, thermoregulation, and metabolism, in which body and skin 88 

temperature are the primary inputs to mediate cutaneous vasodilation and 89 

vasoconstriction. In the case of TRPM8 ion channels, their reaction depends either on 90 

the initial vascular tone or on the release of vasopressor or vasorelaxant transmitters 91 

such as norepinephrine, neuropeptide Y, and nitric oxide (NO) (either from sensory 92 

neurons or endothelial cells) (Charkoudian, 2010; Johnson et al., 2009; Pan et al., 93 

2018). 94 

Specifically, water immersion triggers both thermal and tactile sensation, in a 95 

unique manner, altering the tone and electrical activity of the somatosensory cortex, in 96 

which its action is to recognize the quality of thermal stress (Aizawa, 2019; Lv et al., 97 

2017; Nimmo, 2004). However, it remains unknown how thermal perception in water 98 

is similar or different to over large variations of air temperature spectrums.  99 

 Under steady-state ambient conditions, it is well understood that thermal comfort 100 

zone (TCZ) (ASHRAE 55, 2013), defined as the perception and state of mind that 101 
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expresses satisfaction within the thermal environment, is within a temperature range 102 

known as the thermoneutral zone (TNZ) (Glossary of terms for thermal physiology, 103 

1987). However, an increased functional metabolic rate higher than basal rate or an 104 

exposure in a non-uniform environment may alter the broadening of the TCZ (Zhang 105 

et al, 2010; Kingma et al., 2014, 2017). The TNZ is the zone described as the 106 

temperatures where heat is lost without regulatory changes in basal metabolic heat 107 

production or evaporative heat loss; this zone is deemed equal to heat gain in respect 108 

to the basic law of thermodynamics (Eq. 1) (Pallubinsky et al., 2019; Shapiro and 109 

Epstein, 1984; Epstein and Moran, 2006). Notably, TCZ and TNZ share the same goal 110 

for preserving body temperature, where skin and core temperature dictate the ranges, 111 

but behavioral regulation is modified outside the TCZ, and autonomic regulation is 112 

active outside the TNZ. (Kingma et al., 2014). Moreover, the upper and lower limits 113 

of TNZ are affected by complex interactions of vasomotor, metabolic rate, body 114 

insulation, sex, acclimatization, and microclimate (Pallubinsky et al., 2019; Kingma et 115 

al., 2014; Scweiker et al., 2018). The TCZ for ambient air temperatures has been 116 

described to be between 28 and 30°C and the TNZ are between 28 and 32 °C for a 117 

naked person (Hardy and Dubois, 1938). It is important to highlight that most of the 118 

literature on the TCZ and TNZ has been studied in various ambient air conditions. 119 

Only one study has reported a very narrow range in TNZ during 60 min of immersion 120 

in water temperature between 35.0 and 35.5 °C (Craig and Dvorak, 1968). 121 

 122 

S [W] = (M ± W) ± (K + R + C) ± (Cres – Eres) – E 123 

Eq. 1 reflects the mathematical expression that describes the rate of change of body 124 

heat (gain or loss) (S) of the human body based on the First Law of Thermodynamics. 125 

Expressed in watts [W]. M = metabolic rate; W = mechanical work rate; K = 126 

conductive heat transfer; R = radiant heat exchange; C = convective heat transfer. 127 

Respiratory heat dissipation is determined by (Cres – Eres) expressing the water loss 128 

form respiratory tract where Cres = dry respiration heat loss; Eres = latent respiratory 129 

heat loss; E = heat loss by evaporation of sweat. 130 

 131 

During exposure to water immersion, only the lower critical temperature limit 132 

(LCT), and not the upper critical temperature limit (UPL), is utilized for the critical 133 

water temperature (CWT), and also derived from the critical air temperature as 134 

mentioned in the Scholander’s classical theory of TNZ (Wakabayashi et al., 2008; 135 
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Rennie et al., 1962). CWT reflects a water temperature between 28-34
o
C, in which a 136 

nude man can tolerate a 3hr prolonged water immersion without appearing shivering-137 

thermogenesis (Rennie et al., 1962). According to Yermakova’s biophysical model, 138 

this neutral spot is in view with a 35
o
C mean skin temperature and agrees with other 139 

related articles (Shapiro and Epstein, 1984; Fanger, 1970; Tipton et al., 2017). Due to 140 

the 25 times higher thermal conductivity of water, the thermoneutral point for water 141 

has been reported to be near  ~34
o
C; however for ambient air, it is ~30

o
C (Dogaru and 142 

Radulescu, 2015; Yermakova et al., 2013; Nadel et al., 1971; Kingma et al., 2017). 143 

Hence, the thermoneutral aquatic equilibrium may differ among different concepts of 144 

thermoneutrality (CWT vs Biophysical model). However, based on the data available, 145 

the thermoneutral zone for water is unknown, as UPL remains unspecified, and may 146 

also differ from immersion duration and ambient air TNZ. Additionally, most data on 147 

the TNZ are based on small animals’ physiological responses; however, few studies 148 

have examined both human physiological (i.e., core and shell temperature) and 149 

behavioral parameters (i.e., thermal perception) (Pallubinsky et al., 2019; Kingma et 150 

al., 2014; Scweiker et al., 2018), but more understanding is needed in the context of 151 

water exposure. 152 

A common practice for assessing subjective perception is using thermal scales 153 

(Lee et al., 2010; Lundgren et al., 2014; Schweiker et al., 2017). Many challenges 154 

regarding the constructions and use of such a scale need to be addressed including the 155 

unit change of scale  and vocabulary selection may be influenced by language and 156 

culture (Auliciems, 1981; Lee et al., 2009, 2010; Tochihara et al., 2012; Pantavou, 157 

2020; Schweiker et al., 2017). In general, people are unable to recognize more than 158 

seven levels of sensations without error (Miller, 1967). Therefore, ASHRAE 55 159 

(2013) incorporates a seven-point thermal sensation scale and a four-point thermal 160 

comfort scale as introduced by Gagge (1967). Another overlooked barrier is that the 161 

central thermal sensation descriptors located below or above thermoneutral mark may 162 

cause  confusion by users (Peña Fernández et al., 2019; Schweiker et al., 2017). Thus, 163 

semantics and connotations, which characterize a thermal scale or thermal concept, 164 

may “lead” to errors in interpretation of specific words or phrases with the same 165 

meaning, and likelihood to make invalid logical assumptions (Auliciems, 1981; 166 

Cabanac 1988, 2020; Schweiker et al., 2020). These errors may reduce the accuracy 167 

of using thermal comfort models as they relate to body and skin temperatures (Jacquot 168 

et al., 2014; Cheng et al., 2012; Zhao et al., 2021).  169 
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The major question is if the criteria are objectively or subjectively set to define the 170 

water temperature as cold or warm and are they related to the thermoregulation of 171 

the human body during whole-body immersion in healthy individuals? Water 172 

temperature classifications have numerous landmarks (climatology, human 173 

physiology), in which the body temperature is the primary benchmark in the domain 174 

of Medical Hydrology – Balneology (see Table 1) (Castany, 1963; Pentecost et al., 175 

2003, 2005; Thurner, 1967; Kappelmeyer and Haenel, 1974; Messina et al., 1999; 176 

