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Optimal rate-limited secret key generation from
Gaussian sources using lattices

Laura Luzzi, Cong Ling and Matthieu R. Bloch

Abstract—We propose a lattice-based scheme for secret key
generation from Gaussian sources in the presence of an eaves-
dropper, and show that it achieves the strong secret key capacity
in the case of degraded source models, as well as the optimal
secret key / public communication rate trade-off. The key
ingredients of our scheme are the use of the modulo lattice
operation to extract the channel intrinsic randomness, based
on the notion of flatness factor, together with a randomized
lattice quantization technique to quantize the continuous source.
Compared to previous works, we introduce two new notions
of flatness factor based on L1 distance and KL divergence,
respectively, which might be of independent interest. We prove
the existence of secrecy-good lattices under L1 distance and KL
divergence, whose L1 and KL flatness factors vanish for volume-
to-noise ratios up to 2πe. This improves upon the volume-to-noise
ratio threshold 2π of the L∞ flatness factor.

Index Terms—Secret key generation, strong secrecy, lattice
coding, flatness factor.

I. INTRODUCTION

Secret key generation (also known as key agreement) at
the physical layer was first investigated by Maurer [3] and
Ahlswede and Csiszár [4], who showed that correlated obser-
vations of noisy phenomena could be used to distill secret
keys by exchanging information over a public channel. In
recent years, this subject has received considerable attention
in literature (see, e.g., [5–10]). The setup has been extended
to the vector case [11, 12], the multi-terminal case [13–
16], the quantum case [17] and the case with feedback [18].
Second-order asymptotics have been derived in [19, 20]. Code
constructions for the discrete memoryless case have been
proposed, e.g. [21, 22].

Most existing secret key generation schemes rely heavily
on the assumption of discrete random sources over finite or
countable alphabets. In order to apply these techniques to
wireless communications, it is necessary to extend the key
generation framework to the case of continuous sources, such
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as Gaussian sources [11, 23–25]1. In [25], the authors study a
multi-terminal scenario for secret key generation in the special
case for which the eavesdropper only has access to the public
channel. Beside providing a characterization of the optimal
strongly secret key rate, the authors show that this optimal
rate can be achieved using lattice codes (for information
reconciliation only).

We consider here the problem of secret key generation
between two terminals, Alice and Bob, who observe correlated
Gaussian sequences Xn and Yn, in the presence of an eaves-
dropper, Eve, who also obtains a correlated sequence Zn. For
simplicity, we suppose that a single round of unidirectional
public communication takes place in order to establish the
key. Our main contribution is to show that, in the case of a
degraded source model, the strong secret key capacity can be
achieved by a complete lattice-coding scheme considerably
different from and perhaps simpler than [25]2. This extends
our previous work [1], in which it was shown that a secret
key rate up to half a nat from the optimal was achievable.

Typically, secret key generation consists of two distinct pro-
cedures: information reconciliation, in which public messages
are exchanged to ensure that Alice and Bob can construct the
same data sequence with vanishing error probability, and pri-
vacy amplification to extract from this shared sequence a secret
key that is statistically independent from Eve’s observation and
from the public messages.

Privacy amplification and randomness extraction: Our pri-
vacy amplification strategy is based on the concept of channel
intrinsic randomness, or the maximum bit rate that can be
extracted from a channel output independently of its input [30–
32]. One can show that the reduction modulo a suitable lattice
can be used to extract the intrinsic randomness3. Although our
main objective in this paper is to solve the problem of privacy
amplification, this technique is an intriguing result in its own
right, which could have other applications.

The flatness factor and its variants: In our previous work
[1], we provided a characterization of the class of lattices that
are good for randomness extraction, which was based on a
computable parameter, the flatness factor, measuring the L∞

distance between the “folded” Gaussian distribution modulo

1An extension of the key distillation framework to quantum Gaussian states
has also been considered [26, 27].

2The scheme in [25, Section IV-B] requires the repetition of a dithered
quantization and public communication step over N blocks, each of dimension
n. This is needed to achieve strong secrecy from weak secrecy by using the
technique in [28]. In contrast, our scheme achieves strong secrecy with a single
block and bounds the mutual information using the variational distance, as in
[29].

3See the discussion in the preprint version of this paper [33].
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the lattice and the uniform distribution on the corresponding
fundamental region. The concept of flatness factor is related
to the smoothing parameter used in lattice-based cryptography
[34], and was first introduced in [35] in the context of physical-
layer network coding. In [36], two of the authors also showed
the relevance of the flatness factor for secrecy and introduced
the notion of secrecy-good lattices for the wiretap channel.
In this work, we consider two extended notions of flatness
factor by which the L∞ distance is replaced respectively by
the L1 distance and the Kullback-Leibler (KL) divergence.
These new flatness conditions are satisfied by a wider range of
variance parameters, resulting in improved volume conditions
for the chain of lattices under consideration, which allows us to
achieve the secret key capacity. The existence of lattices with
vanishing L1 and KL flatness factors follows by leveraging
an existence result for resolvability codes for regular channels
[37]. We note that the L1 smoothing parameter was already
considered in [38, 39], while L1 and KL flatness factors were
used implicitly earlier in [40, p. 1656]. An upper bound on
the L1 flatness factor based on the Cauchy-Schwarz inequality
was given in [41]. The independent work [42] studied L1

smoothing parameters both for lattices and for codes, also
based on the Cauchy-Schwarz inequality. Our approach by-
passes the Cauchy-Schwarz inequality, therefore leading to a
tighter bound than [41]. We note however that [42] obtained
a bound on the L1 smoothing parameter as tight as that in
this paper, by decomposing the discrete Gaussian distribution
into a convex combination of uniform ball distributions. The
smoothing parameter is of fundamental importance in lattice
and code-based cryptography [42], so our method for the L1

flatness factor may also be useful in these areas.

Information reconciliation and Wyner-Ziv coding: Our strat-
egy for information reconciliation follows the outline of
[23, 25]: first, the source Xn is vector quantized; then, a public
message is generated in the manner of Wyner-Ziv coding, so
that Bob can decode the quantized variable using the sequence
Yn as side information. The existence of good nested lattices
for Wyner-Ziv coding has been established in [43] (see also
[44, 45]). We show that this construction is compatible with
the secrecy-goodness property to conclude our existence proof.

Randomized quantization technique: Unlike our previous
work [1], the quantization performed at Alice’s side is not
deterministic. We introduce a new randomized quantization
step inspired by the randomized rounding technique in [46].
Essentially, this technique allows to round a continuous Gaus-
sian into a discrete Gaussian distribution with slightly larger
variance, provided that the L∞ flatness factor of the lattice
is small. We partially extend the result of [46] under an L1

flatness factor criterion. We show that randomized quantization
with uniform dithering (where the dither is known by all
parties, including the eavesdropper) achieves the optimal trade-
off between public communication rate and secret key rate
established in [23]. The dithering technique has been used to
achieve capacity in literature [47, 48]. Besides, the discrete
Gaussian distribution is widely used in lattice coding [36] and
lattice-based cryptography [38, 46]. However, its application
to quantization is new, to the best of our knowledge.

Relation to fuzzy extractors: Fuzzy extractors [49] allow
to extract a secret key from a noisy measurement, which
means that it is resilient to small measurement errors. Fuzzy
extractors for continuous signals were proposed in [50, 51].
Our proposed lattice code is also robust to measurement errors,
thanks to its channel coding component of Wyner-Ziv coding.
A notable difference is that min-entropy is used to measure
the available randomness in fuzzy extractors, while Shannon
entropy is used in our key generation model. Moreover, for
fuzzy extractors the measurement error is assumed to have
bounded Hamming weight or Euclidean norm, while in our
model it follows a Gaussian distribution.

Organization: This paper is organized as follows. In Section
II we provide basic definitions about lattices and recall the
notion of L∞ flatness factor. In Section III we define a new
L1 variant of the flatness factor, which allows us to define the
notion of L1 secrecy-good lattices. In Section IV, we introduce
the Gaussian source model, describe our lattice-based secret
key generation scheme and prove our main result. Finally,
in Section V we offer some conclusions and perspectives.
For ease of reading, the additional technical tools needed
to prove the existence of good nested lattices are presented
in the Appendix. More precisely, Appendix A summarizes
some relevant results on the existence of resolvability codes
for regular channels. Appendix B presents the KL flatness
factor and its properties. The existence of lattices that are
KL secrecy-good and, consequently, also L1 secrecy-good is
proven in Appendix C. Finally, the existence of the sequences
of nested lattices required in our key generation scheme is
proven in Appendix D.

II. PRELIMINARIES ON LATTICES AND THE L∞ FLATNESS
FACTOR

Notation: All logarithms in this paper are assumed to be
natural logarithms, and information is measured in nats. Given
a set A, the notation UA stands for the uniform distribution
over A. The notation Fp refers to the finite field of order
p. We denote the variational distance between two (discrete
or continuous) distributions p, q by V(p, q), and their KL
divergence by D(p∥q).

In this section, we recall some well-known properties of
lattices as well as the notion of flatness factor based on L∞

distance.
An n-dimensional lattice Λ in the Euclidean space Rn is

the discrete set defined by

Λ = L (B) = {Bx : x ∈ Zn}

where the columns of the basis matrix B = [b1 · · ·bn] are
linearly independent.

Given a lattice Λ, its dual lattice Λ∗ is defined as the set of
vectors λ∗ in Rn such that ⟨λ∗, λ⟩ ∈ Z for all λ ∈ Λ.

