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Abstract 
For the engineering applications of freeze-cast porous ceramics, the demand targets are often multiple 
and competing, which is a challenging problem to seek a Nash equilibrium in the high-dimensional 
design space. An accurate and robust quantification of process-structure-property correlations would 
provide an effective path to find the set of Pareto optimal materials for one specific need. In this work, 
using porous Si3N4-Si2N2O ceramics as the model materials, a hybrid model for the quantitative design 
of the microstructure and mechanical properties is developed from four physics-based process-
microstructure models with sintering, solidification, phase transformation and grain growth kinetic 
theories, and the subsequent data-driven structure-property model utilizing a machine learning 
method, artificial neural network (ANN). The SHapely Additive exPlanations (SHAP) analysis is further 
introduced to interpret the ANN model and mathematically identify the contribution of each 
microstructure feature descriptor toward target mechanical property outputs. These results present a 
systematic understanding of the process-structure-property relationships through the hybrid model, 
guiding the optimal design of the freeze-cast porous ceramics with required microstructures and 
mechanical properties. 
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1. Introduction 
Porous ceramics, owing to their lightness, high-temperature resistance, chemical inertness, and 
biocompatibility, play an essential and multifunctional role in metallurgy, energy, biomedical, and other 
fields [1-7]. Since the first publications by T. Fukasawa et al. [8,9] in 2001, freeze-casting (also named 
ice-templating) porous ceramics with unidirectional pore configurations, as a unique member of the 
porous ceramic family, have been extensively studied [10,11]. The high open porosity, tunable pore 
structure, and properties derived from the longitudinally aligned structure of porous ceramics prepared 
by the well-established freeze-casting route enable widespread applications involving thermal 
insulation components, hot gas filters, catalyst supports, and tissue engineering scaffolds [10-15]. 
Especially, porous Si3N4 ceramics with excellent mechanical properties, good resistance to thermal 
shock, favorable biocompatibility and antibacterial property have great potential in the above 
applications [16-21]. In high-temperature oxidizing environments, Si2N2O, with the superior oxidation 
resistance, is a valuable addition for enhancing the performance of Si3N4-based ceramics, making the 
Si3N4-Si2N2O system garner widely attention and interest [22,23]. 
Tailoring materials towards specific needs remains the challenge in a multi-objective optimization issue 
with high-dimensional features. For instance, the design of porous ceramics often faces trade-offs 
(porosity vs strength, pore structure vs strength, etc.) in engineering applications. When pursuing 
multiple and competing objectives, finding the most valuable solution that none of the target payoff can 
be improved without degrading the others, in game theory, is regarded as gradually approaching Nash 
equilibrium. In material design, the Nash equilibrium involves selecting such a subset of materials from 
the pool of all potential candidate materials in the design space, defined as those for which no additional 
enhancement of one objective (e.g. porosity) can be attained without compromising another objective 
(e.g. strength). And this subset can be referred to as the set of Pareto optimal materials (i.e. the Pareto 
front) [24-26]. The core goal of this work is focused on how to find a solution of this Nash equilibrium 
problem, taking the optimal design of freeze-cast porous Si3N4-Si2N2O ceramics as a model case. The 
establishment of this model is anticipated to facilitate the wider application of freeze-cast Si3N4-Si2N2O 
porous ceramics from high temperature to biomedicine. 
For the microstructural and mechanical design of freeze-cast porous ceramics, it is vital to quantitatively 
understand and describe the process-structure-property relationship based on the analysis of 
hierarchical factors [27,28]. The mechanical properties of cellular materials in the Gibson-Ashby model 
are dependent on three factors: (i) the relative density of materials; (ii) the topology and shape of the 
cell edges and faces (i.e. pore structure); (iii) the properties of the solid of structure (i.e. composition 
and microstructure of walls) [29,30]. For the freeze-cast porous ceramics, as generally summarized in 
S. Deville's book [31], the detailed factors affecting their compressive strength are porosity (equivalent 
to relative density), solvent, pore size, microstructural gradient, orientation domains and connectivity, 
ice-lens like defects, and particle size. 
As for freeze-cast porous ceramics from aqueous ceramic slurries, their porosity is mainly governed by 
solid loading and sintering parameter. Commonly, higher solids content and sintering conditions 
consistently lead to lower porosity and higher strength [32,33]. Considering specific needs, it may be 
essential to carefully balance the trade-off between porosity and strength sometimes. In the similar 
porosity case, the pore structure (primarily affected by the freezing front velocity (FFV)) would play a 
dominant role on the mechanical properties. To optimize the pore structure and hence improve 
mechanical properties, an appropriate FFV (always controlled by the cold finger's freezing temperature 
or cooling rate) is required. In general, there is a trend of increased compressive strength with faster 
FFV leading to smaller pore size and wall thickness according to the open online database 
(FreezeCasting.net) [34]. However, this rule is not universally applicable due to the joint interaction of 
multi-factors [35]. Moreover, the composition, initial particle shape and grain size of walls also have 
varying degrees of influence on the mechanical properties of materials [30,31,36-38]. Currently, the 
Gibson and Ashby micromechanical models for cellular materials are commonly utilized to describe the 
structure-property relationship. In the freeze-casting of the tert-butyl alcohol (TBA) system, the 
prediction of the out-of-plane honeycomb model successfully matches to the experimental values. 
However, the fitness is poor in the water-based system, due to the lamellar pore structure deviation 
from this model and the difficult-to-measure wall modulus [30,31,34,35,38]. 
The data science tools, particularly machine learning (ML), exhibit a powerful ability to reliably recreate 
experimental data and anticipate process-property correlation, and are widely employed in the design 
and prediction of alloys [39], ceramics [40], and concretes [41]. Multiple linear regression is a common 

http://www.freezecasting.net/
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ML method for multivariate issues such as empirical equations between multi-level structural 
information and target property, and it has been effectively practiced in metals [42] and ceramics [43]. 
Although this method can mathematically convert some nonlinear relationships to linear relationships, 
the non-monotonic factors emerging in freeze-casting render it somewhat ineffective. The big data 
regression models of freeze-casting by K. L. Scotti and D. C. Dunand [34] are valuable for identifying 
outliers, roughly predicting the process-structure-property correlation, and comparing existing and 
freshly acquired data, but not general enough for tailoring materials to a specific application. 
In the traditional application of ML for materials design, the microstructure is generally treated as a 
black box, and hence the optimal design process is implicit. As proposed by C. Suh et al. [44] in the 
outlook on ML, the understanding of material behaviors is equally important to the prediction of 
material properties. Microstructure information is the key to revealing materials’ behaviors. A. Molkeri 
et al. [45] introduced a microstructure-aware Bayesian Optimization framework for goal-oriented 
materials design, proving that it is more effective and faster than the traditional microstructure-agnostic 
approach to solving problems. 
Therefore, we establish a physics-based plus artificial neural network (ANN) hybrid data model of 
process-structure-property correlations (as illustrated in the workflow diagram in Figure 1), aiming to 
aid the mathematical understanding of the influence of hierarchical microstructural features (porosity, 
structural wavelength, composition and grain size) on the mechanical properties, and realize the 
microstructural and mechanical design of freeze-cast porous Si3N4-Si2N2O ceramics. And this proposed 
modeling path is expected to be extended to other freeze-cast porous ceramic systems to guide 
understanding and design. 
 

 
Figure 1 Workflow diagram of the physics-based/data-driven hybrid model, aiming at the structural and mechanical design of 
freeze-cast porous ceramics. This closed loop starts with the collection and division of microstructure (linear shrinkage rate of side 
length ΔL/L0, open porosity P, structural wavelength λ, phase content of β-Si3N4 Y, and median diameter of β-Si3N4 grains D50) and 
property (compressive strength σ, stiffness E, energy absorption per unit volume Uv, and unit mass Um) data over the entire process 
space (freezing temperature Tcold, sintering temperature Ts, and holding time ts). Next, the kinetic relationship between process 
and microstructure, and further quantification of the correlation between microstructure and property are developed by an 
interpretable ANN model. Finally, the on-demand design capability of the hybrid model is evaluated by the two sets of validation 
data. 