Varga, 2010). A similar attempt was made by spa specialists, who vaguely 177 

synthesized a more complex thermal classification based on thermal subjective 178 

judgment (Table 2), whose practicality recommended exclusively for educational 179 

purposes in the domain of Balneology and Hydrotherapy (Ledo, 1996). No “gold 180 

standard” thermal sensation scale exists to correlate with water and body 181 

temperatures. Most importantly, no water temperature scale has considered that 182 

thermosensitivity and thermal perception are time-dependent variables.  183 

The main purpose of this study was to provide an overview of thermoregulation 184 

and thermal feelings during whole-body water immersion, taking into account the 185 

current state of knowledge of human thermoregulatory (skin temperature, core 186 

temperature, sweating, shivering thermogenesis, cardiovascular system) and 187 

neurocognitive responses (thermosensitivity, thermal sensation). We attempted to 188 

clarify the thermal dose effect of hydrotherapy, and evaluated the literature on water 189 

duration immersion water temperatures. We chose the scoping review as the most 190 

suitable method for a deeper understanding of the logic behind thermal sensation and 191 

physiological homeostasis with the aim of examining the feasibility of determining 192 

scales related to water as cold or warm (Auliciems, 2014).  193 

  194 

2. Methods 195 

The approach was a mixed method scoping literature review as referred by Arksey 196 

and O'Malley (2005). The central research inquiry was human thermoregulatory 197 

responses (e.g., core temperature, skin temperature, thermal subjective assessment) 198 

during whole-body water immersion. The main outcome was to outline thermal 199 

sensation scales, in a variety of water temperatures and reviewing references 200 

temperatures for colder or warmer air and water temperatures. PRISMA-ScR 201 

checklist was completed (Table 3).  202 
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2.1 Inclusion & exclusion criteria  203 

The target sample included healthy individuals between 18-60 years old. The 204 

inclusion criteria for clinical trials in relation to thermoregulatory variables (core or 205 

skin temperature), tap water immersion from the diaphragm level up to the xiphoid 206 

sternum in normal-weighted subjects with total fat percentage 20-30% or body mass 207 

index 18.5-24.99kg/m
2
, and 40-60% relative humidity (Rh). To investigate the range 208 

of thermal feeling in water, we summarized a variety of water chemical compositions 209 

such as carbonated baths. We exclude studies that used visual analog scales, partial 210 

water immersion, water-perfused suit, or referred to animal studies, case reports, 211 

conference papers, posters, dissertations, and editorials. Lastly, we performed a 212 

review to the literature for relevant articles that were identified to meet articles within 213 

the inclusion criteria.  214 

2.2 Search Strategy and screening 215 

The literary search was reviewed through Medline/PubMed, Google Scholar, and 216 

SCOPUS. There was no restriction on language and date. The key terms “Water 217 

Immersion,” “Thermoregulation,” “Thermosensing physiology,” “Cardiovascular 218 

responses” were used either as sole searched terms and MeSH terms (Medical Subject 219 

Headings) or in combination with other text words (Table 4). We repeated the search 220 

strategy to all databases. The articles were screened according to title and abstract, 221 

and then the duplicates were removed through Zotero. The final selected articles were 222 

read in full-text.   223 

2.3 Data extraction and analysis 224 

Data extraction methods range based on the type of study and data displayed. The first 225 

author MN extracted and charted the following thermoregulatory data from each 226 

article: author(s), year of publication, country, total size of sample, modalities, core 227 

and skin temperature, thermal descriptors, and water duration immersion. Experienced 228 

exercise physiologist specializing in biochemical and physiological outcomes BD 229 

assessed and reviewed the water immersion protocols reported in each study. The 230 

articles were not blinded during the extraction and charting process. Formal analysis 231 

applied by the thermal physiologist ER with the aim of examination heat balance 232 

during immersion using the available raw data from Craig and Dvorak (1968). The 233 

prementioned data were analyzed narratively to achieve the overall study objective.  234 
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 235 

3. Results 236 

Fig. 1 represents the flowchart of the scoping review (PRISMA flow diagram), and 237 

Table 5 characterized the in vivo studies relating to thermoregulatory responses in 238 

water. In total, 23 articles were included after the removal of the duplicates and 239 

screened selection from a total of 411 articles (Craig and Dvorak, 1968; Lee et al., 240 

1997; Wakabayashi et al., 2008; Becker et al., 2009; Kappel et al., 1997; Maeda et al., 241 

2001; Watanabe et al., 2006; Sato et al., 2004; Sato et al., 2009; Nishimura et al., 242 

2002; Nakamura et al., 1996; Rodriques et al., 2020; Kojima et al., 2018; Fujisima, 243 

1986; Allison and Reger, 1992; O’Brien et al. 2000; Stephens et al. 2014; Solianik et 244 

al. 2014; Mansfield et al. 2021; Hohenauer et al., 2020; Rivas et al., 2016; Hashiguchi 245 

et al., 2002; Tochihara et al., 1998). Ten articles came from Japan, 7 articles from 246 

USA, 2 articles from Australia, 1 article from Lithuania, 1 article from United 247 

Kingdom, 1 article from Switzerland, and 1 article from Denmark. A schematic 248 

example of human heat balance and thermoneutral zone is presented in Fig. 2 after 30 249 

min of immersion with thermal sensation based on retrieved data.   250 

3.1 Summary of thermoregulatory responses during water immersion  251 

In water temperature of 20-36
o
C, the skin temperature approached that of water 252 

temperature with a deviation of ~0.5
o
C (Craig and Dvorak, 1968; O’Brien et al., 253 

2000; Lee et al., 1997; Wakabayashi et al., 2008; Becker et al., 2009; Kappel et al., 254 

1997; Sato et al., 2009; Nishimura et al., 2002; Montgomery, 1974). However, the 255 

core temperature responded differently between 20-31.3
o
C and 32-36

o
C. At 20-256 

31.3
o
C, the internal temperature decreased steadily over time (O’Brien et al., 2000; 257 

Lee et al., 1997; Wakabayashi et al., 2008; Becker et al., 2009; Lee et al., 1997). The 258 

rate of change differed between two extreme  thermal ranges. At 24
o
C, there was a 259 

significant drop of 0.3
o
C from the initial value in the first 30 min, followed by a 260 

steady downward trend. After two hours of immersion, the core temperature dropped 261 

~1
o
C (Lee et al., 1997; Wakabayashi et al., 2008). In contrast at 31.3

o
C, esophageal 262 

temperature inclined 0.3
o
C in the first 12 minutes, and thereafter it decreased 263 

gradually (Becker et al., 2009). In 32-37
o
C water temperature ranges, no changes 264 

were observed in core temperature even after 2 hours (Keppel et al., 1997; Weston et 265 

al., 1987). However, in water temperature of 38-42
o
C, the non-immersed neck skin 266 

surface temperature increased to 35.5
o
C rapidly within the first 10 minutes, while the 267 
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surface skin temperature of immersed body parts fell 1
o
C below of water temperature 268 

(Cannon and Keatinge, 1960; Hayward and Keatinge, 1981; Rodrigues et al., 2020; 269 

Mansfield, 2021; Stephens et al., 2014). Water over 40
o
C significantly increased the 270 

core temperature after the first 30 minutes reaching 38.3
o
C, and in two hours of 271 

immersion, it continued to increase up to 39.5
o
C (Allison and Refer, 1992; Kojima et 272 

al., 2018; Weston et al., 1987; Fujishima, 1986; Miwa et al., 1994; Mansfield, 2021; 273 

Rivas et al., 2016). These data reflect the thermal responses in normal-weighted 274 

subject.  275 

Several shifts in thermal responses occurred in cold water temperature <20
o
C 276 

(O’Brien et al., 2000; Solianik et al., 2014). At a water temperature of 15-18
o
C, the 277 

core temperature remained stable for the first half-hour before decreasing ~ 0.5
o
C 278 

