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Abstract—Decentralized random number generation is a
widely-studied problem in the blockchain community and much
attention has been paid to the so-called on-chain random beacons,
i.e. smart contracts that generate randomness which can in turn
be used in other contracts. Following the classical methodology
of RANDAO, most on-chain beacons receive inputs from a
large number n of participants and then aggregate them to
compute a final random output. The aggregation is done in a
manner that ensures the final output is uniformly random as
long as at least one of the participants acts honestly. While
being highly successful in providing security guarantees such
as unpredictability and tamper-resistance, a major downside of
these beacons is their cost. Since every participant has to call a
function in the smart contract to provide their input, the total
gas usage to generate a single random number is at least Ω(n).

In this work, we propose a novel protocol that offloads most
of the on-chain communication between the participants and the
smart contract to an alternative off-chain communication with a
dealer. This leads to a gas-efficient on-chain random beacon with
only O(1) gas usage per generated output. Crucially, our protocol
is trustless and the dealer is unable to predict or tamper with
the result. We maintain the same security guarantees as previous
on-chain beacons, while significantly reducing the gas usage. We
also show that our protocol is secure even if all but one of the
participants, potentially including the dealer, are dishonest.

I. INTRODUCTION

RNG. A Random Number Generator (RNG), or random bea-
con, is an important component in many distributed protocols.
Its applications range from efficient Byzantine consensus [1]
to Proof-of-Stake (PoS) [2]–[4] and trusted setup of cryp-
tographic protocols [5]. Along with the rapid growth of
blockchains and decentralized finance applications [6]–[13],
many on-chain RNG protocols have been proposed [14]–[24].
Smart Contracts and Gas. Ideally, DeFi applications which
are usually implemented as smart contracts would want to
access fresh random numbers as simply as calling a library
function. There are many smart contracts that provide this
functionality, most notably RANDAO [18]. These RNG smart
contracts require a number of participants in the network to
jointly contribute to new random numbers to achieve decentral-
ization. They use different cryptographic techniques to ensure
bias-resistance. This includes commitment schemes, publicly
verifiable secret sharing (PVSS) [2], verifiable delay functions
(VDF) [25]–[27], and homomorphic encryption (HE) [28].
Irrespective of the underlying cryptographic protocols, in all
these contracts the participants join the RNG process by mak-
ing transactions for which they are charged transaction fees in
the form of gas [29]–[31]. As a result, either the participants
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have to pay the transaction fees themselves and thus few users
would want to participate, undermining the decentralization,
or the RNG service has to cover the transaction fees and thus
the generation of each new random output becomes highly
expensive and costs Ω(n) gas where n is the number of
participants. In this work, we alleviate this issue by a novel
protocol inspired by layer-2 solutions.
Off-chain/Layer-2. Many popular blockchains, such as Bitcoin
and Ethereum, have a small throughput and high transaction
fees. Therefore, there have been many proposals to use off-
chain communication to replace on-chain transactions [32]. A
quintessential example is that of payment channels such as the
lightning network [33] in which a pair of users can use off-
chain communication to make a large number of transactions
between themselves. An on-chain transaction is required only
to open or close the channel. There are many layer-2 solutions
for Ethereum, as well, moving the contracts off the main chain
and avoiding high gas fees [34]–[36].
Insufficiency of Rollups. Optimistic rollups are a widely-
adopted layer-2 solution to increase the throughput of layer-1
blockchains and reduce/avoid gas fees [37] by aggregating a
batch of offchain transactions into one blockchain state update.
The rollup operator might publish an invalid final blockchain
state. However, other participants can challenge the claims
of rollup operators and claim the deposit from operators.
We note that decentralized RNG protocols have stronger
security requirements than optimistic rollups. Specifically, it
is important that every participant’s value xi must be included
in the aggregation function, otherwise the RNG result is
unreliable and might have been tampered with by the operator.
In optimistic rollups, ignoring transactions is not a major issue
because the victimized user can reach out to another rollup
operator, much in the same way that if a miner refuses to
include a transaction in a layer-1 block, another miner will
eventually pick it up. However, in our setting, there should
be strong guarantees that the operator is not excluding any
contributions from the participants. Thus, even with rollups,
designing gas-efficient RNG protocols leveraging off-chain
communication is an interesting problem.
Purely Off-Chain RNG. It is possible to implement a random
beacon based on an independent distributed system, without
an underlying blockchain [19]. However, in order to use the
result of this kind of beacon in a smart contract, one would
need to create a bridge between the beacon and the blockchain,
usually in the form of a centralized oracle. Using an oracle
would violate both trustlessness and decentralization.
Motivation for Gas-efficient RNG. Truly decentralized RNG
is possible only if we can incentivize many participants to join.
With current methods, generating one fresh random number