 
 
 
 

https://www.sciencedirect.com/science/article/pii/S1359645424001721?dgcid=coauthor#bib0034
https://www.sciencedirect.com/science/article/pii/S1359645424001721?dgcid=coauthor#bib0034
https://www.sciencedirect.com/science/article/pii/S1359645424001721?dgcid=coauthor#bib0044
https://www.sciencedirect.com/science/article/pii/S1359645424001721?dgcid=coauthor#bib0044
https://www.sciencedirect.com/science/article/pii/S1359645424001721?dgcid=coauthor#bib0045
https://www.sciencedirect.com/science/article/pii/S1359645424001721?dgcid=coauthor#bib0045
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2. Materials and methods 
2.1. Material preparation 
Aqueous ceramic slurries were made using Si3N4 (α phase content>93 %, ∼0.5 μm, Junyu Ceramic Plastic 
Products Co., LTD., Shanghai, P.R. China), fused SiO2 (purity>99.5 %, ∼0.6 μm, Guangyu Quartz Products 
Co., LTD., Lianyungang, P.R. China), Al2O3 (purity>98.0 %, ∼0.75 μm, Showa Denko K.K., Tokyo, Japan) 
and Y2O3 (purity>99.0 %, ∼2.9 μm, Yaoyi Alloy Material Co., LTD., Shanghai, P.R. China) with 20 vol.% 
solid loading. It should be noted that in this study, the primary focus is on the effect of sintering 
parameters on open porosity, while another nonnegligible factor, solid loading, is fixed at 20 vol.%. The 
molar ratio of Si3N4 and fused SiO2 is 3:1, whereas that of Al2O3 and Y2O3 as sintering additives (total 
amount 10 wt.%) is 5:3. Tetramethylammonium hydroxide (TMAH, AR, 25 wt.% aqueous solution, 
Aladdin Biochemical Technology Co., LTD., Shanghai, P.R. China) and polyvinyl alcohol (PVA, DP ∼1700, 
Macklin Biochemical Co., LTD., Shanghai, P.R. China) were added in the amounts of 0.4 wt.% and 2.0 
wt.% (of the solids) as dispersant and binder, respectively. The homogeneous and stable slurries were 
simultaneously mixed and degassed in the TMV-1500T planetary centrifugal vacuum defoaming mixer 
(Smida intelligent equipment Co., LTD., Shenzhen, P.R. China) at 2000 rpm in a 35 kPa vacuum. 
 
After stabilizing at room temperature, all the slurries in this investigation were directionally solidified 
with a custom-made freeze-casting system (details in Fig. S 1). The polytetrafluoroethylene (PTFE) 
mould filled with ∼40 mL of the slurry was placed on the surface of a copper finger pre-chilled to the 
freezing temperature Tcold of −40 °C, −60 °C, −80 °C, −100 °C, while the top of the mould was left open to 
the atmosphere and kept at room temperature Thot (∼25 °C). The freezing front velocities for each 
freeze-casting condition were assessed using a “thermocouple” mould [30,46]. The “thermocouple” 
mould is designed with eight staggered thermocouples, spaced at 4 mm intervals along the height of the 
mould (see Figure 2(a) for details). To ensure the sensitivity of the in-suit temperature measurement 
and minimize the impact of thermocouples on the freezing process, seven thermocouples (∼2 mm in 
diameter) were in direct contact with the slurry through the mould wall, without extending beyond it. 
Additionally, one extra thermocouple was positioned above the top of the slurry. The position of the 
freezing front was assumed to align with the 0 °C isotherm and evaluated by averaging three trials. Thus, 
the freezing front velocity was derived as the rate at which it travels along the height of the mould. 
Simultaneously, the local cooling rates were calculated for each thermocouple position. When fully 
frozen, the sample was demoulded with a punch and transferred to a pre-chilled freeze dryer (−50 °C 
and 1.5 Pa) to lyophilize for at least 48 h. Freeze-dried green bodies were gas pressure (0.5 MPa N2) 
sintered at different sintering temperatures Ts (1650 °C, 1700 °C, 1750 °C) and holding times ts (30 min, 
60 min, 90 min, 120 min). The linear sintering shrinkage rate ΔL/L0 of the sample was calculated with 
the side length change before and after sintering. The open porosity P, apparent density ρa, and bulk 
density ρb of sintered samples were measured by Archimedes’ buoyancy method. Specifically, open 
porosity P refers to the ratio of the total volume of the open pores in the scaffold to its bulk volume 
(include the volumes of the lamellar walls, all open pores and closed pores); apparent density ρa 
represents the ratio of the mass of the dry scaffold to its apparent volume (include the volumes of the 
lamellar walls and closed pores), which reflects the density of the lamellar walls; bulk density ρb refers 
to the ratio of the mass of the dry scaffold to its bulk volume, which indicates the density of the scaffold 
itself. 
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Figure 2 The “thermocouple” mould measurements along the freezing direction. (a) Schematic of the “thermocouple” mould. The 
measured and fitted position Z and velocity V of the FF (b), and the local cooling rates along the height (c) during freeze-casting 
at −100 °C. 

 

2.2. Thermophysical properties of slurry and frozen solid for the two-phase Stefan problem 
Based on several adequate hypotheses, the analytical solution to the two-phase Stefan problem under 
the Neumann condition was successfully applied to mathematically describe the steady-state freezing 
process [47,48]. Given that the two-phase Stefan problem is focused on the pure liquid, the 
thermophysical parameters of slurry and frozen solid were additionally adjusted and assumed to fulfill 
this model's premise in this study. First, densities of slurry (ρslurry) and frozen solid (ρsolid), as well as the 
thermal conductivity of solid ksolid, were calculated using the volume fraction rule of mixtures. The 
thermal conductivity of slurry kslurry was approximated by Jeffrey's model [49,50]. Next, the specific heat 
capacity of slurry (cslurry) and frozen solid (csolid) was estimated by the mass fraction rule of mixtures. 
Both the thermal diffusivity of slurry (αslurry) and frozen solid (αsolid) can be given by 
 

𝛼 =
𝑘

𝜌𝑐
   (1) 

 
Finally, on the basis of a reasonable assumption (only one heat release phase during freezing, i.e. water), 
the latent heat of fusion can be calculated by 
 

𝐿𝑠𝑙𝑢𝑟𝑟𝑦 =
(1−∅)𝜌𝐻2𝑂𝐿

𝜌𝑠𝑙𝑢𝑟𝑟𝑦
 (2) 

 
where Lslurry and L are the latent heat of fusion for slurry and H2O respectively, is the solid loading, and  
is the density of H2O. The detailed thermophysical properties of pure water and slurry at room 
temperature (Thot=25 °C) and minimum freezing temperature (Tcold=−100 °C) are available in the 
Supplementary Material. 
 
 

2.3. Microstructural analysis: structural feature size, phase content and grain size of β-Si3N4 
The structural feature size characterization of freeze-cast scaffolds was carried on the samples sintered 
at six typical sintering parameter combinations. As shown in Fig. S 3, each scaffold was first cut into 
rectangle parallelepipeds with a square basis of ∼6 mm side length, and then the cubes were cut at 5 
mm, 7 mm, 9 mm, 11 mm, or 13 mm from the bottom, respectively (“at X mm” in this study implies the 
height here). The structural feature size (containing pore size p, wall thickness w, and structural 
wavelength λ) of the freeze-cast porous ceramics was quantified by an upright super depth of field 
digital microscope (VHX-1000E, Keyence Corp., Osaka, Japan). At least three images per layer of the five 
2 mm evenly spaced positions were captured at the same magnification. For each layer, over 50 pore 
size and wall thickness measurements were taken separately using the digital imaging software ImageJ 
[51] (ImageJ, U.S. National Institutes of Health, Bethesda, MD). And the structural wavelength of each 
layer was the sum of the mean pore size and the mean wall thickness obtained in that layer. Moreover, 
the pore size distribution (at ∼13 mm) of the porous scaffold, prepared using several representative 
processes, was measured with a mercury intrusion porosimetry (Model Auto-pore IV 9500, 
Micromeritics, USA). The phase content of β-Si3N4 was quantitatively determined from X-Ray Diffraction 
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(XRD) data (using an Empyrean X-ray diffractometer, Malvern Panalytical LTD., Malvern, UK, with step 
size 0.013 deg, scan speed 1 °/min, and a large 2θ angular range of 10–130 deg) and subsequent Rietveld 
refinement carried on the open-source FullProf suite software. The sintered porous ceramics were 
crushed into fine powders in an agate mortar and sieved through a 325 mesh sieve (opening diameter 
∼44 μm) before XRD testing. After etching with hydrofluoric acid (AR, 40 %, Aladdin Biochemical 
Technology Co., LTD., Shanghai, P.R. China) for 5 min, the microstructure of sintered porous ceramics 
was observed on an SEM platform (Helios Nanolab 600i, Thermo Fisher Scientific Inc., Oregon, USA). 
Due to the occlusion of grains, the real length of the rod-like β-Si3N4 grains is hard to acquire. The median 
diameter (D50) of β-Si3N4 grains was regarded as the grain size to describe their coarsening behavior in 
this study. D50 measurements were conducted using ImageJ from micrographs taken on over five 
different locations per specimen and at least 200 β-Si3N4 grains were measured for each sample. 
 