(Cooper et al., 1976; Hayward and Keatinge, 1981; O’Brien et al., 2000; Kaupinen, 279 

1989; Lee et al., 1997; Tarlochan and Ramesh, 2005; Tikuisis et al., 1988, 2000; 280 

Solianik et al., 2014). The surface skin temperature rapidly reached the water 281 

temperature within the first ten minutes at 15-20
o
C (O’Brien et al., 2000; Bradford, 282 

Gerrard, and Cotter, 2019; Hayward and Keatinge, 1981; Tikuisis et al., 1988; 283 

Yermakova et al., 2013). In colder water (<10
o
C) skin temperature of the immersive 284 

parts increased up to ~5
o
C above water temperature (Hohenauer et al., 2020; Hayward 285 

and Eckerson, 1984), but Cannon and Keatinge (1960) found out that skin was just 286 

within about 1
o
C of water temperature – probably different instruments (ibutton vs 287 

wirable thermistors) and the use or not of a waterproof taping may explain this 288 

discrepancy of temperature data. According to Tipton and colleagues (2017), 289 

immersion in cold water 10-15
o
C cause many changes, and is dependent on duration 290 

and is characterized as 1) in the first three minutes, the surface of the skin cooled, 2) 291 

in 3-30 minutes, neuromuscular cooling provoked, 3) for more than 30 minutes the 292 

phenomenon of hypothermia appeared, and 4) death coincides with core temperature 293 

at ~28
o
C and 5) the lower the temperature and the longer the immersion duration are, 294 

the greater is the risk of frostbite.  295 

3.2 Summary of thermal sensation relating to water temperature ranges 296 

Only 9 out of 23 included articles evaluated thermal sensation (TS) along with water 297 

immersion duration (see Table 5), though none of the experimental trials occurred in 298 

water <18
o
C. The ASHRAE 7-point scale was utilized by two Japanese research 299 

groups (Sato et al., 2004; Nishimura et al., 2002), a 13-point scale was chosen only by 300 
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Wakabayasi et al. (2008), a 9-point scale according to ISO 10551 was preferred by 301 

one Swiss, two Australian, and two Japanese research groups (Rodrigues et al., 2020; 302 

Stephens et al., 2014; Mansfield et al., 2021; Hashiguchi et al., 2002; Tochihara et al, 303 

1998), while a 13 point McGinnis perception scale, which contained sensation and 304 

comfort descriptors, preferred by one American research group (Rivas et al., 2016). 305 

This discrepancy of thermal scales may limit the interpretation around thermal 306 

perception due to a potential bias error (Schweiker et al., 2017; Lee et al., 2009). 307 

  In table 5, specific thermal characterizations were highlighted by the 308 

researchers, for example water ranges between 5-26
o
C was determined as cold (Craig 309 

and Dvorak 1968; Lee et al., 1997; Wakabayashi et al., 2008; O’Brien et al., 2000; 310 

Stephens et al., 2014; Solianik et al., 2014; Hohenauer et al., 2020), while at 27
o
C 311 

water was characterized as hot only by the Craig and Dvorak (1968). In the study of 312 

Wakabayashi et al. (2008) thermal sensation was measured every 5 minutes during a 313 

60 min immersion at 26
o
C water, in which the volunteers felt cool for the first 10 314 

minutes, cold in the 35
th

 minute, and severe cold in the 60
th

 minute. Becker et al. 315 

(2009) referred water temperature of 31
o
C as cool. In addition, in the research of 316 

Nakamura et al. (1996) participants perceived the water at 30
o
C to be slightly cool 317 

within 10 minutes of immersion. The neutral “range” of thermal sensation was 318 

predefined between 34-36
o
C by the majority of authors (Becker et al., 2009; Kappel et 319 

al., 1997; Sato et al., 2009; Nishimura et al., 2002; Kojima et al., 2018), except by 320 

Stephens et al. (2014) that described it as warm.  However, all volunteers of the 321 

included papers experienced neutral sensation in the water temperature between 34-35
 322 

o
C within 20 minutes of water immersion (Sato et al., 2009; Nishimura et al., 2002; 323 

Stephens et al., 2014). Some researchers described the water at 39
 o

C as warm (Craig 324 

and Dvorak 1968; Becker et al., 2009), while some others as hot (Kappel et al., 1997; 325 

Watanabe et al., 2006; Rivas et al., 2016); nonetheless, the participants felt warm 326 

within the first 30 minutes of immersion between 38-42
o
C (Nakamura et al., 1996; 327 

Rodriques et al., 2020; Mansfield et al., 2020; Rivas et al., 2016). Notably, contrary to 328 

the actual data of thermal sensation, a common arbitrary definition of water 329 

temperatures >40
o
C has been reported as hot among researchers. (Nakamura et al., 330 

1996; Rodriques et al., 2020; Mansfield et al., 2020; Rivas et al., 2016). 331 

Most importantly, there are gaps in knowledge in understanding thermal 332 

sensation at different water temperatures in relation to ambient air environment 333 
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temperatures outside of the TNZ. During warm water immersion (>38
o
C) in a room 334 

temperature ranged from 5-30
o
C, whole-body thermal sensation was “warm”, but at 335 

35
o
C air temperature the thermal sensation was characterized as “hot” (Hashiguchi et 336 

al., 2002; Mansfield et al., 2020; Miwa et al., 2021; Rivas et al., 2016; Rodriques et 337 

al., 2020; Tochihara et al., 1998). To our knowledge, no data are available for thermal 338 

sensation responses at colder water temperatures in different ambient conditions. 339 

3.3 Summary of thermoregulatory responses at different water temperature 340 

ranges during CO2 water immersion 341 

The literature findings showed that CO₂  water immersion at 35°C caused a 342 

statistically significant drop in core temperature with parallel elevation of skin blood 343 

flow, while core temperature increased in a water >39°C. (Nishimura et al., 2002; 344 

Sato et al.,2009). The core temperature significantly increased above 38°C water due 345 

to enormously evaporative loss and increased blood flow in CO2 water compared to 346 

exposure in tap water at the same temperature (Watanabe et al., 2006; Sato et al., 347 

2004). It has been reported that CO2 water modified thermal sensation after an acute 348 

whole-body immersion expressed by a “slightly warm” feeling at 35°C, while a cooler 349 

sensation was felt when exposed in tap water (Nishimura et al., 2002; Sato et al., 350 

2009).  351 

4. Discussion 352 

The main objective of this review was to present a comprehensive overview regarding 353 

human physiological and behavioral thermoregulation during whole-body water 354 

immersion. In Table 5, the vivo studies relating to thermoregulatory responses were 355 

reviewed (Craig and Dvorak, 1968; Lee et al., 1997; Wakabayashi et al., 2008; Becker 356 

et al., 2009; Kappel et al., 1997; Maeda et al., 2001; Watanabe et al., 2006; Sato et al., 357 

2004; Sato et al., 2009; Nishimura et al., 2002; Nakamura et al., 1996; Rodriques et 358 

al., 2020; Kojima et al., 2018; Fujisima, 1986; Allison and Reger, 1992; O’Brien et 359 

al., 2000; Stephens et al., 2014; Solianik et al., 2014; Mansfield et al., 2021; 360 

Hohenauer et al., 2020; Rivas et al., 2016; Hashiguchi et al., 2002; Tochihara et al., 361 

1998). In Fig. 2 the characterization of a thermal balance, thermoneutral zone, and 362 

thermal sensation at different water temperatures are described. The results illustrated 363 