A measurable set R(Λ) ⊂ Rn is called a fundamental region
of the lattice Λ if the disjoint union ∪λ∈Λ(R(Λ) + λ) = Rn.
Examples of fundamental regions include the fundamental
parallelepiped P(Λ) and the Voronoi region V(Λ). All the
fundamental regions have equal volume V (Λ).
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Given a lattice Λ and a fundamental region R(Λ), any point
x ∈ Rn can be written uniquely as a sum

x = λ+ x̄,

where λ ∈ Λ and x̄ ∈ R(Λ). The vector λ is the quantization
of x with respect to R(Λ) and is denoted as QR(Λ)(x), where
boundary points are decided systematically. Thus we define

[x] modR(Λ) = x−QR(Λ)(x) = x̄. (1)

In particular, for any x ∈ Rn, the nearest-neighbor quantizer
associated with Λ is given by

QΛ(x) = QV(Λ)(x) = argmin
λ∈Λ

∥λ− x∥

where ties are broken systematically. Note that x modV(Λ) =
x−QΛ(x). The modulo lattice operation satisfies the distribu-
tive law [52, Proposition 2.3.1], i.e., ∀λ ∈ Λ

[x+ λ] modR(Λ) = [x] modR(Λ). (2)

The following property [53, equation (35)] will also be used
in the paper: given two lattices Λ ⊆ Λ1, x ∈ Rn, and a
fundamental region R(Λ),

[QΛ1
(x)] modR(Λ) = [QΛ1

([x] modR(Λ))] modR(Λ).
(3)

Given a sublattice Λ′ ⊂ Λ, the quotient group Λ/Λ′ is
defined as the group of distinct cosets λ + Λ′ for λ ∈ Λ. It
can be identified by a set of coset representatives Λ ∩R(Λ′),
where R(Λ′) is any fundamental region of Λ′. Furthermore,
R(Λ′) can be written as a disjoint union of translates of any
fundamental region R(Λ) as follows [52, equation (8.33)]:

R(Λ′) =
⋃

λ∈Λ∩R(Λ′)

([λ+R(Λ)] modR(Λ′)) . (4)

Suppose that Xn is an n-dimensional i.i.d. Gaussian random
variable of variance σ2 with distribution

fσ(x) =
1

(
√
2πσ)n

e−
∥x∥2

2σ2 ,

for x ∈ Rn. The following useful property characterizing
the product of Gaussian distributions was proven in [46, Fact
2.1]4:

Lemma 1: Given σ1, σ2 > 0, let σ and σ̄ be such that
σ2 = σ2

1 +σ2
2 , and 1

σ̄2 = 1
σ2
1
+ 1

σ2
2

. Moreover, let c1, c2 ∈ Rn,

and c̄ = σ̄2

σ2
1
c1 +

σ̄2

σ2
2
c2. Then ∀x ∈ Rn,

fσ1
(x− c1)fσ2

(x− c2) = fσ(c1 − c2)fσ̄(x− c̄).

Given a lattice Λ, we define the Λ-periodic function

fσ,Λ(x) =
1

(
√
2πσ)n

∑
λ∈Λ

e−
∥x+λ∥2

2σ2 , (5)

for all x ∈ Rn. We denote by fσ,R(Λ) = fσ,Λ|R(Λ) its
restriction to the fundamental region R(Λ). Note that fσ,R(Λ)

is the probability density of X̄n = [Xn] modR(Λ). Given

4Note that although the statement in [46] refers to (unnormalized) Gaussian
functions, one can check that it also holds for Gaussian distributions.

c ∈ Rn, we will also use the notation

fσ,Λ,c(x) = fσ,Λ(x− c)

to denote a shifted Λ-periodic function.
Given an n-dimensional lattice Λ in Rn and a vector

c ∈ Rn, we define the discrete Gaussian distribution over
Λ centered at c as the following discrete distribution taking
values in λ ∈ Λ:

DΛ,σ,c(λ) =
fσ,c(λ)

fσ,Λ(c)
∀λ ∈ Λ.

We write DΛ,σ = DΛ,σ,0. Following Peikert [46, Section 4.1],
we introduce the notion of randomized rounding with respect
to Λ:

Definition 1 (Randomized rounding): Given an input vector
x ∈ Rn, we define the random variable

⌊x⌉Λ,σ ∼ DΛ,σ,x. (6)

Note that ⌊x⌉Λ,σ is a discrete random variable taking values
in Λ.

In essence, randomized rounding consists in sampling from
a lattice Gaussian distribution centered at x. There exist several
algorithms for this task. In particular, it was proven in [54] that
Klein’s algorithm [55] samples from a distribution very close
to DΛ,σ,x when σ is sufficiently large. A new algorithm was
given in [56] which overcomes the restriction on σ.

Definition 2 (L∞ Flatness factor [36]): For a lattice Λ and
for a parameter σ, the L∞ flatness factor is defined by:

ϵΛ(σ) ≜ max
x∈R(Λ)

|V (Λ)fσ,Λ(x)− 1| .

In other words, ϵΛ(σ) characterizes the L∞ distance of
fσ,Λ(x) to the uniform distribution UR(Λ) over R(Λ).

The L∞ flatness factor is independent of the choice of the
fundamental region R(Λ) and can be computed from the theta
series of the lattice

ΘΛ(τ) =
∑
λ∈Λ

e−πτ∥λ∥
2

(7)

using the identity [36, Proposition 2]

ϵΛ(σ) =

(
γΛ(σ)

2π

)n
2

ΘΛ

(
1

2πσ2

)
− 1, (8)

where γΛ(σ) = V (Λ)
2
n

σ2 is the volume-to-noise ratio (VNR).
Moreover, the following relation holds between the flatness
factor of Λ and the theta series of its dual lattice Λ∗ [36,
Corollary 1]:

ΘΛ∗(2πσ2) = ϵΛ(σ) + 1. (9)

Remark 1: We have shown in [36] that ϵΛ is a monotonically
decreasing function, i.e., for σ < σ′, we have ϵΛ(σ′) ≤ ϵΛ(σ).

The notion of secrecy-goodness characterizes lattice se-
quences whose L∞ flatness factors vanish exponentially fast
as n→ ∞.

Definition 3 (Secrecy-good lattices under L∞ flatness factor
[36]): A sequence of lattices Λ(n) is secrecy-good under
the L∞ flatness factor if ϵΛ(n)(σ) = e−Ω(n) for all fixed
γΛ(n)(σ) < 2π.



4

In [36] we have proven the existence of sequences of
secrecy-good lattices under L∞ flatness factor as long as

γΛ(σ) < 2π. (10)

III. SECRECY-GOOD LATTICES UNDER AN L1 FLATNESS
FACTOR CONDITION

In this section, we introduce a weaker notion of flatness
based on the L1 distance and study its properties.

Definition 4: Given a lattice Λ, a fundamental region R(Λ)
and σ > 0, we define the L1 flatness factor as follows:

ϵ1Λ(σ) =

∫
R(Λ)

∣∣∣∣fσ,Λ(x)− 1

V (Λ)

∣∣∣∣ dx = V(fσ,R(Λ),UR(Λ)).

(11)
Similarly to the L∞ flatness factor, the L1 flatness factor does
not depend on the choice of the fundamental region. Moreover,
it is shift-invariant, i.e. ∀c ∈ Rn,

ϵ1Λ(σ) = V(fσ,Λ,c|R(Λ),UR(Λ)). (12)

Remark 2: For any lattice Λ, ∀σ > 0, we have ϵ1Λ(σ) ≤
ϵΛ(σ).

The L1 flatness factor is related to the L1 smoothing
parameter, which was discussed in [38, 39].

The following Lemma confirms the intuition that folded ad-
ditive Gaussian noise with larger variance looks more uniform:

Lemma 2: The L1 flatness factor is monotonic, i.e. for any
lattice Λ, ∀σ′ > σ,

ϵ1Λ(σ
′) ≤ ϵ1Λ(σ).

Proof: Suppose that Wn ∼ N (0, σ2In), and let Xn =
Wn modR(Λ) ∼ fσ,R(Λ). Given σ0 > 0, let Wn

0 ∼
N (0, σ2

0In) and consider

Yn = [Xn +Wn
0 ] modR(Λ)

= [[Wn] modR(Λ)) +Wn
0 ] modR(Λ)

(a)
= [Wn +Wn

0 ] modR(Λ) ∼ f√
σ2+σ2

0 ,R(Λ)
,

where (a) follows from the distributive property (2). Now
consider the random variable Un ∼ UR(Λ). By the Crypto
Lemma [52, Lemma 4.1.1],

[Un +Wn
0 ] modR(Λ) ∼ UR(Λ).

Then using the data processing inequality for the variational
distance [57, Lemma 8],

ϵ1Λ

(√
σ2 + σ2

0

)
= V

(
f√

σ2+σ2
0 ,R(Λ)

,UR(Λ)

)
= V(Yn,Un)

≤ V(Xn,Un) = V(fσ,R(Λ),UR(Λ)) = ϵ1Λ(σ).

Since this is true for any σ0 > 0, the conclusion follows.
Remark 3: For any pair of nested lattices Λ′ ⊂ Λ, ∀σ > 0,

we have ϵ1Λ(σ) ≤ ϵ1Λ′(σ).
Proof: Given fundamental regions R(Λ), R(Λ′), the

statement follows easily by noting that

ϵ1Λ(σ) =

∫
R(Λ)

∣∣∣∣ 1

V (Λ)
−

∑
λ̃∈Λ/Λ′

fσ,Λ′(u+ λ̃)

∣∣∣∣du
≤

∑
λ̃∈Λ/Λ′

∫
R(Λ)

∣∣∣∣ 1

V (Λ′)
− fσ,Λ′(u+ λ̃)

∣∣∣∣ du
=

∫
R(Λ′)

∣∣∣∣ 1

V (Λ′)
− fσ,Λ′(v)

∣∣∣∣ dv = ϵ1Λ′(σ).

We will next show that lattices that are good for secrecy in
the L1 sense exist and that the corresponding volume condition
is less stringent than the condition (10) for secrecy-goodness
based on the L∞ metric.

Definition 5: A sequence of lattices {Λ(n)} is L1 secrecy-
good if for all fixed γΛ(n)(σ) < 2πe, ∀c > 0, ϵ1

Λ(n)(σ) =
o
(

1
nc

)
, i.e., the L1 flatness factor vanishes super-polynomially.

The following theorem, which was presented in [2], is the
first main result of this paper:

Theorem 1: If γΛ(σ) < 2πe is fixed, then there exists a
sequence {Λ(n)} of lattices which are L1-secrecy good.