2.4. Characterization of uniaxial compressive response at quasi-static regime and energy 
absorption 
Small size samples (6 × 6 × 8 mm3) were extracted from the section of each sintered scaffold between 5 
mm and 13 mm away from the bottom for uniaxial compression testing. Compression experiments were 
carried out along the freezing direction at a low-strain rate (10−3 s−1), corresponding to a cross-head 
speed of 0.5 mm/min, on an AGX-plus precision universal testing machine (Shimadzu Corp., Kyoto, 
Japan) with a 5 kN load cell. All samples fabricated by different processes (a total of 48 combinations of 
Tcold, Ts, ts) were examined with 6∼9 specimens per sample. To minimize lateral friction during uniaxial 
compressing, graphite sheets with a thickness of 40∼50 μm were placed on the upper and bottom sides 
of the sample. Besides compressive fracture strength, post-fracture inelastic deformation and energy 
absorption characteristics of freeze-cast scaffolds are also critical factors affecting the mechanical 
reliability and performance of macro-porous components, especially under compressive loads [1,38,52]. 
The energy absorption ability of porous material can be evaluated by calculating the area under the 
compressive stress-strain curve. Thus, energy absorption capacity per unit volume (Uv) and unit mass 
(Um) can be computed separately as: 
 

𝑈𝑉 = ∫ 𝜎𝑑𝜀
𝜀

0
  (3) 

 

𝑈𝑚 =
𝑈𝑉

𝜌𝑏
  (4) 

 
where ρb is the bulk density of porous ceramics. Here, the calculation of Uv and Um were integrated to 
the 15 % strain (ε) value for each compressive stress-strain curve. 
 

2.5. Machine learning (ML) architecture 
Mathematically, an artificial neural network (ANN) model has been proved to be able to map any 
nonlinear object [53]. In the current work, a three-layer fully-connected feedforward ANN model was 
applied to construct the complex nonlinear relationships of process-structure-property (PSP). First, two 
groups of data with high porosity/low strength and low porosity/high strength were randomly isolated 
as the experimental validation for the generalization capability of the final PSP model. Then, the 
remaining 46 sets of data were randomly divided into training set and test set with a proportion of 
85:15. The hyperparameters, including activation functions (rectified linear unit, hyperbolic tangent, 
and sigmoid), layer weights initial function (a uniform distribution with zero mean and variance of 2/NI 
or 2/(NI+NO), here NI and NO are the input and output size of the layer), layer biases initial function (all 
with 0 or 1), and the number of neurons in the hidden layer (ranging from 4 to 10), were optimized by 
enumerating all possible combinations. During the optimization of hyperparameters, a 10-fold cross-
validated model and L2-regularization with the strength of 0.02 were adopted to avoid overfitting. The 
ANN model was trained by minimizing the mean squared error (MSE) using the Limited-memory 
Broyden-Fletcher-Goldfarb-Shanno (LBFGS) algorithm [54]. After optimization, the best activation 
function was the hyperbolic tangent, and the layer weights initial function was a uniform distribution 
with zeros mean and variance of 2/(NI+NO). The best number of neural and layer biases initial functions 
were 4 and 0 for the PSP model, respectively. Finally, the model was reconstructed using the optimized 
hyperparameters. To get the corresponding process parameters and microstructural features of the 
target properties, the grid search with resolution of 1 °C in Tcold and Ts, and 1 min in ts was applied to 



X. Liao et al., Acta Materialia (2024) Vol. 169, 119819 7 
 

explore the high-dimensional space. The SHapley Additive exPlanations (SHAP) [55] method was 
introduced to interpret this ANN model. The query points for SHAP were generated by uniform sampling 
1000 points over the process parameters space. 
 

3. Results 
3.1. Analysis of freeze-casting temperature profiles within a “thermocouple” mould 
The temperature profiles during freeze-casting under different Tcold conditions were recorded using a 
“thermocouple” mold equipped with eight evenly spaced thermocouples (as shown in Figure 2(a)). By 
reasonably assuming that the freezing front (FF) aligns with the 0 °C temperature contour [30,46,48,56], 
the position Z and velocity V of the FF, along with the corresponding regression fits, are depicted for four 

Tcold in Figure 2 (b) and Fig. S 2(a)-(c), respectively. As described in the Neumann solution (Z ∼ √𝑡𝑓  

and V ∼ 1/√𝑡𝑓), where tf is the freezing time) [57,58], when combined with the experimental V-tf data, 

the freeze-casting process at a constant Tcold can be approximately divided into two stages: 1st stage, 
marked by a steep drop in FFV, and 2nd stage, exhibiting a more gradual decline in FFV. Specifically, in 
this study, it can be generally concluded that when the FF reaches the third thermocouple (i.e. Z = 9 mm), 
the freezing process enters the 2nd stage. As shown in Figure 2(b), the experimental FFV exhibits slight 
fluctuations between 17.6 ± 1.0 μm/s and 17.9 ± 2.3 μm/s during the freezing period from 5.8 ± 0.7 min 
to 13.8 ± 0.7 min (associated to the Z range of 9 mm - 17 mm). It can be approximated that the quasi 
steady-state has been reached within this range. This is also supported by the findings of S.M. Miller et 
al. [47,48]. The lamellar structures of interest at 13 mm are formed at exactly this stage. 
In addition, the local cooling rate  
at each thermocouple position decreases non-linearly with an increase in the thermocouple height. 
However, within the investigated range of freeze-casting conditions, the decline in the local cooling rate 
begins to slow down as the quasi steady-state directional solidification is achieved. Specifically, as 
depicted in Figure 2(c), taking Tcold=−100 °C as an example, the in the concerned range of 13 mm-17 mm, 
only gradually decreases from 1.75 ± 0.19 °C/min to 1.41 ± 0.06 °C/min. The corresponding local 
thermal gradient G=C/V [46] slightly reduces from 1.68 ± 0.42 °C/mm to 1.35 ± 0.25 °C/mm. 
 

3.2. Sintering shrinkage rate, open porosity, and density 
Linear sintering shrinkage rate, open porosity, and apparent density of samples prepared at the typical 
combinations of Tcold, Ts, and ts are shown in Figure 3(a). As Ts and ts increase, the linear shrinkage rate 
of porous ceramics rises steadily, while the porosity gradually falls. In the entire processing space, the 
linear shrinkage rate and porosity of the porous ceramics are in the range of 6.9 % ± 0.8 %∼20.7 % ± 
0.5 % and 60.7 % ± 1.2 %∼77.4 % ± 1.7 %, respectively. It is worth mentioning that the influence of 
freezing temperature during freeze-casting on the shrinkage rate, porosity, and density is negligible in 
this case. In addition, the apparent densities of the sintered porous ceramics with different sintering 
parameters fluctuated between 2.9 g/cm3 and 3.1 g/cm3, suggesting that the sintering parameters have 
little effect on them, further indicating that there are nearly no closed pores in sintered scaffolds. Figure 
3(b) shows the matrix scatter and correlation coefficient plot of the processing parameters, linear 
shrinkage rate, porosity, and bulk density for all samples. The absolute values of the Spearman 
correlation coefficients among the linear shrinkage rates, open porosities, and bulk densities are all very 
close to one, demonstrating a strong linear association among them. Thus, the linear quantitative 
correlations among those can be generated through the least-squares fitting. The linear fitting result of 
ΔL/L0 and P, for example, is as follows: 
 