1) that the responses of thermoregulation and thermal sensation among various water 364 

temperature varied and differed from ambient air temperatures and 2) different 365 
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thermoregulatory and thermal sensation responses between tap and CO2 water 366 

immersion. The most important issue in this scoping review was the gaps in 367 

knowledge on water immersion duration on human TNZ and TCZ, and thermal 368 

feeling. 369 

 370 

4.1 Nature of thermal sensation: subjectivity vs objectivity  371 

Currently there are no common accepted definition for cold and hot water 372 

temperatures (Tipton & Bradford, 2014). Difficulty in the interpretation was identified 373 

for the meaning of sensation and perception. There is a need to use objective criteria 374 

that can separate physical responses from conscious interpretation that is strongly 375 

dependent on personal and environmental circumstances (Auliciems, 1981). 376 

Additional issues may be from a deterministic approach, in the case of thermal 377 

sensation, which can be biased by psychology and physiology perspectives 378 

(Auliciems, 1981). Behavioral thermoregulation development will require reliable 379 

thermal scale with higher correlation coefficient in the field and laboratory studies 380 

than the usual Bedford and ASHRAE scales (Auliciems, 1981; Gagge et al., 1967; 381 

Schweiker et al., 2017). 382 

Gagge (1967) sought to understand the nature of thermal sensation through the 383 

Aristotelian work Little Physical Treatises, in which only five senses were identified 384 

(sight, hearing, smell, taste and touch) (Hicks, 1907). However, Gagge disregarded 385 

the quotes 423b29-32, 424a10-11 from On the Soul/De anima, in which the 386 

philosopher stated that thermal sensation was a property of touch dominated by the 387 

body. Gagge suggested that Galen was the first person to have recognized the 388 

relationship of touch and thermal feeling; however according to Aristoteles (On the 389 

soul, frag. 427b27-428b17), he was the first to describe each sensation (thermal 390 

sensation) that comes from its own aesthetic organ (unknown at the time, temperature 391 

sensors - TRPs) suggests a true feeling with a minimum degree of error, while 392 

sensations that may be derived from recalling a prior memory or guessing a feeling 393 

without applying the physiological stimuli (temperature) suggests a fantastic pseudo-394 

feeling with the most part false (Hicks, 1907).  395 

Indeed, Aristoteles’ scope of view agrees with the results of this review 396 

regarding thermal sensation, as we observed same thermal expressions between 397 
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bathers-participants during a period of time but not always among observants for 398 

various water temperature ranges. The key component is the criterion of time and 399 

quality of feeling (real vs imaginary) for investigating the nature of thermosensitivity. 400 

Similar verbal anchors were used by other researchers and participants, for example 401 

the 42
o
C water immersion was characterized hot not only by authors, but also by 402 

subjects at the 45th min of immersion (Rodrigues et al., 2020; Rivas et al., 2016). The 403 

subjective nature of thermal sensation is also different between researcher’s reference 404 

point. Also, the subjectivity coexists in participants’ expression, as leading question, 405 

number of categories on the scale, and words that describe the units may affect 406 

thermal choice, for example there may be a difficulty for choosing between slightly 407 

cool or neutral (Schweiker et al., 2017; Peña Fernández et al., 2019). However, the 408 

objective support for thermal sensation is using the subjective thermal scales in 409 

relation to water immersion temperature, ambient air exposure, and skin and core 410 

temperatures, and heat balance status (Sato et al., 2009; Stephens et al., 2014; 411 

Nakamura et al., 1996; Nishimura et al., 2002; Rodriques et al., 2020; Mansfield et 412 

al., 2020; Rivas et al., 2016). Most importantly, the change in magnitude of skin and 413 

core temperature and thermal heat loss or gain status (heat balance), and efferent and 414 

afferent inputs to the hypothalamus would affect thermal sensation responses (Craig, 415 

2002; Vanos et al., 2010; Tikuisis et al., 1998).  416 

4.2 Neutral zone, and thermal sensation during water immersion 417 

The concept of TNZ is essential for improving gaps in knowledge about behavior 418 

thermoregulation within the concept of whole-body water immersion (Kingma et al., 419 

2017). Indeed, neutral sensation coincided with a comfortable feeling and thermal 420 

balance (Auliciems, 1981; Calthrop, 1928; Chatonnet and Cabanac, 1965; Gagge et 421 

al., 1967; Kingma et al., 2017). Specifically, heat gain is balanced with heat loss 422 

during thermal neutral sensations (Gagge et al., 1967; Kingma et al., 2017; 423 

Montgomery, 1974). Heat balance during immersion of different water temperatures 424 

diverge at distinct time points govern thermal sensation. More specifically, we noticed 425 

that TNZ during 30 minutes of immersion varied from 30-36
o
C (Fig. 2), but for longer 426 

immersion duration limits it varied from 35.5-36.0
ο
C (Craig and Dvorak, 1968). This 427 

means that thermoneutral feeling was apparent within TNZ, mainly in its center, as 428 

can be seen in Table 5 (Kingma et al., 2017). Non-shivering thermogenesis was 429 

aligned with a cool sensation and shivering thermogenesis with a cold sensation, both 430 
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of which have been reported below LCT (Tikuisis et al., 1998; Montgomery et al., 431 

1974; Wakabayashi et al., 2008; Rennie et al., 1962). Warm sensation was apparent 432 

above UCT that represented the increased heat metabolic rate accompanied by 433 

cardiovascular changes (Gagge et al., 1967; Kingma et al., 2017; Rivas et al., 2016). 434 

According to CO2 water studies, TNZ may vary compared to tap water, since CO2 435 

provokes vasodilation to limbs rising blood flow; and therefore influences the body 436 

core and skin temperatures.  437 

4.3 Initial thermal status determines the thermal sensation 438 

Clinical research has shown that thermal perception was sometimes correlated with 439 

skin temperature and other’s with core temperature (Aizawa, 2019; Calthrop, 1928; 440 

Chatonnet and Cabanac, 1965; Enescu, 2019; Nielsen and Nielsen, 1984; Rodrigues et 441 

al., 2020; Wakabayashi et al., 2008; O’Brien et al., 2000). In general, both the 442 

environmental conditions and the individual’s initial thermal state temperature may 443 

influence the thermal perception (Goto et al., 2006; Oi et al., 2017). When the 444 

individual was already at rest, thermosensitivity was positively correlated with skin 445 

temperature and ambient temperature (in ambient air, water immersion) (Aryal and 446 

Becerik-Gerber, 2019; Craig and Dvorak, 1968; Nielsen and Nielsen, 1984; Stephens 447 

et al., 2014). The initial thermal status may explain discrepancies of thermal sensation 448 

from several physiological thermoregulatory inputs. Hyperthermia activates brain 449 

centers and other neural pathways between the hypothalamus, the cortical sensory 450 

cortex that may prevail after passive heating and activate the endogenous opioid 451 

system that is responsible for exercise-induced analgesia (Oi et al., 2017; Yuan et al., 452 

2016; Fujimoto et al., 2021).  453 

Whole-body thermal sensation during exercise in hot air temperatures is deemed 454 

to be blunted, however local skin thermal sensation was not affected by the dynamic 455 

changes of core temperature (Flouris and Schlader, 2015; Fujimoto et al., 2021). It is 456 

unknown if exercising in water (swimming) has similar responses for thermal 457 

sensation and requires more research. Thermal sensation may become a practical tool 458 

for assessing the thermal stress, and a crucial factor for designing an applicable life-459 

support system. In addition, thermal modeling revealed that the most critical body 460 

regions for heat loss are head and extremities (Montgomery, 1974; Yermakova et al., 461 