The proof of Theorem 1 is given in Appendix C. Our proof
is information-theoretic and does not require the knowledge
of the theta series, in contrast to the L∞ flatness factor.
We outline the key ideas here. In order to show the exis-
tence of a sequence of lattices Λ(n) such that ϵ1

Λ(n)(σ) =
V(fσ,R(Λ(n)),UR(Λ(n))) → 0, we actually prove a stronger
result, namely that D(fσ,R(Λ(n))||UR(Λ(n))) → 0. This requires
some additional technical tools that are presented in Appendix
B. We build the required lattices using Construction A, and
their existence follows from the existence of linear resolvabil-
ity codes in [37] (see Appendix A for more details).

Remark 4: It is worth mentioning that as soon as the VNR
exceeds 2π, the L∞ flatness factor increases exponentially. In
fact, it is easy to see that the bound γΛ(σ) < 2π is sharp: the
L∞ flatness factor of a lattice cannot vanish for any γΛ(σ) >
2π. This is simply because (8) implies that

ϵΛ(σ) >

(
γΛ(σ)

2π

)n
2

− 1

since ΘΛ(τ) > 1 for any τ > 0. Thus, as the VNR approaches
2πe, the L∞ flatness factor ≈ en/2, but the L1 flatness
factor can still be brought under control. This demonstrates
the advantage of the L1 flatness factor.

Also note that the VNR of an L1-secrecy-good lattice
approaches 2πe from below, while that of an AWGN-good
lattice approaches 2πe from above. Recall that the normalized
second moment of a quantization-good lattice approaches
1/(2πe) [52], so all three types of lattices finally share the
same VNR threshold 2πe.

In the following, we discuss the implication of Theorem 1
on the smoothing parameter5 that is commonly used in lattice-
based cryptography.

Definition 6 (Smoothing parameter): For a lattice Λ and for
ε > 0, the L∞ and L1 smoothing parameters ηε(Λ) and η1ε(Λ),

5We remark that this definition differs slightly from the one in [34], where σ
is scaled by a constant factor

√
2π (i.e., s =

√
2πσ).
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respectively, are the smallest σ > 0 such that ϵΛ(σ), ϵ1Λ(σ) ≤
ε.

Theorem 1 implies the existence of lattices whose smooth-
ing parameters η1εn(Λ) ≈ V (Λ)1/n√

2πe
for a suitable sequence

εn → 0. This improves upon the result ηεn(Λ) ≈ V (Λ)1/n√
2π

.
Using the Cauchy-Schwarz inequality, the following bound
was proven in [41]6

ϵ1Λ(σ) ≤
√
ϵΛ

(√
2σ
)

(13)

which implies the bound η1ε(Λ) ≤ V (Λ)1/n

2
√
π

. However, this
bound is not optimal.

IV. SECRET KEY GENERATION

In this section, we present our system model for secret key
generation from correlated Gaussian sources with one-way rate
limited communication, in the presence of an eavesdropper,
and our proposed key generation protocol based on nested
lattices.

A. System model

We consider the same model as in [1], illustrated in Fig.
1, in which Alice, Bob and Eve observe the random variables
Xn, Yn, Zn respectively, generated by an i.i.d. memoryless
Gaussian source pXYZ whose components are jointly Gaussian
with zero mean. The distribution is fully described by the
variances σ2

x, σ2
y , σ2

z and the correlation coefficients ρxy , ρxz ,
ρyz . We can write [23, Eq. (6)]:

Xn = ρxy
σx
σy

Yn +Wn
1 ,

Xn = ρxz
σx
σz

Zn +Wn
2 ,

(14)

where Wn
1 and Wn

2 are i.i.d. zero-mean Gaussian noise vectors
of variances

σ2
1 = σ2

x(1− ρ2xy), σ2
2 = σ2

x(1− ρ2xz), (15)

respectively, such that σ2 > σ1. Further, Wn
1 is independent

of Yn, and Wn
2 is independent of Zn.

We assume that only one round of one-way public commu-
nication takes place from Alice to Bob. More precisely, Alice
computes a public message S and a secret key K from her
observation Xn; she then transmits S over the public channel
(see Fig. 1). From this message and his own observation Yn,
Bob reconstructs a key K̂.

Let Kn and Sn be the sets of secret keys and public
messages respectively. A secret key rate - public rate pair
(RK , RP ) is achievable if there exists a sequence of protocols
with

lim inf
n→∞

1

n
log |Kn| ≥ RK , lim sup

n→∞

1

n
log |Sn| ≤ RP ,

6A similar bound was given in [42] using the statistical distance, which
differs from the L1 distance by a factor 1

2
.

ALICE BOB

KEY
GENERATION

QUANTIZER pXYZ DECODER

EVE

K K̂

XnXn
Q Yn

ZnS S

S

public channel (noiseless)

Fig. 1. Secret key generation in the presence of an eavesdropper with
communication over a public channel.

such that the following properties hold:

lim
n→∞

log |Kn| −H(K) = 0 (uniformity)

lim
n→∞

P
{
K ̸= K̂

}
= 0 (reliability)

lim
n→∞

I(K;S,Zn) = 0 (strong secrecy).

Following [23], we denote

R(X,Y,Z) = {(RP , RK) : (RP , RK) is achievable}.

The optimal trade-off between secret key rate and public
rate was derived in [23]. For the source model (14), given
public rate RP , the secret key rate is upper bounded by

RK ≤ R̄K(RP ) =
1

2
log

(
e−2RP +

σ2
2

σ2
1

(1− e−2RP )

)
. (16)

See Appendix E for details.
We recall that the secret key capacity of the Gaussian source

model (14) is defined as the maximum achievable secret key
rate with unlimited public communication and is given by

Cs=sup {RK such that ∃RP ≥ 0 : (RP , RK) ∈ R(X,Y,Z)}

=
1

2
log

σ2
2

σ2
1

. (17)

Additional notation. To simplify notation, we define Ŷn =
ρxy

σx

σy
Yn and Ẑn = ρxz

σx

σz
Zn, so that{

Xn = Ŷn +Wn
1 ,

Xn = Ẑn +Wn
2 ,

(18)

where Ŷn and Wn
1 are independent, and Ẑn and Wn

2 are
independent. We denote the variances of Ŷn and Ẑn by
σ̂y = ρxyσx =

√
σ2
x − σ2

1 and σ̂z = ρxzσx =
√
σ2
x − σ2

2

respectively.

B. Secret key generation protocol
To define our key generation scheme, we use the lattice

partition chain Λ1/Λ2/Λ3, where
• Λ1 is L1 secrecy-good with respect to σQ, and serves as

the “source-code” component of Wyner-Ziv coding;
• Λ2 is AWGN-good with respect to σ̃1 =

√
σ2
1 + σ2

Q, and
serves as the “channel-code” component in Wyner-Ziv
coding;



6

•◦
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◦

•

•

•

•

•

•

•

•
•

•

•
•

•

•
•◦

•
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◦

Fig. 2. A schematic representation of the chain of nested lattices Λ1 ⊃ Λ2 ⊃
Λ3. The fundamental regions of Λ1, Λ2 and Λ3 are pictured in blue, red and
green respectively. The quotient groups Λ1/Λ2 and Λ2/Λ3 are represented
by the blue and red points respectively.

• Λ3 is L1 secrecy-good with respect to σ̃2 =
√
σ2
2 + σ2

Q,
and serves as the extractor of randomness.

The parameter σQ controls the quantization rate.
The existence of such a chain of lattices will be established
in Appendix D.

In addition, we assume that U is a uniform dither over a
fundamental region R(Λ1), which is known by Alice, Bob
and Eve7.

Our protocol is similar to the secret key generation scheme
in our previous work [1] with some notable differences due
to switching from an L∞ flatness factor criterion to an L1

flatness factor criterion:

- As in [1], the modulo R(Λ3) operation is used for privacy
amplification. Since the the flatness factor ϵ1Λ3

(σ) only
depends on fσ,Λ3

which is periodic mod Λ3, nearest-
neighbor quantization is not needed and we can choose
any fundamental region R(Λ3). Note that the mod R(Λ)
operation can be performed in polynomial time for many
fundamental regions. In particular, we can choose the
fundamental parallelepiped.

- Nearest-neighbor quantization with respect to the inter-
mediate lattice Λ2 is performed for information reconcil-
iation.

- As in [1], quantization with respect to the fine lattice
Λ1 is performed to obtain a discrete key. However,
deterministic quantization is replaced with randomized
rounding (using local randomness at Alice’s side), which
allows to achieve the optimal trade-off between secret key
rate and public rate. Since the L1 flatness factor is only an
average condition, dithering is required in order to obtain
almost uniform keys. Again, since an L1 flatness factor
criterion is used, the dither can be generated uniformly
over any fundamental region R(Λ1).

More precisely, the secret key generation proceeds as fol-
lows (see Figure 3):

7If Alice and Bob already share a secret source of randomness, there is no
need for secret key generation. Hence, Eve should know U to avoid trivializing
the problem.

R(Λ3)

•
0

V(Λ2)

•

•
XQ

•
QΛ2(XQ)

•
X̄Q

• S = XQ modV(Λ2)

•
K = QΛ2(XQ) modR(Λ3)

Fig. 3. A schematic representation of the quantized signal XQ, the secret key
K and the public message S.

• Alice quantizes Xn to

XQ = ⌊Xn + U⌉Λ1,σQ
, (19)

according to the randomized rounding operation defined
in (6). That is, XQ ∼ DΛ1,σQ,x+u if Xn = x, U = u, or
equivalently

pXQ|Xn,U(xQ|x,u) =
fσQ

(xQ − x− u)

fσQ
(Λ1 − x− u)

. (20)

Alice then computes the public message S ∈ S = Λ1/Λ2

and the key K ∈ K = Λ2/Λ3 as follows:

S = XQ modV(Λ2),

K = QΛ2
(XQ) modR(Λ3),

and transmits S to Bob over the public channel.
• Upon receiving S, Bob reconstructs

X̂Q = S+QΛ2

(
ρxy

σx
σy

Yn + U− S

)
.