𝑃 = −0.9981
∆𝐿

𝐿0
+ 0.8476 ,  R²=0.9739 (5) 

 
Furthermore, the comparison of the absolute value of the correlation coefficient also implies that the 
effect of holding time on sintering densification behavior of porous ceramics is slightly larger than that 
of sintering temperature. The correlation coefficients between freezing temperatures and shrinkage 
rates, porosities, densities, respectively, are nearly zero, confirming that freezing temperature has no 
significant effect on these factors. 
 

https://www.sciencedirect.com/science/article/pii/S1359645424001721?dgcid=coauthor#bib0055
https://www.sciencedirect.com/science/article/pii/S1359645424001721?dgcid=coauthor#bib0055
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Figure 3 Correlation between process parameters and sintering behavior parameters. (a) Linear shrinkage rate of side length, 
open porosity, and apparent density of samples prepared by 16 typical processes. (b) The matrix scatter and correlation coefficient 
plot of all 48 samples, and the color bar indicates the Spearman correlation coefficient. Narrower colored ellipses in the upper 
right corner of the matrix plot represent stronger linear correlations and vice versa. 

 
 

3.3. Microstructural analysis 
As for the structural features of freeze-cast porous scaffolds, the pore size p, wall thickness w, and 
structural wavelength λ are mainly analyzed here. The height of feature size measurement from the 
bottom is indicated by the subscript number (e.g. p9 means the pore size measured at 9 mm from the 
bottom). The statistical analysis of p and w distributions in Section 5-13 mm away from the bottom of 
sample shows that they both follow a normal distribution at a significance level of 0.05 (as shown in 
Figure 4(a-d) the Q-Q plots and Anderson-Darling test results of p and w statistics of four representative 
samples). We investigate the correlation between the distribution of structural feature size at five cross-
sectional heights and sintering parameters in the four Tcold cases, taking the Jensen-Shannon divergence 
DJS to measure the similarity of two distributions. DJS = 0 indicates that the two distributions are the 
same, and DJS gradually increases as the similarity decreases. The statistical box plots and Jensen-
Shannon divergence of two groups of representative p and w distributions under the selected six 
sintering processes are given in Figure 4(e). Taking the p9 distribution of samples frozen at −100 °C as 
an example, 15 pairwise comparisons and DJS calculations are performed on the statistical results of 
porous ceramics sintered under six typical sintering processes. Over 94 % of all 600 sets of DJS results 
are less than 0.1, which implies that, in the current statistical results, the p or w distributions at one 
cross-sectional height of the samples sintered under different Ts and ts combinations are highly similar, 
despite a ∼14 % difference between the maximum and minimum shrinkage rates. Moreover, the pore 
size distributions (at ∼13 mm) of the freeze-cast scaffolds at −60 °C and −100 °C, prepared under various 
sintering conditions, are evaluated using mercury intrusion porosimetry. The results, as illustrated in 
Fig. S 4(b) and (c), provide additional confirmation that the sintering parameters exert minimal impact 
on the pore size p. The possible explanation is that the average standard deviation (∼1.9 μm) of the 
statistical p and w distributions is comparable to the shrinkage size in each structural unit. And it is also 
associated with the anisotropic sintering shrinkage of each structural unit at the micro-scale, wherein 
the shrinkage rate of lamella unit along the short axis of pores cut perpendicular to the freezing direction 
is significantly lower than that along the long axis [59]. Consequently, these two factors may contribute 
to the insensitivity of pore size p, wall thickness w, and structural wavelength λ to sintering parameters. 
In addition, at the macro-scale, the height shrinkage rate of the sintered scaffolds ranges from 6.7 % ± 
0.7 % to 23.2 % ± 0.8 %. Considering the maximum and minimum height shrinkage rates in this study, 
the microstructural feature sizes at 16.9 mm and 13.9 mm (i.e. at 13 mm of the sintered scaffolds) of the 
green body can be found in Fig. S 5. The statistical measurements reveal that under the applied freezing 
conditions here, the range of 13.9 mm-16.9 mm in the structural analysis of the green body corresponds 
to the quasi steady-state stage, where these feature sizes exhibit no statistically significant fluctuations. 
This also implies that the influence of local cooling rate on the feature sizes is negligible during this 
stage. 
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Figure 4 Statistical analysis of structural features (pore size p, wall thickness w, structural wavelength λ) of freeze-cast scaffolds. 
(a)-(d) Q-Q plots and Anderson-Darling test results of p and w statistics of four representative samples. Statistical parameters of 
distribution of structural feature size: S.D.–standard deviation, Num.–number of data, A.D.–test statistic for the Anderson-Darling 
test. (e) Box plots with data distributions of p and w for two frozen samples sintered at six parameter combinations. The subscript 
numbers (1, 2, 3, 4, 5, 6) of Jensen-Shannon divergence DJS represent the serial numbers of the six sintering processes from left to 
right on the horizontal axis. For example, DJS(1, 2) means the DJS value of two p or w distributions of the samples sintered at 1650 
°C/0.5 h and 1650 °C/2 h. 

Figure 5(a) displays the average pore size p13, wall thickness w13, and structural wavelength λ13 at 13 
mm of samples prepared under four freezing temperatures. When Tcold drops from −40 °C to −100 °C, 
λ13 also reduces from 29.4 ± 1.3 μm to 18.7 ± 0.2 μm due to the increase of ice crystal nucleation rate 
and freezing front velocity, and the declining trend of p13 is more noticeable than that of w13. This is also 
consistent with the pore distributions obtained from mercury intrusion measurements of scaffolds 
frozen at different Tcold (refer to Fig. S 4(a)). The gradient of the feature size along the freezing direction 
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in two extreme situations (frozen at −40 °C and −100 °C) is illustrated in Figure 5(b). The lowest freezing 
temperature brings milder gradient of feature size. The quantitative relationship between structural 
wavelength and the height from the bottom are obtained through linear fitting, as listed in Table 1. 
 

 
Figure 5 (a) Measured average microstructural feature size of freeze-cast scaffolds. (b) The gradient of feature size along the 
freezing direction in two extreme cases. The lines are only to guide the visualization and do not indicate expected values for 
intermediate feature size. 

 
Table 1. Linear fitting results of the gradient of structural wavelength Gλ. 

Tcold, 
°C 

The gradient of structural wavelength Gλ, 
μm/mm 

Intercept R2 

−40 1.4991 8.5735 0.9481 
−60 1.2284 8.5823 0.9881 
−80 0.8060 11.7920 0.9994 

−100 0.5468 11.7060 0.9739 

 
Further, there is a significant linear correlation between λ13 and the gradient of structural wavelength 
Gλ, and the least-squares fitness can be found below: 
 
𝐺𝜆 = 0.0927𝜆13 − 1.1853 R²=0.9787 (6) 
 
The phases evolution of the −100 °C freeze-cast samples with various sintering parameters is 
quantitatively characterized by X-ray diffraction coupled to Rietveld refinement (two quintessential 
XRD refined fitting results are shown in Fig. S 6). The increase of Ts and ts promotes the phase 
transformation of α-Si3N4 to β-Si3N4. The content of each phase in samples sintered at 1650–1750 °C for 
0.5–2 h is marked in Figure 6. The Si2N2O phase is being used in this study to further improve the 
oxidation resistance and dielectric properties of porous Si3N4 ceramics. The wt. fraction of Si2N2O only 
varies between 31.5 % and 34.8 % except for that of the sample sintered at 1750 °C/2 h. This not only 
indicates that the reaction between fused SiO2 and Si3N4 has been finished before 1650 °C but also 
suggests that a prolonged holding time at high temperatures under nitrogen may cause a minor 
decomposition of Si2N2O. 
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Figure 6. The wt. fraction of each phase calculated by 
Rietveld refinements for the samples fabricated at all 
sintering cycles. 