2013). Further research is needed to investigate which part of the human body is the 462 
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most sensitive to local skin thermal perception for a variety of water immersion 463 

duration and metabolic conditions (e.g., rest, swimming). 464 

 465 

4.5 Concerns about thermal scales 466 

From a methodological point of view, we should be cautious in the interpretation of 467 

sensation as scale’s validity uncertainty exists whether thermal sensation or thermal 468 

guessing is measured. Contrary to Schweiker et al. (2017), we strongly believe that 469 

number of categories should not be underestimated as they may contain bias. The end 470 

and middle-scale effect can confuse the participants (Boateng et al., 2018; Lantz, 471 

2013). For example, when someone takes a little more time to decide which thermal 472 

category fits to his state best, we should be aware about the validity of his answer, 473 

whether it reflects explicit his sensation or thought. Evaluation process of thermal 474 

sensation triggers, except from the concrete underlying neural network for decoding 475 

warm or cold stimulus, the right fronto-parietal and anterior insula, which constitute 476 

the neural network attention (Nagashima et al., 2022). However, the kind of thermal 477 

scale (Likert-scale or visual analog scale) could influence the activity of the 478 

prementioned regions leading to another answer. 479 

5. Limitations 480 

The thermal conductivity is a crucial factor not only for thermal balance, but also for 481 

thermal sensation. In thermal carbonated mineral baths, human experienced water 482 

hotter than noncarbonated mineral water (Dogaru and Radulescu, 2015; Gutenbrunner 483 

et al., 2010), while seawater baths alternated osmolality that caused sweating 484 

evaporation and following producing a cooler sense compared to tap water (Tsuchiya 485 

et al., 2003). The quality of the thermal and non-thermal afferent may enable specific 486 

cascade pathways from TRPs determining sequentially thermal homeostasis and, 487 

behavioral thermoregulation (Olausson et al., 2005; Wang and Siemens, 2015; 488 

Weyer-Menkhoff et al., 2019; Zimmermann et al., 2011). Activation of these TRP ion 489 

channels can be derived from temperature, pH, and chemicals, e.g., CO2, H2S, H2O2 490 

(contained in some thermal springs) (Dogaru and Radulescu, 2015; Gutenbrunner et 491 

al., 2010; Mori et al., 2017; Varga, 2010; Wang and Siemens, 2015). As mentioned 492 

previously, the time and temperature may influence the rate of temperature change for 493 
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skin and core during water immersion and therefore may influence the TNZ and TCZ 494 

and thermal perception due to the heat gain or loss. 495 

 496 

5. Conclusions 497 

This scoping review explores the nature of thermal sensation and the criteria for 498 

thermal classification. To date, attention has been directed to assess thermal comfort, 499 

especially in cold water, because of its links with detrimental incidents such as loss of 500 

consciousness, frostbite, and drowning (An et al., 2019; Tipton et al., 2017; Bradford, 501 

Gerrard, and Cotter, 2019). The thermal sensation variability can be explained, by the 502 

belief that water temperature assessment is a deep internal cognitive and experienced 503 

personal matter of interpretation (Calthrop, 1928; Chatonnet, and Cabanac, 1965a; 504 

Guéritée et al., 2015; Tipton and Bradford, 2014). New knowledge about TRPs 505 

function within the concept of TNZ and TCZ has provided an integrated physiological 506 

and psychological understanding of how thermoreceptors modify our thermal 507 

sensation and that are influenced by both the mind and body (Oi et al., 2017; Lv and 508 

Liu, 2007; Li, 2017; Wang and Siemens, 2015; Weyer-Menkhoff et al., 2019).  509 

For the first time to our knowledge, is reviewed the support of literature on 510 

thermal sensation during whole-body water immersion and in the context of 511 

homogenous sensation and body thermoregulation parameters. The findings provide 512 

the importance of thermal sensation as an indicator for health and aquatic safety and 513 

as a principal factor for establishing a more complex predictive thermal comfort 514 

model applicable for water immersion (Cheng et al., 2012; Montgomery, 1974; 515 

Morishima et al., 2020; Streblow, 2011; Yermakova et al., 2013; Wissler, 2012). 516 

Further research is needed to construct an accurate thermal sensation scale for 517 

estimating both water temperature and thermal stress during water exposure in 518 

addition to how it is compared to ambient air temperatures. 519 

 520 
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Highlights 1076 

 1077 

 Re-evaluation the feasibility of an accepted definition for cold and warm 1078 

water. 1079 

 First review of the literature on behavioral and physiological thermoregulation 1080 

during water immersion in a range of temperatures.  1081 

 Thermal sensation and thermoneutral zone are time and temperature 1082 

dependent. 1083 

 Understanding thermal sensation specific to water immersion will be valuable 1084 

for prescriptions used by aquatic health professionals. 1085 

 1086 

 1087 

  1088 



Journal of Thermal Biology 2023:103430. doi:10.1016/j.jtherbio.2022.103430 

 

 
 

 1089 
 1090 
 1091 
 1092 
 1093 
 1094 
 1095 
 1096 
 1097 
 1098 
 1099 
 1100 
 1101 
 1102 
 1103 
 1104 
 1105 
 1106 
 1107 
 1108 
 1109 
 1110 
 1111 
 1112 
 1113 
 1114 
 1115 
 1116 
 1117 
 1118 
 1119 
 1120 
 1121 
 1122 
 1123 
 1124 
 1125 

Fig. 1 Flowchart scoping review  1126 

 1127 

  1128 

Records identified through 
PubMed: (n = 411) 
Registers: (n = 1) 

Records removed before 
screening: 

Duplicate records removed: 
(n = 45) 

Records screened (n = 366) 
Records excluded after title and 
abstract review: (n = 218) 

Full text article assessed for 
eligibility: (n = 148) 

Full-text articles excluded with 
reasons: (n = 125) 
 
Partial water immersion: (n=30) 
 
Elderly or pathological 
population: (n= 76) 
 
Water perfused-suit (n=21) 
 
 
Water perfused suit: (n= )  Studies included in quantitative 

synthesis: (n = 23) 

Identification of studies via databases and registers 
Id

e
n

ti
fi

c
a

ti
o

n
 

S
c

re
e

n
in

g
 

 
In

c
lu

d
e
d

 



Journal of Thermal Biology 2023:103430. doi:10.1016/j.jtherbio.2022.103430 

 

 
 

 1129 
Fig. 2 depicts the relationship between thermal balance, thermoneutral zone, and thermal sensation 1130 
after 30min of water immersion (Modified Table 2 from Craig and Dvorak, 1966). Thermoneutral zone 1131 
(TNZ) is the range of water temperatures associated with basal metabolic rate required to support 1132 
minimal life functions, and water loss. Below the lower critical temperature (LCT), metabolic rate 1133 
increases to maintain body core temperature. Above the upper critical temperature (UCT), water loss 1134 
increases due to cardiovascular regulatory blood volume distribution to skin and sweating and may 1135 
coincide with heat-induced thermogenesis (e.g., Q10 effect: metabolic rate scales with tissue 1136 
temperature according to Arrhenius law). 1137 

  1138 
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Table 1 Water thermal classification systems  1139 

Marotta (1933) Thurner (1967) Kappelmeyer –Haenel (1974) 

Hyperthermal springs        

>38ºC 

 

Hot springs                        

>32ºC 

Hyperthermal springs        

>38ºC 

 

Mesothermal springs         

30-40ºC 

 

Warm springs                    25-

32ºC 

Mesothermal springs         

34-38ºC 

 

Hypothermal springs           

20-30ºC 

 

Slightly warm springs       20-

25ºC 

Hypothermal springs           

20-34ºC 

 

 1140 

 1141 

 1142 

 1143 

 1144 

 1145 

 1146 

 1147 

 1148 

  1149 
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Table 2 Thermal perception scale for hydrotherapeutic use related to water temperature 1150 

ranges 1151 

Ledo (1996) 

very cold (0-12
o
C) 

cold (12-18
o
C) 

fresh (18-27
o
C) 

neutral (27-32
o
C) 

warm (32-36.5
o
C) 

hot (37-40
o
C) 

very hot (40-43
o
C) 

 1152 

  1153 
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Table 3 Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for 1154 
Scoping Reviews (PRISMA-ScR) Checklist 1155 

SECTION ITEM PRISMA-ScR CHECKLIST ITEM 
REPORTED 
ON PAGE # 

TITLE 

Title 1 Identify the report as a scoping review. 1 

ABSTRACT 

Structured 
summary 

2 

Provide a structured summary that includes 
(as applicable): background, objectives, 
eligibility criteria, sources of evidence, charting 
methods, results, and conclusions that relate 
to the review questions and objectives. 