He then computes his version of the key:

K̂ = QΛ2
(X̂Q) modR(Λ3).

Let X̄Q = XQ modR(Λ3) ∈ Λ1/Λ3, where the quotient
Λ1/Λ3 is identified with the set of coset representatives Λ1 ∩
R(Λ3). By definition, X̄Q = S + K. Note that K and S are
both functions of X̄Q:

K = QΛ2
(XQ) modR(Λ3)

(a)
= QΛ2(XQ modR(Λ3)) modR(Λ3)

= QΛ2(X̄Q) modR(Λ3) = f(X̄Q). (21)

where (a) follows from equation (3). Similarly,

X̄Q modΛ2 = X̄Q −QΛ2(X̄Q)

= XQ −QR(Λ3)(XQ)−QΛ2(XQ −QR(Λ3)(XQ))

= XQ −QΛ2(XQ) = XQ modΛ2 = S = g(X̄Q). (22)

Remark 5: Because of the previous relations, we can
conclude that there exists a bijection (f, g) : Λ1/Λ3 →
Λ1/Λ2 × Λ2/Λ3 that sends X̄Q into the corresponding pair
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(S,K).
We now state the main result of the paper, which will be

proven in the following sections:
Theorem 2: For the Gaussian source model (14), there exists

a sequence of nested lattices Λ(n)
3 ⊂ Λ

(n)
2 ⊂ Λ

(n)
1 such that for

any public rate RP > 0, the previous secret key generation
protocol asymptotically achieves the optimal secret key rate
R̄K(RP ) in (16). In particular, any secret key rate RK <

Cs =
1
2 log

σ2
2

σ2
1

is achievable.

C. Properties of randomized rounding and discrete Gaussians

Before proceeding to prove Theorem 2, we need some
preliminary results about the properties of the randomized
quantization in equation (19). It was shown in [46] that
when Xn is i.i.d. Gaussian with variance σ2, the randomly
rounded variable ⌊Xn⌉Λ,σQ

is close in variational distance to
the discrete Gaussian DΛ,σ̃ , where σ̃2 = σ2 + σ2

Q, provided
that the L∞ flatness factor ϵΛ(σQ) is small:

Proposition 1 (Adapted from Theorem 3.1 of [46]): Let
Xn ∼ N (0, σ2In) and µ ∈ Rn, and consider XQ =
⌊Xn + µ⌉Λ,σQ

. If ϵΛ(σQ) < 1/2, then

V(pXQ
, DΛ,σ̃,µ)) ≤ 4ϵΛ(σQ),

where σ̃2 = σ2 + σ2
Q.

In the following, we prove a partial generalization of this
result under an L1 flatness factor condition, for randomized
rounding with uniform dithering, which may be of independent
interest.

Lemma 3: Given a Gaussian random vector Xn ∼
N (0, σ2In), a dither U ∼ UR uniform over a fundamental
region R of the lattice Λ and independent of Xn, and a constant
µ ∈ Rn, let XQ = ⌊Xn + U+ µ⌉Λ,σQ

. Then

EU

[
V
(
pXQ|U, DΛ,σ̃,U+µ

)]
≤ 2ϵ1Λ(σQ).

In order to prove Lemma 3, we need the following inter-
mediate Lemma.

Lemma 4: Suppose that σ̃2 = σ2 + σ2
Q, and let R be a

fundamental region of Λ. Then the following inequality holds:∑
xQ∈Λ

∫
R

∣∣∣∣∫
Rn

fσ(x−µ)fσQ
(xQ−x−u)

V (Λ)fσQ
(Λ− x− u)

dx−fσ̃(xQ−u−µ)

∣∣∣∣du
≤ ϵ1Λ(σQ).

Proof of Lemma 4: By Lemma 1,

fσQ
(xQ−x−u)fσ(x−µ) = fσ̃(xQ−u−µ)fσ̄(x−c̄), (23)

where 1
σ̄2 = 1

σ2 + 1
σ2
Q

and c̄ = σ̄2

σ2
Q
(xQ − u) + σ̄2

σ2µ. Then we
can write∑
xQ∈Λ

∫
R

∣∣∣∣∫
Rn

fσ(x−µ)fσQ
(xQ−x−u)

V (Λ)fσQ
(Λ− x−u)

dx−fσ̃(xQ−u−µ)

∣∣∣∣du
(a)
=

∑
xQ∈Λ

∫
R

∣∣∣∣ ∫
Rn

fσ(x− µ)fσQ
(xQ − x− u)

V (Λ)fσQ
(Λ− x− u)

dx

− fσ̃(xQ − u− µ)

∫
Rn

fσ̄(x− c̄)dx

∣∣∣∣du

(b)
=

∑
xQ∈Λ

∫
R

∣∣∣∣ ∫
Rn

fσ(x− µ)fσQ
(xQ − x− u)

V (Λ)fσQ
(Λ− x− u)

dx

−
∫
Rn

fσQ
(xQ − x− u)fσ(x− µ)dx

∣∣∣∣du
≤
∫
R

∫
Rn

∑
xQ∈Λ fσ(x−µ)fσQ

(xQ−x−u)

fσQ
(Λ−x−u)

·

·
∣∣∣∣ 1

V (Λ)
− fσQ

(Λ−x−u)

∣∣∣∣ dxdu
=

∫
Rn

fσ(x− µ)

∫
R

∣∣∣∣ 1

V (Λ)
− fΛ,σQ

(x+ u)

∣∣∣∣ dudx
=

∫
Rn

fσ(x− µ)

∫
R

∣∣∣∣ 1

V (Λ)
− fΛ,σQ

(u)

∣∣∣∣ dudx = ϵ1Λ(σQ),

where (a) follows from the fact that
∫
Rn fσ̄(x − c̄)dx = 1,

and (b) follows from (23).

Proof of Lemma 3: We have

EU

[
V
(
pXQ|U, DΛ,σ̃,U+µ

)]
=
∑

xQ∈Λ

∫
R

1

V (Λ)

∣∣∣∣pXQ|U(xQ|u)−
fσ̃(xQ − u− µ)

fσ̃(Λ− u− µ)

∣∣∣∣du
(a)

≤
∑

xQ∈Λ

∫
R

∣∣pXQ|U(xQ|u)−fσ̃(xQ−u−µ)
∣∣du

+
∑

xQ∈Λ

∫
R

∣∣∣∣fσ̃(xQ−u−µ)− fσ̃(xQ−u−µ)

V (Λ)fσ̃(Λ−u−µ)

∣∣∣∣ du, (24)

where (a) follows from the triangle inequality.
We note that

pXQ|U(xQ|u) =
∫
Rn

pXQ|Xn,U(xQ|x,u)pXn(x)dx

=

∫
Rn

fσ(x)fσQ
(xQ − x− u− µ)

fσQ
(Λ− x− u− µ)

dx

=

∫
Rn

fσ(x− µ)fσQ
(xQ − x− u)

fσQ
(Λ− x− u)

dx.

Thus, the first term in (24) is bounded by ϵ1Λ(σQ) because of
Lemma 4. The second term in (24) is equal to∑

xQ∈Λ

∫
R

fσ̃(xQ − u− µ)

fσ̃(Λ− u− µ)

∣∣∣∣fσ̃(Λ− u− µ)− 1

V (Λ)

∣∣∣∣ du
=

∫
R

∣∣∣∣fσ̃(Λ− u− µ)− 1

V (Λ)

∣∣∣∣ du = ϵ1Λ(σ̃)
(b)

≤ ϵ1Λ(σQ),

where (b) follows from Lemma 2.
Another useful property of discrete Gaussian distributions is

that a sample DΛ,σ,c is distributed almost uniformly modulo a
sublattice Λ′ ⊂ Λ provided that ϵΛ′(σ) is small [54, Corollary
2.8]:

Proposition 2: Let Λ′ ⊂ Λ. Then if ϵΛ′(σ) < 1,∥∥DΛ,σ,c modΛ′ − UΛ/Λ′
∥∥
∞ ≤ 4ϵΛ′(σ)

In the statement above, with slight abuse of notation,
DΛ,σ,c modΛ′ denotes the probability density of the random
variable XD modΛ′, where XD ∼ DΛ,σ,c.

We can partially generalize this statement in an average
sense under an L1-flatness factor condition, as follows.
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Lemma 5: Let Λ′ ⊂ Λ. Then

EU

[
V
(
DΛ,σ,U modΛ′,UΛ/Λ′

)]
≤ 2ϵ1Λ′(σ)

Proof: Given two fundamental regions R(Λ), R(Λ′), we
can write

EU

[
V
(
DΛ,σ,U modΛ′,UΛ/Λ′

)]
=

∫
R(Λ)

1

V (Λ)

∑
λ̃∈Λ/Λ′

∣∣∣∣∣ ∑
λ′∈Λ′

fσ,u(λ̃+ λ′)

fσ,Λ(u)
− V (Λ)

V (Λ′)

∣∣∣∣∣ du
=

∫
R(Λ)

∑
λ̃∈Λ/Λ′

∣∣∣∣∣ ∑
λ′∈Λ′

fσ,u(λ̃+ λ′)

fσ,Λ(u)V (Λ)
− 1

V (Λ′)

∣∣∣∣∣ du
≤
∫
R(Λ)

∑
λ̃∈Λ/Λ′

∣∣∣∣∣ ∑
λ′∈Λ′

fσ,u(λ̃+ λ′)

fσ,Λ(u)V (Λ)
− fσ,Λ′(u+ λ̃)

∣∣∣∣∣ du
+

∫
R(Λ)

∑
λ̃∈Λ/Λ′

∣∣∣∣fσ,Λ′(u+ λ̃)− 1

V (Λ′)

∣∣∣∣ du (25)

by the triangle inequality.
The first term in (25) can be rewritten as follows:∫

R(Λ)

∑
λ̃∈Λ/Λ′

∣∣∣∣∣ ∑
λ′∈Λ′

fσ,u(λ̃+ λ′)

fσ,Λ(u)V (Λ)
−
∑
λ′∈Λ′

fσ,u(λ̃+ λ′)

∣∣∣∣∣ du
≤
∫
R(Λ)

∑
λ̃∈Λ/Λ′

∑
λ′∈Λ′

fσ,u(λ̃+ λ′)

fσ,Λ(u)

∣∣∣∣ 1

V (Λ)
− fσ,Λ(u)

∣∣∣∣ du
=

∫
R(Λ)

∑
λ∈Λ

fσ,u(λ)

fσ,Λ(u)

∣∣∣∣ 1

V (Λ)
− fσ,Λ(u)

∣∣∣∣ du
=

∫
R(Λ)

∣∣∣∣ 1

V (Λ)
− fσ,Λ(u)

∣∣∣∣ du = ϵ1Λ(σ) ≤ ϵ1Λ′(σ)

by Remark 3.
Setting v = u+ λ̃ modΛ′, the second term is equal to∫

R(Λ′)

∣∣∣∣fσ,Λ′(v)− 1

V (Λ′)

∣∣∣∣ dv = ϵ1Λ′(σ).