 
 
Figure 7 shows SEM micrographs of grains in porous ceramics sintered at 1650–1750 °C for 0.5–2 h. 
Due to the enhancement of mechanical properties by well-grown rod-like grains [21,60], the coarsening 
behavior of the scaffold microstructure in this work concentrates on β-Si3N4. The quantity and grain size 
of β-Si3N4 are rising “with the naked eye” as the sintering time and temperature increase, and α-Si3N4→β-
Si3N4 phase transformation develops, with D50 ranging from 142 to 464 nm. 
 

 
Figure 7 SEM micrographs of the grain morphology of porous Si3N4-Si2N2O ceramics sintered at 1650–1750 °C for 0.5–2 h. 

 

3.4. Quasi-static uniaxial compressive response and energy absorption 
Within a wide range of compressive strength (5.4 ± 1.1–44.1 ± 5.5 MPa) and stiffness (0.20 ± 0.03–1.81 
± 0.23 GPa), all sintered scaffolds’ quasi-static (strain rate ∼10−3 s−1) uniaxial compressive responses 
exhibit a graceful progressive failure. Specifically, all the stress-strain curves are observed to be nearly 
similar mechanical responses, that is, a linear rise of stress with strain and subsequent pseudoplastic 
descent of stress with further strain increments. 
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Figure 8 Quasi-static uniaxial compressive response of freeze-cast scaffolds. (a) Example compressive stress-strain curves up to 15 
% strain for specimens frozen at −40 °C to −100 °C (sintered at 1700 °C/ 1.5 h). (b) The matrix scatter and correlation coefficient 
plot of all observed mechanical properties (compressive strength σ, stiffness E, energy absorption per unit volume Uv, and unit mass 
Um), and the color bar indicates the Spearman correlation coefficient. (c) Comparison of compressive strength of samples 
manufactured with different process parameters (each color block represents a distinct freezing temperature, while the upper 
parameters correspond the combined values of sintering temperature and holding time). 

 
Figure 8(a) shows example compressive stress-strain curves up to 15 % strain for specimens frozen at 
−40 °C to −100 °C (sintered at 1700 °C/ 1.5 h). In addition, the correlation analysis of the observed 
compressive strength, stiffness, energy absorption per unit volume, and unit mass (as shown in Figure 
8(b)) reveals a strong and positive linear correlation among them, with the Spearman correlation 
coefficients of 0.92–0.97. Mostly, the compressive strength improves when the freezing temperature 
drops, as seen in Figure 8(a). This is not the full story and its evolution with freezing temperature 
changes depending on sintering settings. As illustrated in Figure 8(c), there is a general trend that the 
samples with the highest mechanical properties will be those frozen between −60 °C and −80 °C when 
the sintering parameters raise. With decrease of freezing temperature, the reduced defect (i.e. pore) 
size, the uniform distribution of load across lamellar walls, and the increased number of bridges 
between parallel walls that preventing their Euler buckling would contribute to the enhancement of 
mechanical properties [30,32,35,61-63]. In addition, the smaller and narrower distribution of the wall 
thickness would result in a higher Weibull modulus of materials [64]. However, the smaller wall 
thickness caused by a higher FFV unavoidably decrease the critical Euler buckling stress and 
consequently reduces the strength. For example, the compressive strength and stiffness of porous yttria-
stabilized zirconia (YSZ) ceramics with high porosity would drop by 7 % to 37 % when the cooling rate 
exceeds 10 °C/min and approaches to 40 °C/min [65]. The optimized Tcold range for the higher strength 
is probably caused by a trade-off between the connection density and the critical Euler buckling stress 
of freeze-cast scaffolds. 
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3.5. Correlation analysis of sintering shrinkage behavior and sintering process 
To quantify the liquid-phase sintering behavior in the Si3N4-SiO2-Al2O3-Y2O3 system, Kingery's model 
[66-68] can be used to establish the mathematical relationship between linear shrinkage rate and 
sintering parameters as follows (Eq.(7)): 
 
Δ𝐿

𝐿0
= 𝑘𝑠 × 𝑡𝑠

𝑛𝑠   (7) 

 
Where ΔL/L0 is the linear shrinkage rate measured after the sintering process at absolute temperature 
Ts for a duration ts, ks is the kinetic constant (ks = k0s·exp(-Qs/RTs)), R is the gas constant, Qs is an apparent 
activation energy for sintering, and k0s, ns are constants. 
 

 
Figure 9 Parity plots of the calculated and experimental values of (a) ΔL/L0, (b) P, (c) λ13, (d) Gλ, (e) Y, (f) D50. Both the slopes of 
the regression lines and the R2 values, close to 1, exhibit a well-fitting prediction ability. 

As stated in previous results of R. E. Loehman et al. [69], and D. Suttor et al. [70], the apparent exponent 
ns (shown in Table 2) fitted in this work are also slightly larger than that expected by Kingery's model 
(ns=0.33 or 0.20), suggesting that a variety of sintering mechanisms, including solution-precipitation 
and α→β phase transformation and so on, are probably active during the intermediate stage for Si3N4-
SiO2-Al2O3-Y2O3 system. Furthermore, the apparent activation energy (115.2 kJ/mol) in this study is 
lower than that reported by O. Abe (193.1 kJ/mol [71]) and G. R. Terwilliger et al. (164.1 kJ/mol [72]), 
showing that the chemical reaction of Si3N4 and fused SiO2, as well as the increment of the actual liquid 
phase to 19.47 wt.% ± 0.75 wt.% in all samples due to incompletely reacted SiO2, promote the diffusion 
of N atoms during sintering and bring out a smaller Qs in this system. Furthermore, the composition of 
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the liquid phase in this study differs from that in previous cases, which constitutes one of the key factors 
contributing to the disparity in activation energy. Combined with the prior linear fitting between 
shrinkage rate and open porosity, their calculated values closely match the experimental values, as 
shown in Figure 9(a) and (b), respectively. 
 
Table 2. Summary of the parameters of microstructural kinetic models (Eq. (7), Eq. (13) to  (16)). 

ΔL/L0, % k0s Qs, kJ/mol ns 
 25.72 115.2 0.44 

λ, μm φ m nf 
 0.30 75.9 0.50 

Y, % k0Y QY, kJ/mol nY 
 6.62·1013 637.1 1.82 

D50, nm k0G, nm2/s QG, kJ/mol nG 
 2.44·1011 365.0 2.18 

 

3.6. Correlation analysis of structural wavelength and freezing temperature 
The structural characteristics and properties of lamellar structure in the steady-state region are more 
frequently concerned for freeze-cast scaffolds, while the parts of the initial and transition region 
(generally thinner than 2 mm) are often excised [73,74]. It is necessary to establish the quantitative 
relationship between λ and Tcold from the theory of solidification. 
Firstly, the Neumann solution to the two-phase Stefan problem provides the equations for the position 
Z and velocity V of the freezing front during solidification, given by 
 

𝑍(𝑡𝑓) = 2Λ√𝛼𝑠𝑡𝑓   (8) 

 

𝑉(𝑡𝑓) = Λ√𝛼𝑠/𝑡𝑓   (9) 

 
where Λ is solved by the following transcendental equation 
 

Λ√𝜋 = 𝑆𝑡𝑠 𝑒𝑥𝑝(Λ2)𝑒𝑟𝑓(Λ)⁄ − 𝑆𝑡1 𝜇𝑣𝑒𝑥𝑝(𝜇2𝑣2Λ2)𝑒𝑟𝑓(𝜇𝑣Λ)⁄   (10) 
 
with the Stefan number of frozen solid Sts = csolid(Tm-Tcold)/Lslurry, the Stefan number of slurry Stl = 

cslurry(Thot-Tm)/Lslurry, the melting temperature of slurry (Tm=0 °C), μ = ρsolid/ρslurry, 𝑣 = √𝛼𝑠𝑜𝑙𝑖𝑑 𝛼𝑠𝑙𝑢𝑟𝑟𝑦⁄ . 