1-2 

INTRODUCTION 

Rationale 3 

Describe the rationale for the review in the 
context of what is already known. Explain why 
the review questions/objectives lend 
themselves to a scoping review approach. 

2-5 

Objectives 4 

Provide an explicit statement of the questions 
and objectives being addressed with reference 
to their key elements (e.g., population or 
participants, concepts, and context) or other 
relevant key elements used to conceptualize 
the review questions and/or objectives. 

5 

METHODS 

Protocol and 
registration 

5 

Indicate whether a review protocol exists; state 
if and where it can be accessed (e.g., a Web 
address); and if available, provide registration 
information, including the registration number. 

6 

Eligibility criteria 6 

Specify characteristics of the sources of 
evidence used as eligibility criteria (e.g., years 
considered, language, and publication status), 
and provide a rationale. 

6 

Information 
sources* 

7 

Describe all information sources in the search 
(e.g., databases with dates of coverage and 
contact with authors to identify additional 
sources), as well as the date the most recent 
search was executed. 

6 

Search 8 
Present the full electronic search strategy for 
at least 1 database, including any limits used, 
such that it could be repeated. 

6 

Selection of 
sources of 
evidence† 

9 
State the process for selecting sources of 
evidence (i.e., screening and eligibility) 
included in the scoping review. 

6 

Data charting 
process‡ 

10 

Describe the methods of charting data from 
the included sources of evidence (e.g., 
calibrated forms or forms that have been 
tested by the team before their use, and 
whether data charting was done independently 
or in duplicate) and any processes for 
obtaining and confirming data from 
investigators. 

7 

Data items 11 
List and define all variables for which data 
were sought and any assumptions and 
simplifications made. 

6 

Critical appraisal 
of individual 
sources of 
evidence§ 

12 

If done, provide a rationale for conducting a 
critical appraisal of included sources of 
evidence; describe the methods used and how 
this information was used in any data 

7 
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SECTION ITEM PRISMA-ScR CHECKLIST ITEM 
REPORTED 
ON PAGE # 

synthesis (if appropriate). 

Synthesis of 
results 

13 
Describe the methods of handling and 
summarizing the data that were charted. 

7 

RESULTS 

Selection of 
sources of 
evidence 

14 

Give numbers of sources of evidence 
screened, assessed for eligibility, and included 
in the review, with reasons for exclusions at 
each stage, ideally using a flow diagram. 

7 

Characteristics of 
sources of 
evidence 

15 
For each source of evidence, present 
characteristics for which data were charted 
and provide the citations. 

7 

Critical appraisal 
within sources of 
evidence 

16 
If done, present data on critical appraisal of 
included sources of evidence (see item 12). 

8 

Results of 
individual sources 
of evidence 

17 
For each included source of evidence, present 
the relevant data that were charted that relate 
to the review questions and objectives. 

8-10 

Synthesis of 
results 

18 
Summarize and/or present the charting results 
as they relate to the review questions and 
objectives. 

9 

DISCUSSION 

Summary of 
evidence 

19 

Summarize the main results (including an 
overview of concepts, themes, and types of 
evidence available), link to the review 
questions and objectives, and consider the 
relevance to key groups. 

10-14 

Limitations 20 
Discuss the limitations of the scoping review 
process. 

14 

Conclusions 21 

Provide a general interpretation of the results 
with respect to the review questions and 
objectives, as well as potential implications 
and/or next steps. 

14-15 

FUNDING 

Funding 22 

Describe sources of funding for the included 
sources of evidence, as well as sources of 
funding for the scoping review. Describe the 
role of the funders of the scoping review. 

N/A 

 1156 
  1157 
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Table 4 Search Terms for Medline 1158 

Heading                                                         Search Strategy 

Water Immersion  (balneology) OR (hydrotherapy) OR 

(whole-body immersion) OR (bath) OR 

(icy water) OR (cold water) OR (cool 

water) OR (thermoneutral water) OR 

(warm water) OR (hot water) OR (hot 

springs) OR (thermal springs) OR 

(carbon dioxide water) OR (carbonated  

water) 

Thermoregulation (thermosensing/physiology) OR 

(behavioral thermoregulatory responses) 

OR (thermoregulation) OR (thermal 

perception) OR (thermal sensation) OR 

(thermal scales) OR (core temperature) 

OR (body temperature) OR (tympanic 

temperature) OR (skin temperature) OR 

(shivering thermogenesis) OR (sweating) 

OR (TRP ion channels)  

Cardiovascular System  (cardiovascular responses) OR (heart 

rate) OR (oxygen consumption) OR (skin 

blood flow) OR (oxygen saturation)  

Above searches combined with AND 1159 

  1160 



Table 5 In vivo studies relating to thermoregulatory responses 

 
 

      Authors (year) Country Total 

sample 

size 

Modalities Water 

Composition 

Core temperature + Skin 

temperature 

Descriptors of thermal 

qualities 

Duration  

 

Craig and Dvorak 

(1968) 

 

United States of 

America 

 

10 

 

Head-out water 

immersion 24-36 °C  

 

Tap Water 

 

Rectal temperature 

decreased at 24-36 °C, 

tympanic temperature 

decreased only at 24-34°C 

along time. 

 

skin temperature resembled 

water temperature  

 

 

5-15°C cold water, >27°C 

warm according to authors 

 

60min 

Lee et al. (1997) United States of 

America 

8 Water immersion at 

different depths at 

15°C and 25°C  

Tap Water Rectal and esophageal 

temperature decreased 

significantly from 15th at 

15°C and in 30th minute at 

25°C from shoulder level  

15-25°C cold water 

according to authors 

75min at 

15°C/115

min at 

25°C 
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Authors 

 

Country 

 

Total 

sample 

size 

 

Modalities 

 

Water 

Composition 

 

Core temperature + Skin 

temperature 

 

Descriptors of thermal 

qualities 

 

Duration 

 

New 6-point 

thermal 

sensation scale 

 

Wakabayashi et al. 