From Lemma 3 and Lemma 5, we can immediately deduce
the following:

Corollary 1: Consider two nested lattices Λ′ ⊂ Λ. Given
a Gaussian random vector Xn ∼ N (0, σ2In), a dither
U ∼ UR(Λ) uniform over a fundamental region R(Λ) and
independent of Xn, and a constant µ ∈ Rn, let XQ =
⌊Xn + U+ µ⌉Λ,σQ

. Then

EU

[
V
(
pXQ modΛ′|U,UΛ/Λ′

)]
≤ 2ϵ1Λ(σQ) + 2ϵ1Λ′(σ̃),

where σ̃2 = σ2 + σ2
Q.

Proof: We have

EU

[
V
(
pXQ modΛ′|U,UΛ/Λ′

)]
(a)

≤ EU

[
V
(
pXQ modΛ′|U, DΛ,σ̃,U modΛ′))]

+ EU

[
V
(
DΛ,σ̃,U modΛ′,UΛ/Λ′

)]
(b)

≤ EU

[
V
(
pXQ|U, DΛ,σ̃,U

))
] + 2ϵ1Λ′(σ̃)

≤ 2ϵ1Λ(σQ) + 2ϵ1Λ′(σ̃)

where (a) follows from the triangle inequality, (b) follows from

the data processing inequality for the variational distance and
Lemma 5, and (c) follows from Lemma 3.

D. Reliability

We want to show that the error probability Pe =
P{K ̸= K̂} → 0 as n→ ∞.

Note that K = K̂ if X̂Q = XQ. Since XQ = S+QΛ2
(XQ),

we have

X̂Q = XQ ⇔ QΛ2
(Ŷn + U− S) = QΛ2

(XQ).

Observe that

QΛ2
(Ŷn + U− S) = QΛ2

(
Ŷn + U− XQ +QΛ2

(XQ)
)

= QΛ2
(Ŷn + U− XQ) +QΛ2

(XQ).

Therefore

X̂Q = XQ ⇔ QΛ2
(Ŷn + U− XQ) = 0

⇔ Ŷn ∈ XQ − U+ V(Λ2). (26)

The error probability is bounded by

Pe ≤ P{X̂Q ̸= XQ}

= EXnŶnU

[
P{X̂Q ̸=XQ|Ŷn,Xn,U}

]
=EXnŶnU

[ ∑
xQ∈Λ1

pXQ|XnU(xQ)P{X̂Q ̸=xQ|Ŷn,U,XQ=xQ}

]
In the last step we have used the Markov chain Xn −
(Ŷn,XQ,U)−X̂Q. Replacing the expression for the conditional
distribution in equation (20), we obtain

Pe ≤
∑

xQ∈Λ1

(∫
Rn

∫
R(Λ1)

1{y/∈xQ−u+V(Λ2)}·

·
∫
Rn

fσQ
(xQ − x− u)

fσQ
(Λ1 − x− u)

pXn|Ŷn(x|y)pŶn(y)

V (Λ1)
dxdudy

)
=

∑
xQ∈Λ1

(∫
Rn

∫
R(Λ1)

1{y/∈xQ−u+V(Λ2)}fσ̂y (y)·

·
∫
Rn

fσQ
(xQ − x− u)

fσQ
(Λ1 − x− u)

fσ1
(x− y)

V (Λ1)
dxdudy

)
(a)

≤
∑

xQ∈Λ1

(∫
Rn

∫
R(Λ1)

1{y/∈xQ−u+V(Λ2)}fσ̂y
(y)·

·
∣∣∣∣ ∫

Rn

fσQ
(xQ−x−u)fσ1

(x−y)

fσQ
(Λ1−x−u)V (Λ1)

dx−fσ̃1
(xQ−u−y)

∣∣∣∣dudy)
+
∑

xQ∈Λ1

∫
Rn

∫
R(Λ1)

fσ̃1(xQ−u−y)1{y/∈xQ−u+V(Λ2)}fσ̂y
(y)dudy

(27)

where (a) follows from the triangle inequality.
The first term of (27) is upper bounded by ϵ1Λ1

(σQ) using
Lemma 4. This tends to 0 provided that Λ1 is L1 secrecy-
good and

V (Λ1)
2/n

σ2
Q

< 2πe. (28)
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With the change of variables y′ = y − xQ + u, the second
term of (27) can be rewritten as∑
xQ∈Λ1

∫
R(Λ1)

∫
Rn

fσ̃1
(y′)1{y′ /∈V(Λ2)}fσ̂y

(y′+xQ−u)dy′du

=
∑

xQ∈Λ1

∫
R(Λ1)

∫
Rn\V(Λ2)

fσ̃1
(y′)fσ̂y

(y′ + xQ − u)dy′du

=

∫
Rn\V(Λ2)

fσ̃1
(y′)

∫
R(Λ1)

fσ̂y,Λ1
(y′ − u)dudy′

(b)
=

∫
Rn\V(Λ2)

fσ̃1
(y′)dy′

where (b) holds since
∫
R(Λ1)

fσ̂y,Λ1
(y′−u)du = 1. This tends

to 0 provided that Λ2 is AWGN-good and

V (Λ2)
2/n

σ̃2
1

> 2πe. (29)

E. Uniformity

We want to show that the key is asymptotically uniform
when n → ∞. Let σ̃2

x = σ2
x + σ2

Q. First, we bound the
L1 distance between pX̄Q

and the uniform distribution over
Λ1/Λ3:

V(pX̄Q
,UΛ1/Λ3

)

(a)

≤ EU

[
V
(
pX̄Q|U,UΛ1/Λ3

)]
(b)

≤ 2ϵ1Λ1
(σQ) + 2ϵ1Λ3

(σ̃x)

(c)

≤ 2ϵ1Λ1
(σQ) + 2ϵ1Λ3

(σ̃2) (30)

where (a) follows from Lemma 7 in [57], (b) follows from
Corollary 1 and (c) follows from Lemma 2, since σ̃2

2 = σ2
2 +

σ2
Q ≤ σ2

x + σ2
Q = σ̃2

x.
The term (30) vanishes as o

(
1
n

)
if both Λ1 and Λ3 are L1-

secrecy good and satisfy the volume conditions (28) and

V (Λ3)
2/n

σ̃2
2

< 2πe. (31)

We note that actually a slightly tighter bound than (30) holds,
where the coefficient 2 is replaced by 1.8

We now show that the distribution of the key is close to the
uniform distribution UK over K = Λ2/Λ3:

V(pK,UK) =
∑
k∈K

∣∣∣∣pK(k)− V (Λ2)

V (Λ3)

∣∣∣∣
=
∑
k∈K

∣∣∣∣∣∑
s∈S

pX̄Q
(s+ k)−

∑
s∈S

V (Λ1)

V (Λ3)

∣∣∣∣∣
≤
∑
k∈K

∑
s∈S

∣∣∣∣pX̄Q
(s+ k)− V (Λ1)

V (Λ3)

∣∣∣∣
=

∑
x̄Q∈Λ1/Λ3

∣∣∣∣pX̄Q
(x̄Q)−

V (Λ1)

V (Λ3)

∣∣∣∣ = V(pX̄Q
,UΛ1/Λ3

)

8This bound can be obtained using Lemma 4, see the preprint version of
this work [33]. Here, we prefer to state Lemmas 3 and 5, which shorten the
proof, have a clearer operational meaning and can be of independent interest.

which vanishes as o
(
1
n

)
as shown previously. Using [58,

Lemma 2.7], we have that if V(pK,UK) ≤ 1
2 ,

|H(pK)−H(UK)| ≤ −V(pK,UK) log
V(pK,UK)

|K|

= V(pK,UK) log
2nRK

V(pK,UK)

= nRKV(pK,UK)− V(pK,UK) logV(pK,UK).

This vanishes as long as V(pK,UK) ∼ o
(
1
n

)
, which is indeed

the case.

F. Strong secrecy

Using [29, Lemma 1], we can bound the leakage as follows:

I(K;S,Zn,U) = I(K;S, Ẑn,U) ≤ dav log
|K|
dav

, (32)

where

dav =
∑
k∈K

pK(k)V(pSẐnU|K=k, pSẐnU)

= EẐnU

[∑
k∈K

pK(k)V
(
pS|ẐnUK=k, pS|ẐnU

)]

≤ EẐnU

[∑
k∈K

pK(k)V
(
pS|ẐnUK=k,US

)]
(33)

+ EẐnU

[
V
(
US , pS|ẐnU

)]
(34)

by the triangle inequality.
Due to Remark 5, we can write

pS|ẐnUK(s|z,u, k) =
pS|ẐnUK(s|z,u, k)

pK(k)

=
pX̄Q|Ẑn,U(k + s|z,u)

pK(k)

=
1

pK(k)

∑
λ3∈Λ3

pXQ|Ẑn,U(k + s+ λ3|z,u).