takes Ω(n) units of gas, where n is the number of participants.
To incentivize participation, we will have to at least cover
the participants’ gas fees. Thus, current methods have a cost
of Ω(n) per generated random number. A gas-efficient RNG
protocol that moves most of the communication off-chain can
avoid this unnecessary gas usage and thus make decentralized
RNG much more affordable for the end-users.
Our Contribution. Inspired by off-chain and layer-2 tech-
niques such as optimistic rollups, we propose to offload most
of the transactions of a classical RNG smart contract to off-
chain communication. Our contributions are as follows:
• We present a novel RNG protocol that, while remaining

trustless, moves most of the messaging off-chain.
• We show that our protocol satisfies all the desired proper-

ties of an RNG smart contract, such as tamper-resistance,
unpredictability and liveness.

• As in previous random beacon smart contracts, our ap-
proach’s output is guaranteed to be uniformly distributed
as long as there is at least one honest participant. Thus,
we are secure against any coalition of all but one of the
participants, even if the coalition includes the dealer.

• In contrast to previous approaches, to generate a fresh
random number our protocol only consumes constant
O(1) gas, whereas previous methods require Ω(n) units
of gas, where n is the number of participants.

Problem Setting. In this work, we present a smart contract
R that serves as a decentralized random beacon and performs
RNG. We denote the number of participants, i.e. nodes willing
to take part in the RNG, by n. We consider a multi-round
protocol consisting of many sessions/rounds. Each session
generates a fresh random number. Each participant registers
in R and can contribute to every session until she withdraws.
Participants should also pay a deposit at registration. Registra-
tion and withdrawal transactions are each sent only once for
each participant. Therefore, their gas cost is negligible when
amortized over the many sessions to which this participant
contributes. Thus, we only consider the cost of one session in
our analysis.
RNG with VDFs. Following many previous protocols based on
VDFs [38], each participant i should choose a random value
xi. We can compute r = Delay(Combine(x1, x2, . . . , xn)),
where Delay is a pre-defined verifiable delay function (VDF),
ensuring that the result is unpredictable, and Combine can be
any operation that combines the participant’s inputs. As we
will see, our approach uses a Merkle tree [39] to combine the
values.

II. OUR PROTOCOL

Our protocol considers two types of users: a dealer and n
participants. We assume that the participants have a secure and
authenticated channel that can be used to send messages to
the dealer. This is a standard assumption in many blockchain
protocols that combine on-chain and off-chain communication
and can easily be realized in the real-world by using any
standard secure internet-based communication method. We
also assume that the dealer can announce messages to every
participant, either using the same channel, or on a public
bulletin board which is visible to everyone. In practice, one

might like to add a new type of user, a client, who pays for
the costs of the random number generation and the rewards
that are provided to the participants. Below, we assume these
costs are borne by the dealer, but it is easy to assign them
to a separate entity as needed. We first start by explaining
our aggregation method and registration procedure and then
present the main protocol.
Aggregation Method. Suppose each participant i has provided
the input xi to the protocol. We create a complete binary
Merkle tree T with n leaves, all at the same depth, where the
i-th leaf contains xi. We then define Combine(x1, . . . , xn) =
root(T ) to be the root hash of this Merkle tree. Since T is
a complete binary tree, the path from its root to the i-th leaf
is uniquely determined by the binary representation of i and
has length O(log n). Finally, as is standard, we apply a fixed
verifiable delay function Delay to obtain our final random
number r := Delay(Combine(x1, . . . , xn)).

Initialization. Our protocol is implemented as a smart contract
that supports many rounds of RNG. The dealer deploys the
contract on the blockchain and also sets the following values:
• The deposit d that each participant should put down to

take part in RNG. This deposit is used to penalize the
participant in case of dishonest behavior.

• The cost d∗ of challenging a commitment. The use of d∗
will become apparent further below.

• The time limits t1, t2, . . . , t8 for each of the steps below.
Specifically, each step i can start only after time ti−1
and must end by time ti. The smart contract functions
mentioned in each step below enforce these time require-
ments. So, one step’s functions are not callable when the
contract is in another step. In practice, each ti can be a
timestamp or a block number.