Simply, the coefficient term (𝑘𝑓 = 2Λ√𝛼𝑠) of Eq. (8) can be fitted from the in-situ temperature profiles 

measured using the “thermocouple” mould (refer to Figure 2(b) and Fig. S 2(a)-(c)). However, when 
compared to the predicted coefficient based on the thermophysical characteristics of slurry and the 
freezing temperature, the calculated value kf is only ∼30 % of the predicted. This suggests that in fact, 
the absence of a perfectly adiabatic sidewall to generate a single vertical heat flow causes the observed 
freezing front kinetics to be slower than predicted by the Stefan problem model, as reported by S. M. 
Miller et al. [47,48]. Thus, a pre-factor φ is added to deal with the gap between the excepted and actual 
kinetics. This empirical pre-factor is calculated by 
 

𝜑 =
𝑘𝑓

Λ
(11) 

 
The pre-factor falls just a little from 0.31 to 0.29 as Tcold drops from −40 °C to −100 °C, hence the average 
of them (∼0.30) is taken to adapt this model. And the corrected Eq. (8) and Eq. (9) from experimental 
data are presented below: 
 

𝑍(𝑡𝑓) = 2𝜑Λ√𝛼𝑠𝑡𝑓   (12) 

 

𝑉(𝑡𝑓) = 𝜑Λ√𝛼𝑠/𝑡𝑓    (13) 

 
Secondly, based on the analysis of the in-situ temperature profiles and the structure of green body, it 
can be found that: 1) the quasi steady-state directional solidification can be approximately achieved 

https://www.sciencedirect.com/science/article/pii/S1359645424001721?dgcid=coauthor#eqn0007
https://www.sciencedirect.com/science/article/pii/S1359645424001721?dgcid=coauthor#eqn0013
https://www.sciencedirect.com/science/article/pii/S1359645424001721?dgcid=coauthor#eqn0016
https://www.sciencedirect.com/science/article/pii/S1359645424001721?dgcid=coauthor#eqn0008
https://www.sciencedirect.com/science/article/pii/S1359645424001721?dgcid=coauthor#eqn0008
https://www.sciencedirect.com/science/article/pii/S1359645424001721?dgcid=coauthor#eqn0009
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within the range of 9 mm - 17 mm; 2) the slight decrease in the local cooling rate between 13.9 mm and 
16.9 mm have a negligible impact on the lamella structure under the freezing conditions of this study. 
Hence, the well-demonstrated empirical power-law dependency of λ on freezing front velocity in the 
freeze-casting field could be applied [31,34,47,48]: 
 
𝜆 = 𝑚 × 𝑉−𝑛𝑓    (14) 
 
where m is a constant and the exponent nf typically varies from 0.03 to 1.3 [34]. Here, the concerned 
structural wavelength at 13 mm of the sintered scaffolds is quantified. And a common exponent nf of 
0.50 is derived by the regression fitting of λ13 and V13. 
Lastly, the predicted gradient value along the freezing direction could be further calculated using the 
linear regression of λ13 and Gλ (i.e. Eq. (6)). The parity plots (as presented in Figure 9(c) and (d)) of the 
predicted and observed λ13 and Gλ of the samples prepared at four freezing temperatures present a good 
fitness of this model. 
 

3.7. Correlation analysis of microstructure and sintering parameters 
In the Si3N4-Si2N2O system, more well-developed rod-like β-Si3N4 grains play a vital role in the strength 
of sintered scaffolds. Therefore, the kinetics between the microstructure of β-Si3N4 (phase content and 
grain size) and the sintering parameters are determined in this work. 
The α→β phase change of Si3N4 belongs to a classic nucleation-growth type first-order phase transition. 
This heterogeneous phase transition can be described by the Johnson-Mehl-Avrami equation [75,76]: 
 

𝑌 = 1 − 𝑒𝑥𝑝(−𝑘𝑌 × 𝑡𝑠
𝑛𝑌)  (15) 

 
where Y is β-Si3N4 wt. fraction transformed after sintering at absolute temperature Ts for a holding time 
ts, kY is the kinetic constant (kY = k0Y·exp(-QY/RTs)), R is the gas constant, QY is an apparent activation 
energy for phase transition, and k0Y and nY are constants. The Avrami exponent nY, which varies 
depending on the transformation mechanism, is usually between 1 and 4 [77]. For Si3N4 based system, 
the nY value also changes with the liquid quantity and composition. The fitted exponent nY (shown 
inTable 2) in this work is higher than those reported by J. C. Almeida et al. (0.67–0.90 [78]), A. 
Bandyopadhyay et al. (0.14–1.13 [79]), and S. Ordoñez et al. (0.6–1.3 [80]), indicating that the Si3N4-SiO2 
reaction and the increase of the actual liquid phase content during sintering make the phase transition 
faster than theirs. And the activation energy QY also varies greatly relying on the liquid phase, ranging 
from 340 to 770 kJ/mol [81-84]. In this case, the regression-analysis QY value is 637.1 kJ/mol. 
The β-Si3N4 grain growth is generally recognized to be the anisotropic Oswald ripening regulated by the 
solution-reprecipitation mechanism [85-87]. Although previous research pointed that there exist some 
mismatches with the assumptions of the Lifshitz-Slyozov-Wagner (LSW) theory in the Si3N4 system 
[88,89], this theory still achieves good fits in the attempts of K. R. Lai and T. Y. Tien [90], H. Bjorklund et 
al. [91] and G. Bernard-Granger et al. [92]. Thus, the coarsening kinetics of β-Si3N4 can be characterized 
by the following empirical equation: 
 

𝐷50
𝑛𝐺 = 𝑘𝐺 × 𝑡𝑠    (16) 

 
where D50 is the median diameter of β-Si3N4 grains after sintering at absolute temperature Ts for a 
holding time ts, kG is the growth rate constant (kG = k0G·exp(-QG/RTs)), R is the gas constant, QG is the 
apparent activation energy of coarsening, and k0G and nG are constants. 
Differing from the growth exponent (nG= 2 or 3 depending on the coarsening mechanisms) predicted in 
LSW theory, the formerly fitted nG values are 3∼5 in diameter direction[90-92]. But the calculated nG, in 
this case 2.18, is lower than previously reported, implying that the growth in diameter would be faster, 
which may be caused by the Si3N4-SiO2 reaction and inhibitory effect of Si2N2O (28.2 vol.% ± 2.71 vol.%) 
on β-Si3N4 grain growth in length direction during sintering. In addition, the apparent activation energy 
of coarsening is also directly linked to the composition, with a QG of 365.0 kJ/mol found here. Figure 9(e) 
and (f) display the comparison of the calculated and experimental values of Y and D50, respectively, 
which suggests a satisfying prediction ability of the phase transition and coarsening kinetic model. 
3.8. Prediction of mechanical properties from the process and microstructural parameters 

https://www.sciencedirect.com/science/article/pii/S1359645424001721?dgcid=coauthor#bib0034
https://www.sciencedirect.com/science/article/pii/S1359645424001721?dgcid=coauthor#bib0034
https://www.sciencedirect.com/science/article/pii/S1359645424001721?dgcid=coauthor#eqn0006
https://www.sciencedirect.com/science/article/pii/S1359645424001721?dgcid=coauthor#bib0077
https://www.sciencedirect.com/science/article/pii/S1359645424001721?dgcid=coauthor#bib0077
https://www.sciencedirect.com/science/article/pii/S1359645424001721?dgcid=coauthor#bib0078
https://www.sciencedirect.com/science/article/pii/S1359645424001721?dgcid=coauthor#bib0078
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In this work, the process-structure-property (PSP) model via physics-based plus ANN hybrid methods 
is employed to quantitatively predict the mechanical properties of freeze-cast porous Si3N4-Si2N2O 
ceramics. Besides the evident factors of open porosity and structural wavelength, it is crucial to 
recognize the significance of phase composition and grain size in the freeze-cast scaffolds [30,37,38,93], 
which are also incorporated into the PSP model. 
Firstly, four kinetic equations (for sintering, freezing, phase transformation, and coarsening) are applied 
to bridge process and structure, and then four hierarchical microstructural parameters (open porosity 
P, structural wavelength λ13, β-Si3N4 wt. fraction Y and median diameter D50) are input into the ANN 
model as a set of feature descriptors. The outputs are mechanical properties including compressive 
strength σ, stiffness E, energy absorption per unit volume Uv, and unit mass Um. Because of strong 
positive correlations among the four mechanical properties and their similar evolution with the 
processes and microstructural parameters, the prediction and analysis of the compressive strength are 
mainly discussed here. In addition, we train a traditional process-property (PP) black-box model 
together for comparison, also see the Supplementary Materials for details. 
Taking correlation coefficient (R) and root mean squared error (RMSE) as the evaluation metrics for the 
model construction, the PSP model exhibits the same level of accuracy as the traditional PP model. 
Figure 10(a) and (b) depict the predicted and observed compressive strength in the training set and test 
set from the PSP model, respectively. With regard to the training set, it is evident that nearly all data 
points and their least-squares fit line (displayed as the purple solid line) are located around the diagonal 
(as shown by the black dashed line), while the R and RMSE of the PSP model is 0.96 and 2.5, respectively, 
implying that the predictions are in good agreement with the experimental results. As for the test set, 
the R of the PSP model equals to 0.92, indicating the generalization ability of this model to some degree. 
Additionally, the compressive strength heatmap in Figure 10(c) predicted by the PSP model draws a 
similar trend consistent with the experimental results, that is, the freezing temperature for optimizing 
the compressive strength gradually changes from −100 °C to approximately −60 °C with the increase of 
the sintering parameters, and the corresponding predicted σmax reach 39.4 MPa (experimental σmax 44.1 
± 5.5 MPa under the corresponding process). 
 