The term (33) can be written as

EẐnU

[∑
k∈K

∑
s∈S

∣∣∣∣pXQ|Ẑn,U(k + s+ λ3)− pK(k)
V (Λ1)

V (Λ2)

∣∣∣∣
]

≤ EẐnU

[∑
k∈K

∑
s∈S

∣∣∣∣pXQ|Ẑn,U(k + s+ λ3)−
V (Λ1)

V (Λ3)

∣∣∣∣
]

(35)

+ EẐnU

[∑
k∈K

∑
s∈S

∣∣∣∣V (Λ1)

V (Λ3)
− pK(k)

V (Λ1)

V (Λ2)

∣∣∣∣
]

(36)

by the triangle inequality.
Observe that

pXQ|Ẑn,U(xQ|z,u) =
∫
Rn

pXQ|Xn,U(xQ|x,u)pXn|Ẑn(x|z)dx

=

∫
Rn

fσQ
(xQ − x− u)

fσQ
(Λ1 − x− u)

fσ2(x− z)dx

=

∫
Rn

fσQ
(xQ −w − z− u)

fσQ
(Λ1 −w − z− u)

fσ2
(w)dx,
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which is the distribution of ⌊Wn
2 + z+ u⌉Λ1,σQ

.
Therefore, the term (35) can be rewritten as

EẐn

[
EU

[
V
(
pXQ modΛ3|Ẑn,U,UΛ1/Λ3

)]]
(a)

≤ 2ϵ1Λ1
(σQ) + 2ϵ1Λ3

(σ̃2),

where σ̃2
2 = σ2

2 + σ2
Q, and (a) follows by the previous

remark and Corollary 1. This vanishes as o
(
1
n

)
assuming the

conditions (28) and (31).
The term (36) simplifies to∑

k∈K

∣∣∣∣V (Λ2)

V (Λ3)
− pK(k)

∣∣∣∣ = V(UK, pK) = o

(
1

n

)
→ 0

as already shown in Section IV-E.
Observe that

pSẐnU(s, z,u) =
∑
k′∈K

pSKẐnU(s, k
′, z,u)

=
∑
k′∈K

pẐn(z)

V (Λ1)
pX̄Q|ẐnU(s+ k′|z,u)

=
∑
k′∈K

pẐn(z)

V (Λ1)

∑
λ3∈Λ3

pXQ|ẐnU(s+ k′ + λ3|z,u)

We now come back to the expression (34), which is equal to

EẐnU

[∑
s∈S

∣∣∣∣V (Λ1)

V (Λ2)
−
∑
k′∈K

∑
λ3∈Λ3

pXQ|Ẑn,U(s+k
′+λ3)

∣∣∣∣
]

≤EẐnU

[∑
k′∈K

∑
s∈S

∣∣∣∣V (Λ1)

V (Λ3)
−
∑
λ3∈Λ3

pXQ|Ẑn,U(s+k
′+λ3)

∣∣∣∣
]

=EẐn

[
EU

[
V
(
UΛ1/Λ3

, pXQ|Ẑn,U modΛ3

)]]
≤ 2ϵ1Λ1

(σQ) + 2ϵ1Λ3
(σ̃2)

by Corollary 1. This again vanishes as o
(
1
n

)
under conditions

(28) and (31).
In conclusion, dav ∼ o

(
1
n

)
and thus from (32), we find that

the leakage vanishes asymptotically as n→ ∞.
Remark 6: Although in Section IV-E we only showed that

the key is close to uniform on average over the dither U, using
the results in this section we see that

H(UK)−H(K|U) = H(UK)−H(K) + I(K;U)
≤ H(UK)−H(K) + I(K;S,Zn,U) → 0.

G. Achievable strong secrecy rate and optimal trade-off

Recall that in the previous sections we have imposed the
conditions (28), (29) and (31) on the volumes of Λ1, Λ2 and
Λ3 respectively, i.e.

V (Λ1)
2/n

σ2
Q

< 2πe,
V (Λ2)

2/n

σ̃2
1

> 2πe,
V (Λ3)

2/n

σ̃2
2

< 2πe.

Therefore, the achievable secret key rate is upper bounded by

RK =
1

n
log

V (Λ3)

V (Λ2)
<

1

2
log

σ̃2
2

σ̃2
1

=
1

2
log

σ2
2 + σ2

Q

σ2
1 + σ2

Q

(37)

As σQ → 0,

RK → 1

2
log

σ2
2

σ2
1

,

which is the optimal secret key rate. This improves upon our
previous work [1] in which the achievable secrecy rate had a
1/2 nat gap compared to the optimal.

Remark 7: The optimal scaling of the lattice Λ3 requires
the noise variance σ2 to be known by Alice; if only a lower
bound for σ2 is available, positive secret key rates can still be
attained.

The public communication rate is lower bounded by

RP =
1

n
log

V (Λ2)

V (Λ1)
>

1

2
log

σ2
1 + σ2

Q

σ2
Q

.

Equivalently, we have σ2
Q >

σ2
1

e2RP −1
. Replacing this expres-

sion in the bound (37) for RK , and observing that (37) is a
decreasing function of σ2

Q, we find

RK <
1

2
log

(
e−2RP +

σ2
2

σ2
1

(1− e−2RP )

)
.

which corresponds to the optimal public rate / secret key rate
trade-off (16).

V. CONCLUSIONS AND PERSPECTIVES

To conclude, we have proposed a new lattice-based tech-
nique to extract a secret key from correlated Gaussian sources
against an eavesdropper. Using L1 distance and KL diver-
gence, we have proved the existence of lattices with a van-
ishing flatness factor for all VNRs up to 2πe. This improves
upon the previous result for VNRs up to 2π, based on L∞

distance. Together with dithering and randomized rounding,
it has enabled us to achieve the optimal trade-off with one-
way public communication. In the same way, it is possible
to remove the 1

2 -nat gap to the secrecy capacity of wiretap
channels associated to the use of the L∞ flatness factor [40,
p. 1656].

An immediate step for future work is to turn the existence
result of this paper into a practical scheme. There are avenues
for replacing random nested lattices for Wyner-Ziv coding with
lower-complexity techniques, such as superposition coding or
residual quantization [59, 60]. However such techniques do
not address privacy amplification. In order to implement the
approach proposed in this paper based on the notion of flatness
factor of a lattice, a promising option is to instantiate the
lattices using polar codes (aka polar lattices), which have
been shown to be good for quantization, channel coding [61]
and secrecy. A polar lattice has been constructed in [40] to
achieve the secrecy capacity of Gaussian wiretap channels. It
can be shown that the secrecy-good lattice in [40] enjoys a
vanishing L1 flatness factor. Since the encoding and decoding
complexity of a polar lattice is quasi-linear in blocklength n,
it is an excellent candidate to build a practical scheme for
secret key generation. It is also possible to implement the
randomized rounding algorithm over a polar lattice. We leave
such implementation issues to future work.

Another problem is to see if it is possible to modify the
design of this paper to yield a fuzzy extractor, which would
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require redesigning a lattice with respect to other entropy mea-
sures. Other open problems include identifying whether is is
possible to remove dithering and/or randomized quantization,
characterizing the second-order asymptotics and the extension
of the proposed key-agreement protocol to multi-terminal
systems. Furthermore, the reconciliation technique based on
Wyner-Ziv coding may be extended to key-encapsulation
mechanisms (KEM) in lattice-based cryptography, due to the
similarity between KEM and secret key agreement. Finally,
it is interesting to explore the applications of L1 and KL
smoothing parameters in other cryptographic and mathemati-
cal problems [38, 39].
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APPENDIX A
RESOLVABILITY CODES

In this section we review some results from [37] about
resolvability codes for regular channels, which are needed for
the proof of Theorem 1.

First, we need some preliminary definitions. In the fol-
lowing, we assume X is a finite abelian group and Y is a
measurable space. Given a channel W : X → Y , we use the
notation Wx(y) =W (y|x) for x ∈ X , y ∈ Y .

Definition 7 (Rényi Entropy): Given a discrete distribution
pA on A and ρ ≥ 0, we define

H1+ρ(A) = −1

ρ
log
∑
a∈A

pA(a)
1+ρ.

Definition 8: Given a channel W : X → Y and a probability
distribution pX on X , we define ∀ρ ≥ 0

ψ(ρ|W,pX) = log
∑
x∈X

pX(x)

∫
Y
Wx(y)

1+ρ(W ◦ pX)(y)−ρdy.

This function has the following properties:

ψ(0|W,pX) = 0, (38)

ψ(ρ|Wn, p⊗nX ) = nψ(ρ|W,pX), (39)

lim
ρ→0

ψ(ρ|W,pX)
ρ

= I(X;Y). (40)

We also compute the second derivative in 0 which will be
needed in the next section.

Lemma 6:

ψ′′(0) =
∑
x∈X

pX(x)

∫
Y
Wx(y)

(
log

Wx(y)

(W ◦ pX(y))

)2

dy

−

(∑
x∈X

pX(x)

∫
Y
Wx(y) log

Wx(y)

(W ◦ pX)(y)
dy

)2

.

The proof of Lemma 6 can be found in Appendix F.
Definition 9 (Regular channel): The channel W : X → Y

is called regular if X acts on Y by permutations {πx}x∈X

such that πx(π′
x(y)) = πx+x′(y) ∀x, x′ ∈ X , and there exists

a probability density pY on Y such that Wx(y) = pY(πx(y))
∀x ∈ X , ∀y ∈ Y .

In particular, a regular channel is symmetric [62, 63] in the
sense of Gallager [64], and its capacity is achieved by the
uniform distribution.

The following theorem was stated for discrete memoryless
channels [37, Corollary 18] but can be extended to continuous
outputs [37, Appendix D] as follows:

Theorem 3: Let M and X be a finite-dimensional vector
spaces over Fp and Y a measurable space. Consider a uniform
random variable F taking values over the set of linear map-
pings f : M → X and a distribution pM on M. If W : X → Y
is regular, then ∀ρ ∈ (0, 1],

EF

[
eρD(W◦F◦pM||W◦UX )

]
≤ 1 + e−ρH1+ρ(M)eψ(ρ|W,UX ).