Registration. Our smart contract is an open protocol that
allows anyone on the blockchain to sign up as a participant
by calling its register() function and paying a deposit
of at least d. The participant remains active as long as her
remaining deposit is at least d. A participant can withdraw
from the smart contract in between sessions. To do so, she
can call the withdraw() function. The smart contract records
her intention to withdraw and allows her to receive her deposit
and any rewards she has accumulated at the end of the current
session, or immediately if no session is in progress.
Session Creation. If there is no active session in progress,
the dealer can create a new RNG session by calling
new_session() and paying an amount ρ to the contract.
ρ is the reward of the current session and will be divided
among participants who take part in the session. Additionally,
it is possible to set a fixed/minimum amount for ρ in the
initialization phase. The dealer also pays an additional deposit
d′ to the contract at this point.
Details of the Protocol. We are now ready to provide a
complete description of our protocol. In each session, our
protocol has the following steps:
Step 1: Off-chain Submission. Each participant i sends her
value xi to the dealer off-chain. This xi is her contribution
to the RNG. We re-emphasize that this is using a secure and
authenticated off-chain channel, meaning that the dealer not



only receives xi but also the participant’s signature σi(xi) on
xi

†.

Step 2: On-chain Submission Request. If the dealer has
not received the value xi of participant i, he calls the smart
contract function request_submit(i). It freezes i’s deposit
until she responds in the following step. It also freezes d∗
units of the dealer’s deposit. If the dealer does not call
request_submit(i), this is interpreted as his implicit
agreement that he has received xi off-chain.

Step 3: On-chain Submission. Each participant i who was
asked to submit on-chain in the previous step has to call the
smart contract function submit(xi). If i fails to do so by
the deadline of this step, the protocol assumes xi = 0 in the
future steps and participant i’s deposit is burned, while the
dealer’s deposit is unfrozen. Otherwise, the contract computes
the total gas g that participant i has had to pay for the call
to submit(xi) and deducts min{d∗, g/2} from the dealer’s
deposit and pays it to i. In other words, the participant and
dealer share the gas costs.

Incentives. We note that the steps above strongly incentivize
the dealer and all participants to be honest and handle the
values off-chain. It is in every participant’s best interest to
submit off-chain in Step 1, hence avoiding a costly (in terms
of gas) on-chain submitting. It is in the dealer’s best interest
to require on-chain submitting in Step 2 for any participant
who has failed to submit off-chain since he would otherwise
be challenged in the following steps and loses his own deposit.
Moreover, there is no incentive for the dealer to make spurious
on-chain submit requests when participant i actually submitted
a value xi, since the dealer has to pay part of the gas fees.

†To guard against signature reuse attacks, we assume that the signatures
contain a timestamp as well and is σi(xi,timestamp).

Step 4: Merkle Tree Announcement. The dealer creates a
Merkle tree T with n leaves with the i-th leaf containing xi,
i.e. the contribution of participant i. He publishes T and all xi
values off-chain to all participants. This ensures that everyone
can check the validity of T. Finally, he calls the smart contract
function announce_root(root(T )) where root(T ) is the
root hash of T, and will be recorded by the contract.

Step 5: On-chain Challenges. Any participant i can challenge
the dealer to prove the validity the entry in the j-th leaf of T
by calling challenge(j). This freezes a portion d∗ of the
challenging participant’s deposit.

Step 6: On-chain Responses. The dealer has to respond to
every challenge issued in Step 5 by calling the smart contract
function challenge_response(j, π, xj , σj(xj)). Here, j
is the leaf index, π is a Merkle proof consisting of the path
from the root to the j-th leaf of the Merkle tree T, σj(xj)
is participant j’s signature proving that he had submitted xj .
The contract checks the Merkle proof and the signature.

If the dealer fails to call this function in time or to provide
valid values that pass the contract’s checks, his deposit is
confiscated and divided among the participants and the proto-
col ends. Otherwise, if he successfully handles the challenge,
the contract computes the amount g of gas fees used in
responding to the challenge and deducts min{d∗, g/2} from
the challenging participant’s deposit, paying it to the dealer
and unfreezing the rest.

Incentives. It is the best response for the dealer to publish T
(off-chain) that include the correct values of all participants,
and announce its root. If the published tree does not contain
a value xj or modifies xj , the dealer loses his deposit if some
participant i challenges j, or gains nothing if no one challenges
the j-th leaf because our RNG output uses VDF as explained
in the next step.