(2008) 

 

 

Country 

 

Total 

sample 

size 

 

Modalities 

 

Water 

Composition 

 

Core temperature + Skin 

temperature 

 

Descriptors of thermal 

qualities 

 

Duration 

 

New 6-point 

thermal 

sensation scale 

 

Japan 

 

Total 

sample 

size 

  

Water 

Composition 

 

Core temperature + Skin 

temperature 

 

Descriptors of thermal 

qualities 

 

Duration 

 

New 6-point 

thermal 

sensation scale 

 

 

8 

 

 

Modalities 

 

Water 

Composition 

 

Core temperature + Skin 

temperature 

 

Descriptors of thermal 

qualities 

 

Duration 

 

New 6-point 

thermal 

sensation scale 

 

Water immersion at 

29°C naked, and at 

26°C with partial 

uniform  

 

 

Water 

Composition 

 

Core temperature + Skin 

temperature 

 

Descriptors of thermal 

qualities 

 

Duration 

 

New 6-point 

thermal 

sensation scale 

 

Tap water 

 

Core temperature + Skin 

temperature 

 

Descriptors of thermal 

qualities 

 

Duration 

 

New 6-point 

thermal 

sensation scale 

 

Esophageal temperature 

decreased significant 

~0.5°C at 35th minute for 

uniform condition, but not 

for naked  

 

 

Descriptors of thermal 

qualities 

 

Duration 

 

New 6-point 

thermal 

sensation scale 

26 & 29°C cold water 

according to authors 

 

TS at 10min cool, at 

35min cold, at  60min 

severe cold  for both 

conditions   

TC at 10min  and 35 min 

slightly uncomfortable, at 

60 min uncomfortable for 

both conditions 

 

Duration 

 

New 6-point 

thermal 

sensation scale 

 

60 min 

 

Becker et al. (2009) 

 

United States of 

America 

 

16 

 

Water immersion at 

31°C, 36°C, 39°C  

 

Tap Water 

 

Tympanic temperature 

increased significantly 

~0.4°C only in warm water 

39°C  

 

31°C cool 

36°C neutral 

39°C warm  

according to authors 

 

 

 

 

 

 

24 min 
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Authors 

 

Country 

 

Total 

sample 

size 

 

Modalities 

 

Water 

Composition 

 

Core temperature + Skin 

temperature 

 

Descriptors of thermal 

qualities 

 

Duration 

 

Kappel et al. (1997) 

 

Denmark 

 

8 

 

Water immersion at 

34°C and 39°C   

 

Tap water 

 

Rectal temperature reached 

38°C at 30th min in hot 

water, and 39.5°C at the 

end of 2h, while no 

changes at 34°C 

 

34 °C thermoneutral 

39 °C hot 

according to authors 

 

2 h 

Maeda et al. (2001) Japan 5 Water immersion  at 

41°C, xiphoid sternum 

level 

Tap water vs 

artificial gas CO2 

water (1000ppm) 

Skin forehead increased 

about 2°C (CO2 water) vs 

1°C ( tap water )  

no changes appeared 

between breast and upper 

limb muscle temperature 

41°C hot 

according to authors 

15min 

Watanabe et al. 

(2006) 

Japan 27 Water immersion at 

39°C  

Tap water vs 

artificial CO2 

water (33ppm) 

Skin forehead temperature 

increased significantly and 

muscle forearm at CO2  

water 

39°C hot  

according to authors 

10 min 

Sato et al. (2004) Japan 10 Water immersion at 

40°C at the nipple level 

Tap water vs 

artificial CO2 

water (1000ppm) 

Tympanic temperature 

increased significant  0.3°C 

at CO2  water, no changes 

in skin forehead and skin 

chest temperature 

40°C hot 

 according to authors 

10 min 
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Authors 

 

 

Country 

 

Total 

sample 

size 

 

 

Modalities 

 

 

Water 

Composition 

 

 

Core temperature - Skin 

temperature 

 

 

Descriptors of thermal 

qualities 

 

 

Duration 

 

 

Sato et al. (2009) 

 

 

Japan 

 

 

10 

 

 

Water immersion at 

35°C at the nipple level 

 

 

Tap water vs 

artificial CO2 

water (1000ppm) 

 

 

Tympanic temperature 

decreased ~0.3°C at CO2  

water, no changes in tap 

water 

 

 

35°C thermoneutral 

according to authors 

TS from 10min tended to 

slightly warm in CO2 

water vs neutral to slightly 

cool in tap water  

 

 

20 min 

 

Nishimura et al. 

(2002) 

 

Japan 

 

6 

 

Water immersion at 

35°C up to diaphragm 

level 

 

Tap water vs 

artificial CO2 

water (1000ppm) 

 

Tympanic temperature 

decreased 0.4°C at CO2  

water, while no changes in 

tap water 

 

35°C thermoneutral 

according to authors 

TS slightly warm in CO2 

water vs neutral in tap 

water throughout the 

session  

 

 

20 min 

Nakamura et al. 

(1996) 

 

 

 

 

 

Japan 

 

 

 

 

12 

 

 

 

 

 

 

Water immersion at 

30°C and 38°C after 

submaximal exercise 

 

 

Tap water 

 

 

 

 

Rectal temperature no 

significant changes at 38°C 

and 30°C 

 

 

no thermal descriptors by 

authors 

TS was slightly cool for 

30°C  and warm for  38°C 

 

10 min 
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Authors 

 

 

Country 

 

Total 

sample 

size 

 

 

Modalities 

 

 

Water 

Composition 

 

 

Core temperature - Skin 

temperature 

 

 

Descriptors of thermal 

qualities 

 

 

Duration 

 

 

New 6-point 

thermal 

sensation scale 

 

Rodriques et al. 

(2020) 

 

 

Country 

 

Total 

sample 

size 

 

 

Modalities 

 

 

Water 

Composition 

 

 

Core temperature - Skin 

temperature 

 

 

Descriptors of thermal 

qualities 

 

 

Duration 

 

 

New 6-point 

thermal 

sensation scale 

 

 

 

Australia 

 

Total 

sample 

size 

 

 

Modalities 

 

 

Water 

Composition 

 

 

Core temperature - Skin 

temperature 

 

 

Descriptors of thermal 

qualities 

 

 

Duration 

 

 

New 6-point 

thermal 

sensation scale 

 

30 

 

 

Modalities 

 

 

Water 

Composition 

 

 

Core temperature - Skin 

temperature 

 

 

Descriptors of thermal 

qualities 

 

 

Duration 

 

 

New 6-point 

thermal 

sensation scale 

 

 

 

Water immersion at 

42oC at the waist level  

 

 

Water 

Composition 

 

 

Core temperature - Skin 

temperature 

 

 

Descriptors of thermal 

qualities 

 

 

Duration 

 

 

New 6-point 

thermal 

sensation scale 

 

 

 

Tap Water 

 

 

Core temperature - Skin 

temperature 

 

 

Descriptors of thermal 

qualities 

 

 

Duration 

 

 

New 6-point 

thermal 

sensation scale 

 

 

 

Rectal temperature 

increased 0.4oC 

significantly from 15th 

minute, reached 38.7oC at 

the end of session. Mean 

skin temperature increased 

at 35.5 oC within the first 

30min. 

 

 

Descriptors of thermal 

qualities 

 

 

Duration 

 

 

New 6-point 

thermal 

sensation scale 

 

 

 

 

42oC hot according to 

authors 

 

TS in 10th min was warm, 

while in 45th min changed 

to hot   

 

 

Duration 

 

 

New 6-point 

thermal 

sensation scale 

 

 

 

120 min          

Kojima et al.  

(2018) 

Japan 8 Head-out  immersion at 

35oC  and 42oC 

Tap Water Esophageal temperature 

increased significantly 2oC 

at the end of the 42oC 

session. 

35°C neutral and  

 42oC hot according to 

authors 

 

 

15min 

Fujisima (1986) Japan 11 Water immersion at 

43oC at the chin level 

Tap Water Oral temperature increased 

1.6oC at the end of session, 

while mean skin 

temperature increased at 

39.4oC. 