 
Figure 10 The predicted compressive strength σ as a function of the observed σ for (a) the training set and (b) the test set of the 
PSP model, respectively. N represents the number of data. (c) Compressive strength heatmap predicted from the PSP model. The x-
axis of the heatmaps physically represents the combination of sintering parameters that fall on the diagonal line of sintering 
temperature and holding time. 

 

4. Discussion 
4.1. SHAP analysis of the PSP model 
In the PSP route, although the explicit kinetic models are glass-box models, the lack of interpretability 
of the structure-property ANN model still hinders our further microstructural insights and 
understanding of materials design rules. 
The SHapley Additive exPlanations (SHAP) [55,94-97], as one indispensable branch of the interpretable 
machine learning models, shines a light on quantifying the relative impact of descriptors on target 
outputs. On the one hand, a feature descriptor's SHAP value represents its average marginal 
contribution, and positive SHAP values are associated with model predictions of high target outputs and 
vice versa. Wider horizontal coverage of SHAP value for one feature descriptor, on the other hand, means 
a greater impact on the target outputs of one ML model. The global SHAP value (i.e. the average of the 
absolute SHAP values of each feature descriptors) is further employed to quantitatively rank their 
importance to the model predictions. 
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As demonstrated in Figure 11(a), the feature importance calculated by SHAP analysis for the PSP model 
elucidates that the porosity P among the four microstructural parameters plays the most influential role 
in the compressive strength. For cellular solids or porous materials, whether from the Ryshkewitch 
empirical equation [98-100] or the Gibson-Ashby model [1,29], porosity or relative density is the most 
critical factor determining their mechanical properties. In the next hierarchical level, the second-ranked 
λ13 with a global SHAP value of 2.421 also has a non-negligible effect on the mechanical properties. The 
development of the subsequent D50 and Y at a more microscopic hierarchical level is conductive to 
strengthen porous ceramics. 
 

 
Figure 11 The SHAP analysis of the ANN model. (a) The feature descriptors’ importance ranking of the PSP model (including open 
porosity P, structural wavelength λ13, median diameter of β-Si3N4 grains D50, and phase content of β-Si3N4 Y). (b) The scatter plot 
of SHAP value for structural wavelength λ13. The y-axis SHAP values evaluate the contribution of individual features to compressive 
strength calculated from the models. The color bar is mapped to a second feature value, to highlight the feature interaction. 

Furthermore, Figure 11(b) provides the SHAP values for λ13, as a function of λ13. And the vertical spread 
in SHAP values displays the feature interaction effect with open porosity P (indicated in the color bar). 
As for the effects of open porosity and structural wavelength on the compressive strength, the 
fluctuation of the SHAP value for λ13 should be explored in the following sub-cases. In Figure 11(b), three 
representative curves of the SHAP value as a function of λ13 are retrieved when P is 76.1 %, 64.9 %, and 
59.1 % (corresponding to the dark red, light blue and dark blue dashed lines, respectively). For the high 
porosity case (nearly 73.5 % ∼ 76.1 %), e.g. P = 76.1 %, the SHAP value barely ranges between −2.758 
and 1.313, indicating that the structural wavelength exerts a weak influence on the compressive 
strength. In the medium porosity range (about 63.9 % ∼ 73.5 %), the typical SHAP value declines 
gradually from 3.131 to −6.124 (marked by the light blue dashed line) as λ13 increases from 19.3 μm to 
29.9 μm, suggesting that the structural wavelength has a remarkable negative correlation with the 
compressive strength. When the porosity is further lowered to the range of 59.1 % ∼ 63.9 %, the 
approximate parabolic relationship between the SHAP value and λ13 (illustrated by the dark blue dashed 
line) implies that an optimal structural wavelength exists to maximize compressive strength. Previous 
studies have proven that the freezing condition or structural wavelength has multiple possible effects 
on the mechanical properties of freeze-cast porous ceramics [35]. The influences of structural 
wavelength change over three porosity ranges in this work, which may result from the trade-off between 
separate factors (including connection density and critical buckling, etc.). The quantitative analysis of 
the effect of microstructures on strength will assist the structural and mechanical design of freeze-cast 
porous ceramics in practice. 
 

4.2. Experimental validation of the inverse design ability of the PSP model 
For engineering applications, e.g. tissue engineering scaffolds, the design of porous ceramics often faces 
trade-offs including porosity vs strength, pore structure vs strength, etc. Two sets of extreme-case 
experimental data (target of case #1 and #2: P 71.0 % ± 0.5 %/σ 6.3 ± 0.4 MPa and P 59.5 % ± 1.3 %/σ 
39.8 ± 4.0 MPa, respectively) isolated before the model construction are employed to verify the 
structural and mechanical inverse design ability of the PSP model. 
Two groups of the process parameters and other feature descriptors from the inverse design of the PSP 
model are listed in the Table 3. In these two cases, except that the relative error (RE) of β-Si3N4 wt. 
fraction Y in case #1 reach 13.6 %, the prediction error of the process and microstructure parameters 
are all within 10 %, showing a robust and reliable inverse design potential for diverse demands. It can 
be noted from the phase transformation kinetics that the RE of Y results from the sensitivity of the 
sintering parameters at the early and middle stage, implying that a small variation in the sintering 
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parameters would cause a visible change in the β-Si3N4 wt. fraction. This prediction error can be reduced 
rapidly after fine-tuning the process in future reverse engineering. 
 
Table 3. Comparison of the experimental validation of the PSP model. 

Case No. 

Targets Process parameters Other feature descriptors 

P, % σ, MPa Tcold, °C Ts, °C ts, h Y, wt.% λ13, μm D50, nm 

#1 

Exp. value 
71.0 
± 0.5 

6.3  
± 0.4 

−40 1650 1 
24.3  
± 0.2 

29.4  
± 1.3 

209 

Calc. value 72.6 6.6 −40 1650 0.97 27.6 29.9 201 

RE +2.3 % +4.8 % 0 0 −3.0 % +13.6 % +1.7 % −3.8 % 

#2 

Exp. value 
59.5  
± 1.3 

39.8  
± 4.0 

−80 1750 2 
76.0  
± 0.3 

22.0 ± 0.7 464 

Calc. value 59.7 37.7 −76 1750 1.9 73.2 21.9 462 

RE 0.3 % −5.3 % 5.0 % 0 −5.0 % −3.7 % −0.5 % −0.4 % 

 
Taking the porosity P vs strength σ trade-off in tissue engineering scaffolds as an example, the trade-off 
plot of performance metrics P1 = 1/P and P2 = 1/σ for this application is shown in Figure 12. In addition, 
Figure 12 also gives the Pareto front (red dotted line) predicted by the PSP model for this pair of 
competitive goals (where star marks represent the corresponding measured data points). For the 
cancellous bone (usually porosity of 50 %∼90 %) tissue scaffolds, freeze-cast Si3N4-Si2N2O ceramics in 
this work show most of advantages over common freeze-cast material systems such as the 
hydroxyapatite (HAP) within a porosity range of 59 %∼76 %. On this basis, the optimized inverse design 
of the materials with target porosity and strength can be achieved in this range. 
 