Step 7: Verifiable Delay Function. The dealer computes
Delay(root(T )) = Delay(Combine(x1, . . . , xn)). The eval-
uation of a VDF leads to a result r and a proof of evaluation
π. The dealer calls the function announce_result(r, π)
of the smart contract. r is the generated random number and
our RNG output. However, it is not yet finalized. The smart
contract only records r and π but does not verify them at this
stage.

Step 8: VDF Challenge. Given that root(T ) is publicly
known, every participant can evaluate the VDF and compute
(r, π) on her own machine. If a participant realizes that the
dealer has cheated in the previous step and announced the
wrong value of r, the participant can then call the smart con-
tract function challenge_result(r′, π′), providing the
correct result r′ and VDF evaluation proof π′ to the contract.
At this point, the contract verifies both claims by running the
VDF verification algorithm on both (r, π) and (r′, π′). The
dishonest party, be it the participant or the dealer, is punished
by having their deposit confiscated and paid to the other party.
If no challenge is made in this step, or if all challenges are
unsuccessful, the dealer can receive his deposit d′ from the
contract.

Incentives. If the dealer cheats in Step 7, every rational
participant has an incentive to challenge him in Step 8 and
win his deposit. Thus, the rational dealer has no incentive to
cheat in the first place.
Participation Rewards. Any participant who completes a
session (until the end of Step 8) and whose deposit is not
confiscated, would be entitled to an equal share of the reward
ρ of the session. All rewards will be paid to her when she
later withdraws from the contract by calling withdraw().

III. ANALYSIS

Desired Properties. Much like previous methods such as
RANDAO [18], our protocol ensures the following desired
properties:
• Game-theoretic Guarantees of Honesty: In our proto-

col, every party is strictly incentivized to act honestly
in following the steps and to keep the communication
off-chain. The incentives were already covered in the
previous section. Thus, rational parties will follow the
protocol.

• Bias-resistance: In each session, no party can manip-
ulate the random output if he controls at most n − 1
participants. The Dealer cannot manipulate the random

output either, even if he registers as participants or bribes
other participants, as long as there exists one participant
acting honestly. This is because all values xi contribute
to root(T ) which in turn decides r := Delay(root(T )).
Even if the dealer wants to bias the output by carefully
choosing his value after seeing other values, it is compu-
tationally infeasible to find a value such that root(T ) is in
a negligibly small set where he can pre-evaluate the VDF.
Thus, they cannot strategically manipulate the output.

• Liveness: In each session, no party that controls at
most n − 1 participants can prevent the protocol from
proceeding through each step and outputting a tamper-
proof random number. The only case where the protocol
ends without an output is when the dealer is caught
cheating. However, this does not happen in practice if
the dealer is honest since his cheating would cost him
his deposit.

• Unpredictability: In each session, no party can know the
random output r until after the xi values are submitted
and the VDF is evaluated. As long as the VDF security
parameter and the time limits ti are chosen suitably, the
VDF evaluation cannot be completed before t6. Thus, the
VDF results are only known in Step 7.

• Profitability: Honest participants are guaranteed to make
profits in each session. The dealer can also make a profit
from customers by providing the RNG as a service.

Times and Deposits. In the initialization phase, the dealer
has to decide on values for the time limits t1, . . . , t8 and the
deposits d and d∗. When starting a round, he also puts down
his own deposit d′. It is possible to hard-code constraints on
the d′ already at the initialization phase. In setting these values,
the dealer has to ensure the following:
• The deadline of each step should allow for sufficient time

for all participants to make the function calls that are
potentially needed in that step.

• Evaluating the verifiable delay function Delay() should
take strictly more than t6 time. In other words, when the
participants start submitting their values at the beginning
of Step 1, no one should be able to compute the VDF
until Step 6. On the other hand, t7 should be large enough
to allow the dealer and participants to evaluate the VDF
in Step 7.

• The deposits should be large enough to (i) cover the
gas fees that have to be reimbursed in case of unsuc-
cessful challenges, and (ii) provide practical deterrence.
Specifically, since answering the challenges in Steps 3
and 6 require the verification of a Merkle proof that
consumes Θ(lg n) gas, we must have d∗ ∈ Ω(lg n) and
d′ ∈ Ω(n · lg n).

Gas Usage. The major selling point and contribution of our
protocol is that it significantly reduces the gas usage required
for one round of RNG. As long as all parties are rational,
they will follow the protocol honestly. The incentives for this
were outlined in the previous section. This means that in each
round the participants only communicate with the dealer off-
chain and have to pay no gas fees. The dealer also pays only
O(1) in gas fees due to his calls to the contract functions.
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