Theorem 3 is a one-shot result, but we can apply it to n
uses of an i.i.d. channel to get the following.

Corollary 2: Let X be a finite-dimensional vector space
over Fp and Y a measurable space, and W : X → Y a regular
channel. Let R > I(X;Y), where X ∼ UX and Y ∼ W ◦ UX .
Consider Cn ⊂ Xn chosen uniformly at random in the set of
(n, k) linear codes in Xn, where k = ⌈nR⌉

log p . Denote by UCn

the uniform distribution over the codewords in Cn. Then

ECn [D(Wn ◦ UCn ||Wn ◦ U⊗n
X )] → 0

exponentially fast as n→ ∞.
Proof: Note that Wn : Xn → Yn is still a regular

channel with respect to the set of permutations {πx}x∈Xn ,
where we define πx(y1, . . . , yn) = (πx1(y1), . . . , πxn(yn)) for
x = (x1, . . . , xn).
Applying Theorem 3 to this channel, and taking M = Fkp
with k = ⌈nR⌉

log p and pM = UM, for Fn representing a uniform
random linear encoder fn : M → Xn we have

EFn

[
eρD(W

n◦Fn◦UM||Wn◦U⊗n
X )
]

≤ 1 + e−ρH1+ρ(M)eψ(ρ|W
n,U⊗n

X ).

By Jensen’s inequality,

EFn [D(Wn ◦ Fn ◦ UM||Wn ◦ U⊗n
X )]

≤ 1

ρ
log
(
1 + e−ρH1+ρ(M)eψ(ρ|W

n,U⊗n
X )
)

≤ 1

ρ
e−ρH1+ρ(M)+ψ(ρ|Wn,U⊗n

X ).

Note that H1+ρ(M) = nR since M is uniform. Using (39),
we find that ∀ρ ∈ (0, 1],

EFn
[D(Wn ◦ Fn ◦ UM||Wn ◦ U⊗n

X )]

≤ 1

ρ
e−n(ρR−ψ(ρ|W,UX )). (41)

From (38) and (40), we have ψ(ρ|W,pX) = ρI(X;Y) + η(ρ),
where limρ→0

η(ρ)
ρ = 0. Given R > I(X;Y), ∃ρ̄ sufficiently

small such that δ = R− I(X;Y)− η(ρ̄)
ρ̄ > 0. Therefore

EFn
[D(Wn ◦ Fn ◦ UM||Wn ◦ U⊗n

X )] ≤ 1

ρ̄
e−nρ̄δ → 0 (42)
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as n→ ∞. The conclusion follows by noting that Fn ◦UM =
UCn .

APPENDIX B
MODULO LATTICE CHANNELS AND THE KL FLATNESS

FACTOR

In this section, we review some properties of modulo lattice
channels and introduce another notion of flatness factor based
on the KL divergence, which will be used in the proof of
Theorem 1.

A. The mod-Λ channel and the mod-Λ/Λ′ channel

Following Forney et al. [62], given a fundamental region
R(Λ) of a lattice Λ we can define the mod-Λ channel with
input Xn ∈ R(Λ) and output

Yn = [Xn +Wn] modR(Λ),

where Wn is a noise vector. When Wn is i.i.d. Gaussian with
variance σ2, this channel has capacity

C(Λ, σ2) = log V (Λ)− h(fσ,Λ).

In the above expression, with slight abuse of notation we
denote by h(fσ,Λ) the differential entropy of fσ,R(Λ), which
does not depend on the choice of the region R(Λ).

The following result [61, Lemma 1] relates the L∞ flatness
factor to the capacity of the mod-Λ channel.

Lemma 7: The capacity C(Λ, σ2) of the mod-Λ channel is
bounded by C(Λ, σ2) ≤ log(1 + ϵΛ(σ)) ≤ ϵΛ(σ).

Given two nested lattices Λ′ ⊂ Λ and a fundamental region
R(Λ′), we can define the mod-Λ/Λ′ channel with discrete
input Xn ∈ Λ ∩R(Λ′) and output

Yn = [Xn +Wn] modR(Λ′).

It was shown in [62] that this channel has capacity

C(Λ/Λ′, σ2) = log |Λ/Λ′|+ h(fσ,Λ)− h(fσ,Λ′).

In particular, the following relation holds:

C(Λ/Λ′, σ2) = C(Λ′, σ2)− C(Λ, σ2). (43)

Lemma 8: For any σ > 0,

C(Λ/Λ′, σ2) = D
(
fσ,R(Λ′)

∥∥∥ 1

|Λ/Λ′|
fσ,Λ|R(Λ′)

)
.

Proof: By definition,

D
(
fσ,R(Λ′)

∥∥∥ 1

|Λ/Λ′|
fσ,Λ|R(Λ′)

)
=

∫
R(Λ′)

fσ,Λ′(y) log
fσ,Λ′(y) |Λ/Λ′|

fσ,Λ(y)
dy

= −h(fσ,Λ′) +

∫
R(Λ′)

fσ,Λ′(y) log
|Λ/Λ′|
fσ,Λ(y)

dy

= −h(fσ,Λ′) + log |Λ/Λ′| −
∫
R(Λ′)

fσ,Λ′(y) log fσ,Λ(y)dy.

The conclusion follows by observing that

−
∫
R(Λ′)

fσ,Λ′(y) log fσ,Λ(y)dy

= −
∑

λ∈Λ/Λ′

∫
R(Λ)+λ

fσ,Λ′(y) log fσ,Λ(y)dy

=−
∑

λ∈Λ/Λ′

∫
R(Λ)

fσ,Λ′(y − λ) log fσ,Λ(y)dy

= −
∫
R(Λ)

fσ,Λ(y) log fσ,Λ(y)dy = h(fσ,Λ).

B. The KL flatness factor

We can now introduce a notion of flatness factor based on
KL divergence.

Definition 10: Given a lattice Λ, a fundamental region R(Λ)
and σ > 0, we define the KL flatness factor as follows:

ϵKLΛ (σ) = D(fσ,R(Λ)||UR(Λ)). (44)

Note that as before, the definition does not depend on the
choice of the fundamental region.

Remark 8: By Pinsker’s inequality, ∀σ > 0,

ϵ1Λ(σ) ≤
√
2ϵKLΛ (σ).

Remark 9 (Relation to the capacity of the mod-Λ channel):
Note that [40, p.1656]

D(fσ,R(Λ)||UR(Λ)) = log V (Λ)− h(fσ,Λ) = C(Λ, σ2).

By shift-invariance of the differential entropy, the KL flatness
factor is also shift-invariant, i.e.

ϵKLΛ (σ) = D(fσ,Λ,c|R(Λ)||UR(Λ))

for all c ∈ Rn.
Thanks to Remark 9, we are able to prove that the KL

flatness factor is monotonic:
Lemma 9: For any lattice Λ, ∀σ′ > σ, ϵKLΛ (σ′) ≤ ϵKLΛ (σ).

Proof: With the same notation as in the proof of Lemma
2, from the data processing inequality for the KL divergence
[58, Lemma 3.11] we have

ϵKLΛ

(√
σ2 + σ2

0

)
= D

(
f√

σ2+σ2
0 ,R(Λ)

||UR(Λ)

)
= D(Yn||Un) ≤ D(Xn||Un) = D(fσ,R(Λ)||UR(Λ)) (45)

= ϵKLΛ (σ).

Similarly to Definition 5, we can introduce a notion of
secrecy goodness based on the KL flatness factor.

Definition 11: A sequence of lattices {Λ(n)} is KL secrecy-
good if ϵKL

Λ(n)(σ) = o
(

1
nc

)
.

Remark 10: By Remark 8, a sequence of KL secrecy-good
lattices is also L1 secrecy-good.

One can show that under the assumption of a small KL
flatness factor, the modulo lattice operation allows to extract
the intrinsic randomness of the additive Gaussian channel (in
the sense of [30]). The interested reader can find more details
in the preprint version of this work [33].
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APPENDIX C
PROOF OF THEOREM 1

In order to prove Theorem 1, we will actually show a
stronger result:

Proposition 3: If γΛ(σ) < 2πe is fixed, then there exists a
sequence {Λ(n)} of lattices which are KL secrecy-good.
Theorem 1 then follows from Proposition 3 by Remark 10.

Before proceeding with the proof, we summarize the main
idea here. We use the standard Construction A to find the
sought-after lattice Λ, by choosing a coarse lattice Λc = αpZ,
a fine lattice Λf = αZ, an (n, k) linear code C over Fp, and
Λnc ⊆ Λ = α(pZn + C) ⊆ Λnf . Using the chain rule (43), we
have

D(fR(Λ),σ||UR(Λ)) = C(Λ, σ2) = C(Λnf , σ
2)+C(Λnf /Λ, σ

2).

Now, using a sufficiently fine lattice Λf , we can easily make
C(Λnf , σ

2) → 0 thanks to the flatness phenomenon (cf.
Lemma 7). The non-trivial part of the proof is to exhibit a
lattice Λ such that C(Λnf /Λ, σ

2) → 0 as well. It turns out that
if the linear code C is a resolvability code for the mod-Λf/Λc
channel W , i.e. if the output of the code is close to the output
of uniform input, then C provides the desired solution. In fact,
we show that

D(Wn ◦ UC ||Wn ◦ U(Λf/Λc)n) = C(Λnf /Λ, σ
2),

which tends to 0 if C is a resolvability code. The existence
of such linear resolvability codes follows from the results of
[37] (see Appendix A). However, making the above argument
rigorous involve certain technicalities, as seen in the following.

Proof of Proposition 3:
For a given dimension n, we will construct Λ as a scaled

mod-p lattice [65] of the form Λ = α(pZn + Cn), where Cn
is an (n, k)-linear code over Fp.

We will consider the asymptotic behavior as n→ ∞, α→
0, p → ∞ while satisfying the volume condition αnpn−k =
V (Λ) = (γσ2)n/2. Here, γ is the volume-to-noise ratio, which
is assumed to be fixed.