 

 

Figure 12 The trade-off plot of performance 
metrics P1 = 1/P and P2 = 1/σ, considering the 
freeze-cast materials for the tissue engineering 
scaffolds application (data comes from Ref. 
[34]). (BCP: biphasic calcium phosphate, BT: 
barium titanate). 
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5. Conclusion 
This study developed a predictive PSP model for the freeze-cast porous Si3N4-Si2N2O ceramic integrating 
physics-based models and machine learning model from the process-structure-property framework. 
The interpretable ANN model with SHapley Additive exPlanations advances the systematic 
understanding of the relationships among the hierarchical microstructural features and their impacts 
on the mechanical properties, establishing the mathematical design rules for the simultaneous 
optimization of both mechanical and structural requirements of the freeze-cast porous ceramics. 
For the slurry with the same solid loading, the open porosity of freeze-cast scaffolds is governed 
macroscopically by the sintering parameters. At the first microscopic hierarchical level, the structural 
wavelength is primarily determined by the freezing conditions; at the second microscopic hierarchical 
level, the phase transformation and grain growth behavior of the ceramic scaffolds are regulated by the 
sintering cycles. Thus, four physics-based kinetic equations (including sintering, freezing, phase 
transformation, and coarsening) are proposed to bridge the process parameters and microstructural 
features. 
Moreover, the R values of ML models derived from the PSP routes are greater than 0.9 both in the train 
and test sets, exhibiting satisfying predictive and generalization abilities. According to the SHAP 
analysis, the influence rankings of microstructural features on mechanical properties is: P>λ13>D50>Y. 
This model also demonstrates excellent inverse design ability in the validation of two sets of data 
isolated in advance. Finally, this study demonstrates a PSP model for predicting microstructure and 
properties of freeze-cast porous ceramics from process parameters by combining physics-based models 
and interpretable ML, providing a methodological basis for the tuning of freeze-cast ceramics to improve 
design efficiency. And we believe this physics-based/data driven hybrid modeling path could be applied 
to the hierarchical design of microstructure and mechanical properties in various freeze-cast porous 
material cases. 
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Appendix. Supplementary materials 
 
The custom-made freeze-casting system and in-situ temperature profiles 
The schematic of the custom-made freeze-casting system is illustrated in Fig. S 1. The slurries are frozen 
after pouring into a PTFE mould (39 mm side length, 60 mm height) placed at the top of the copper cold 
finger. The copper cold finger is cooled by a liquid nitrogen bath and the temperature (i.e. freezing 
temperature Tcold) of its top surface is controlled by a band heater and a thermocouple. 
 

 

Fig. S 1 The schematic of the custom-made freeze-casting system 
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The position Z and velocity V of the freezing front,  
along with their corresponding regression fits, are measured within a “thermocouple” mould. Fig. S 2 
depicts the results for Tcold = -40 °C, -60 °C, and -80 °C, respectively. 
 

 

Fig. S 2 The measured and fitted position Z and velocity V of the FF during freeze-casting at (a) -40 °C, (b) -60 °C and (c) -80 °C, 
and (d) their local cooling rates along the height. 
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Thermophysical properties of solid particles, dispersion media, slurry, and frozen solid 
Thermal and physical properties of solid particles and dispersion media are obtained from the 
literature, as shown in Table S 1and Table S 2, respectively. Since the amount of water is 80 vol.% of 
total slurry, we take the temperature-dependent thermal and physical properties of water into account 
for the two-phase Stefan problem, while ignoring the variation of that of solid particles in the range of 
25°C to -100°C. Specifically, the thermophysical properties of water and solid particles at 25 °C and 
hexagonal ice at -100 °C are used as initial parameters for the calculation of that of slurry and frozen 
solid. And the calculated thermophysical property values are also listed in Table S 2. 
 
Table S 1 Thermophysical properties of solid particles 

Properties (25 ℃) Si3N4 Fused SiO2 Al2O3 Y2O3 

ρ, g/cm3 3.184 2.190 3.980 5.010 
cp, J/g·K 0.70[1] 0.70[1] 0.88[1] 0.45[2] 
k, W/m·K 35[1] 1.7[1] 25[1] 14[1] 

 
Table S 2 Thermophysical properties of dispersion media and slurry 

Thermophysical properties 
Liquid state 

(Thot=25 ℃) 

Solid state 

(Tcold=-100 ℃) 

For H2O   

Tm, ℃ 0[3] 0[3] 

ρ
H2O

, g/cm3 0.997[4] 0.929[3] 

cpH2O, J/g·K 4.18[4] 1.38[3] 

kH2O, W/m·K 0.61[4] 3.69[3] 
LH2O, J/g 333.4[3] 333.4[3] 
For slurry   
ρ

slurry
, g/cm3 1.421 1.342 

cpslurry, J/g·K 2.69 1.09 
kslurry, W/m·K 1.04 8.67 
Lslurry, J/g 187.2 187.2 

 

Mechanical cutting of freeze-cast scaffolds for the structural characterization 
For the measurement of structural feature size (including pore size p, wall thickness w, and structural 
wavelength λ), each freeze-cast scaffold was first cut into cubes with a side length of ~6 mm, and then 
the cubes were cut at 5 mm, 7 mm, 9 mm, 11 mm, and 13 mm from the bottom, as shown in Fig. S 3. The 
height of feature size measurement from the bottom is indicated by the subscript number (e.g. p13 means 
the pore size measured at 13 mm from the bottom). 
 

 
Fig. S 3  Schematic of the mechanical cutting of samples for the structural characterization 
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Pore size distribution of typical freeze-cast scaffolds and structural analysis of green body 
The pore size distributions (at ~13 mm) of typical freeze-cast scaffolds, fabricated under various 
processing conditions, are evaluated using mercury intrusion porosimetry, as shown in Fig. S 4. 
 

 
Fig. S 4 Pore size distribution of freeze-cast scaffolds prepared under various processing parameters: (a) different Tcold, (b) and (c) 
different sintering parameters. 

 
Fig. S 5 presents the statistical measurements of microstructural feature sizes at 16.9 mm and 13.9 mm 
(i.e. at 13 mm of the sintered scaffolds) of the green body freeze-casting at -40 °C and -100 °C, 
respectively. 
 

 
Fig. S 5 Microstructural feature size of green body and typical sintered scaffolds. 
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XRD Rietveld refinements 
The phase content of samples prepared under different sintering parameters was identified by the 
Rietveld refinement of X-ray diffraction pattern with the open-source FullProf suite software. Two 
representative XRD Rietveld refinements was given in Fig. S 6. 
 

 
Fig. S 6 The representative XRD Rietveld refinements of samples sintered at (a) 1650 °C/0.5 h, (b) 1750 °C/1.5 h. 
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Prediction of mechanical properties in a traditional process-property (PP) black-box model 
According to the traditional microstructure-agnostic artificial neural network (ANN) approach, three 
process parameters (freezing temperature Tcold, sintering temperature Ts and holding time ts) as feature 
descriptors are used as inputs to this PP model. And the compressive strength is used as the output to 
this PP model. 
Fig. S 7(a) and (b) shows the predicted and observed compressive strength in the train set and test set 
from the PP model, respectively, indicating that the PP and PSP models have the similar level of accuracy. 
The compressive strength heatmap predicted by the PP model in Fig. S 7(c) draws a similar trend 
consistent with that by the PSP model. And the corresponding predicted σmax reach 40.7 MPa in the PP 
model. The feature importance calculated by SHAP analysis for the PP model is demonstrated in Fig. S 
7(d), elucidating that the influence rankings of process parameters on mechanical properties is 
ts>Ts>Tcold. And the influence of sintering process parameters on mechanical properties is slightly 
stronger than that of freezing temperature (the maximum difference in global SHAP value is only 0.443). 
 

 
Fig. S 7 The predicted compressive strength σ as a function of the observed σ for (a) the train set and (b) the test set of the PP 
model, respectively. (c) Compressive strength heatmap predicted from the PP model (The x-axis of the heatmaps physically 
represents the combination of sintering parameters that fall on the diagonal line of sintering temperature and holding time). (d) 
The feature descriptors’ importance ranking from the SHAP analysis of the PP model. 
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