43oC hot according to 

author 

 

Thermal sensation was 

measured according to an 

arbitrarily scale. No data 

shown. 

8 min  
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Authors 

 

 

Country 

 

Total 

sample 

size 

 

 

Modalities 

 

 

Water 

Composition 

 

 

Core temperature - Skin 

temperature 

 

 

Descriptors of thermal 

qualities 

 

 

Duration 

 

 

New 6-point 

thermal 

sensation scale 

 

 

Allison and Reger 

(1992) 

 

 

Country 

 

Total 

sample 

size 

 

 

Modalities 

 

 

Water 

Composition 

 

 

Core temperature - Skin 

temperature 

 

 

Descriptors of thermal 

qualities 

 

 

Duration 

 

 

New 6-point 

thermal 

sensation scale 

 

 

United States of 

America 

 

Total 

sample 

size 

 

 

Modalities 

 

 

Water 

Composition 

 

 

Core temperature - Skin 

temperature 

 

 

Descriptors of thermal 

qualities 

 

 

Duration 

 

 

New 6-point 

thermal 

sensation scale 

 

 

6 

 

 

Modalities 

 

 

Water 

Composition 

 

 

Core temperature - Skin 

temperature 

 

 

Descriptors of thermal 

qualities 

 

 

Duration 

 

 

New 6-point 

thermal 

sensation scale 

 

 

Water immersion at 

40oC at the nipples level 

 

 

Water 

Composition 

 

 

Core temperature - Skin 

temperature 

 

 

Descriptors of thermal 

qualities 

 

 

Duration 

 

 

New 6-point 

thermal 

sensation scale 

 

 

Tap Water 

 

 

Core temperature - Skin 

temperature 

 

 

Descriptors of thermal 

qualities 

 

 

Duration 

 

 

New 6-point 

thermal 

sensation scale 

 

 

Esophageal temperature 

increased significantly 

0.75oC at the end of the 

session. 

 

 

Descriptors of thermal 

qualities 

 

 

Duration 

 

 

New 6-point 

thermal 

sensation scale 

 

 

 

 

40oC hot according to 

authors 

 

 

 

Duration 

 

 

New 6-point 

thermal 

sensation scale 

 

 

21 min 

 

O’Brien et al. 

(2000) 

 

United States of 

America 

 

14 

 

Water immersion at  

20oC at the shoulder 

level 

 

Tap Water 

 

Rectal temperature 

decreased 0.83oC at the 

end of the session.  

 

20oC cold according to 

authors 

 

60min 

 

Stephens et al. 

(2014) 

 

Australia 

 

39 

 

Water immersion at 

18oC and 35oC at the 

level of the C7 vertebrae 

 

Tap Water 

 

Core temperature did not 

changed significantly 

during cold water 

immersion, while it 

increased from the 5th min, 

differentiated 0.5oC at the 

10th from the initial value 

during hot immersion. 

Skin temperature 

resembled the water 

temperature  

 

18oC cold and 35oC hot  

according to authors 

 

TS remain stable for both 

conditions; TS was neutral 

for 35oC immersion and 

cold for 18oC immersion 

 

15min 
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Authors 

 

 

Country 

 

Total 

sample 

size 

 

 

Modalities 

 

 

Water 

Composition 

 

 

Core temperature - Skin 

temperature 

 

 

Descriptors of thermal 

qualities 

 

 

Duration 

 

 

New 6-point 

thermal 

sensation scale 

 

 

 

Solianik et al. 

(2014) 

 

 

Country 

 

Total 

sample 

size 

 

 

Modalities 

 

 

Water 

Composition 

 

 

Core temperature - Skin 

temperature 

 

 

Descriptors of thermal 

qualities 

 

 

Duration 

 

 

New 6-point 

thermal 

sensation scale 

 

 

 

Lithuania 

 

Total 

sample 

size 

 

 

Modalities 

 

 

Water 

Composition 

 

 

Core temperature - Skin 

temperature 

 

 

Descriptors of thermal 

qualities 

 

 

Duration 

 

 

New 6-point 

thermal 

sensation scale 
 

 

 

Modalities 

 

 

Water 

Composition 

 

 

Core temperature - Skin 

temperature 

 

 

Descriptors of thermal 

qualities 

 

 

Duration 

 

 

New 6-point 

thermal 

sensation scale 

 

 

 

Water immersion at 

14oC to the manubrium 

level 

 

 

Water 

Composition 

 

 

Core temperature - Skin 

temperature 

 

 

Descriptors of thermal 

qualities 

 

 

Duration 

 

 

New 6-point 

thermal 

sensation scale 

 

 

 

Tap Water 

 

 

Core temperature - Skin 

temperature 

 

 

Descriptors of thermal 

qualities 

 

 

Duration 

 

 

New 6-point 

thermal 

sensation scale 

 

 

 

Rectal temperature 

decreased 1oC at the end of 

the session. 

 

 

Descriptors of thermal 

qualities 

 

 

Duration 

 

 

New 6-point 

thermal 

sensation scale 

 

 

 

 

14oC cold according to 

authors 

 

 

Duration 

 

 

New 6-point 

thermal 

sensation scale 

 

 

 

170min 

 

Mansfield et al. 

(2020) 

 

United Kingdom 

  

Water immersion at 

42oC to the belly level 

 

Tap Water 

 

Rectal temperature 

increased 0.4oC 

significantly from 15th 

minute, reached 38.7oC at 

the end of session. Mean 

skin temperature of the 

immersed local parts 

increased at 41 oC 

 

42oC hot according to 

authors 

 

TS in 15th, 30th min was 

warm, while in 60th min 

changed to hot   

TC in 15th,30th min was 

comfortable while in 60th 

min uncomfortable 

 

60min 

 

Hohenauer et al. 

(2020) 

 

Switzerland 

  

Water immersion at 

10oC to the  sternum 

level  

 

Tap Water 

 

Regional surface skin  

temperature reached `14oC 

 

10oC cold according to 

authors 

 

10min 

Rivas et al. (2016) United States of 

America 

 Water immersion at 

39oC to the clavicle 

Tap Water Rectal temperature 

increased ~0.4oC 

39oC hot according to 

authors 

 

TS in 20th minute was 

60min 



Table 5 In vivo studies relating to thermoregulatory responses 

 
 

 

 

level significantly from 20th 

minute, reached 38oC at 

30th minute and ~38.5oC at 

the end of session. Mean 

skin temperature of the 

immersed local parts 

increased at 38 oC 

“warm but fairly 

comfortable”, in 30th 

minute was 

“uncomfortable warm”, 

while in 60th minute was 

‘hot” 

Hashiguchi et al. 

(2002) 

Japan  Water Immersion at 

40oC to the sternum 

level at different air 

temperatures (10°C, 

17.5°C, 25°C) 

Tap Water Rectal temperature 

increased more (~0.1°C) at 

25°C and 17.5°C air 

compared to 10°C 

(~0.05°C), Mean skin 

temperature affected by air 

temperatures. 

40oC hot according to 

authors 

 

 

TS was not influenced 

between ambient 

conditions 

(No thermal marker was 

reported in detail) 

10min 

Tochihara et al. 

(1998) 

Japan  Water Immersion at 

40oC to the sternum 

level at different air 

temperatures (5°C, 

10°C, 15°C, 20°C, 

25°C, 30°C, 35°C) 

Tap Water Mean Skin Temperature 

affected by air 

temperatures 

TS was slightly warm at 

5°C, 10°C, 15°C, warm at 

20°C, 25°C, 30°C and hot 

at 35°C) 

8min 