By construction, Λnc ⊂ Λ ⊂ Λnf , where Λc = αpZ and
Λf = αZ are one-dimensional lattices.

From Remark 9 and the relation (43), we have

D(fσ,R(Λ)||UR(Λ)) = C(Λ, σ2) = C(Λnf , σ
2)+C(Λnf /Λ, σ

2).

We want to show that both terms in the sum tend to zero when
n→ ∞.

First, we will show that C(Λnf , σ
2) = C((αZ)n, σ2) → 0 if

α = o
(

1
nc

)
for some c > 0. We follow the same approach as in

[61, Appendix A]. From Lemma 7 we have that C(Λnf , σ
2) ≤

ϵΛn
f
(σ). Furthermore, it was shown in [66, Lemma 3] that

ϵΛn
f
(σ) = (1 + ϵΛf

(σ))n − 1. (46)

Finally, one can show that [61, Appendix A]

ϵΛf
(σ) = ϵαZ(σ) ≤ 4e−

2π2σ2

α2 . (47)

Then

ϵΛn
f
(σ) ≤

(
1 + 4e−

2π2σ2

α2

)n
− 1

≤ 4ne−
2π2σ2

α2 + o(e−
2π2σ2

α2 ) → 0.

since (1+x)n = 1+nx+ o(x) when x→ 0. Next, we want
to show that there exists a sequence of lattices Λ of the form
α(pZn + Cn) such that C(Λnf /Λ, σ

2) → 0 as n→ ∞.
Consider the mod-(Λf/Λc) channel W : Λf ∩ R(Λc) →
R(Λc). This channel is regular (see Definition 9 in Appendix
A) with respect to the set of permutations πx(y) = [y − x]
mod Λc for x ∈ X = Λf ∩R(Λc), y ∈ R(Λc). In fact,

Wx(y) =W (y|x) = fσ,Λc(y − x)

= fσ,Λc([y − x] modΛc) = fσ,Λc(πx(y)).

Being regular, the mod Λf/Λc channel is symmetric and the
uniform distribution over X achieves capacity (see Appendix
A). Moreover, Λf/Λc ∼= Fp as abelian groups. We consider
the required rate condition in Corollary 1:

R =
1

n
log |Cn| =

1

n
log |Λ/Λnc | =

1

n
log

αnpn

V (Λ)

> I(X;Y) = C(Λf/Λc, σ
2). (48)

We have

C(Λf/Λc, σ
2) = log |Λf/Λc|+ h(fσ,Λf

)− h(fσ,Λc
)

= log p+ h(fσ,Λf
)− h(fσ,Λc

)

= log p+ logα− C(Λf , σ
2)− h(fσ,Λc

).

Therefore, the condition (48) is equivalent to

1

n
log V (Λ) < h(fσ,Λc

) + C(Λf , σ
2).

In the asymptotic limit for α → 0, p → ∞ while keeping
αnpn−k = V (Λ) = (γσ2)n/2, we have C(Λf , σ

2) → 0.
Moreover, αp → ∞, and so h(Λc, σ

2) → 1
2 log 2πeσ

2. So
asymptotically, the rate condition is satisfied when

V (Λ)2/n

2πeσ2
< 1. (49)

In this case we have

R− I(X;Y)

= − 1

n
log V (Λ) + C(Λf , σ

2)− h(fσ,Λc
) → δ0

=
1

2
log

2πeσ2

V (Λ)2/n
=

1

2
log

2πe

γΛ(σ)
> 0 (50)

as n→ ∞.

Remark 11: Note that we cannot directly apply Corollary
2 in Appendix A to this setting, since the definition of the
channel W depends on α and p which are not fixed but
are a function of n. However, we will show that the proof
of the Corollary can be extended to this channel since the
convergence in (42) is uniform.

Proof of Remark 11: Let X be a uniformly distributed
variable on Λf ∩R(Λc) (identified with the quotient Λf/Λc)
and Y the corresponding output distribution. Consider the
function ψ(ρ) = ψ(ρ|W,UX ) in Definition 8. From (38) and
(40), it follows that its Taylor expansion in 0 is given by

ψ(ρ) = ρI(X;Y) + ρ2ψ′′(0) + o(ρ2), (51)
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where ψ′′(0) is given in Lemma 6. Noting that

(W ◦ UX )(y) =
∑
x∈X

1

|X |
Wx(y)

=
∑

x∈Λf/Λc

1

|Λf/Λc|
fσ,Λc

(y − x) =
1

|Λf/Λc|
fσ,Λf

(y),

we find that ψ′′(0) is equal to∑
x∈Λf/Λc

1

|Λf/Λc|

∫
R(Λc)

fσ,Λc(y−x)
[
log

fσ,Λc
(y−x)

1
|Λf/Λc|fσ,Λf

(y)

]2
dy

−

[ ∑
x∈Λf/Λc

1

|Λf/Λc|

∫
R(Λc)

fσ,Λc
(y−x) log fσ,Λc

(y−x)
1

|Λf/Λc|fσ,Λf
(y)

dy

]2

≤
∑

x∈Λf/Λc

1

|Λf/Λc|

∫
R(Λc)

fσ,Λc
(y−x)

[
log

fσ,Λc
(y−x)

1
|Λf/Λc|fσ,Λf

(y)

]2
dy

=

∫
R(Λc)

fσ,Λc
(y′)

(
log

fσ,Λc
(y′)

1
|Λf/Λc|fσ,Λf

(y′)

)2

dy′

with the change of variables y′ = y − x modR(Λc). From
the definition of flatness factor and the bound (47), we find
that ∀y′ ∈ R(Λc),

fσ,Λf
(y′) ≥

1− ϵΛf
(σ)

V (Λf )
≥ 1− 4e−

2π2σ2

α2

α
.

Recalling the definition of the theta series of a lattice in (7) and
the relation (9), we have ϵΛ(σ) = ΘΛ∗(2πσ2)− 1, where Λ∗

is the dual lattice of Λ. Then by [36, Remark 1], ∀y′ ∈ V(Λc)

fσ,Λc
(y′) ≤ fσ,Λc

(0) =
1√
2πσ

ΘΛc

(
1

2πσ2

)
=

1√
2πσ

(
1 + ϵΛ∗

c

(
1

2πσ

))
.

Again using the bound (47), we have

ϵΛ∗
c

(
1

2πσ

)
= ϵ 1

αpZ

(
1

2πσ

)
≤ 4e−

α2p2

2σ2 .

Then, since α → 0 and αp → ∞ when n → ∞, for
sufficiently large n we have

fσ,Λc(y
′)

1
|Λf/Λc|fσ,Λf

(y′)
≤ 1√

2πσ

αp(1 + 4e−
α2p2

2σ2 )

1− 4e−
2π2σ2

α2

≤ Cαp

for some constant C > 0. Consequently, for large enough n,
∃C ′ > 0 such that

ψ′′(0) ≤ C ′(logαp)2.

Then, from the Taylor expansion (51) we obtain the bound

ψ(ρ) ≤ ρI(X;Y) + ρ2C ′′(logαp)2

for another suitable constant C ′′ > 0. In particular, we can
bound the exponent in equation (41) as follows:

ρR− ψ(ρ|W,UX ) ≥ ρ(R− I(X;Y)− ρC ′′(logαp)2) > ρ
δ0
2

for sufficiently large n, where δ0 is defined in (50), as long

as ρ = o
(

1
(logαp)2

)
and the VNR condition (49) is satisfied.

In particular if we choose the scaling9

p = ξn3/2, αp = 2
√
n, (52)

where ξ is the smallest number in the interval [1, 2) such that
p is prime [67, Section IV], we have convergence in (42) with
ρ̄ = 1

(log 2
√
n)2+η for some η > 0 since

1

ρ̄
e−nρ̄

δ0
2 = (log 2

√
n)2+ηe

− nδ0
2(log 2

√
n)2+η → 0.

This concludes the proof of Remark 11.
Then according to Corollary 2, for Cn chosen uniformly in

the set of (n, k) linear codes over Fp of rate R = k
n log p,

ECn

[
D(Wn ◦ UCn

∥Wn ◦ U⊗n
X )

]
≤ 1

ρ̄
e−nρ̄

δ0
2 → 0

as n→ ∞. In particular, there exists at least one code Cn such
that D(Wn ◦ UCn

∥Wn ◦ U⊗n
X ) → 0. Note that

(Wn ◦ UCn
)(y) =

∑
c∈Cn

1

|Cn|
fσ,Λn

c
(y − αc)

=
∑
c∈Cn

∑
λc∈Λn

c

1

pk
fσ(y − αc− λc) =

1

pk

∑
λ∈Λ

fσ(y − λ)

=
1

pk
fσ,Λ(y).

On the other hand,

(Wn ◦ U⊗n
X )(y) =

∑
x∈Λn

f∩R(Λn
c )

1

pn
fσ,Λn

c
(y − x)

=
1

pn
fσ,Λn

f
(y).

Since both (Wn ◦ UCn
) and (Wn ◦ U⊗n

X ) are Λ-periodic, we
can write

D(Wn ◦ UCn
∥Wn ◦ U⊗n

X )

=

∫
R(Λn

c )

p−kfσ,Λ(y) log
p−kfσ,Λ(y)

p−nfσ,Λn
f
(y)

dy

=

∫
R(Λ)

fσ,Λ(y) log
fσ,Λ(y)

p−(n−k)fσ,Λn
f
(y)

dy

= D(fσ,R(Λ)∥p−(n−k)fσ,Λn
f |R(Λ)

) = C(Λnf /Λ, σ
2) → 0

using Lemma 8. This concludes the proof.
Remark 12: With a standard argument based on Markov’s

inequality, we can also show that the set of KL-secrecy good
lattices has large measure, since ∀ξ > 0,

P
{
D(Wn ◦ UCn∥Wn ◦ U⊗n

X ) > ξ
}

≤ 1

ξ
ECn

[
D(Wn ◦ UCn

∥Wn ◦ U⊗n
X )

]
.

Given 0 < c < 1/2, we can take ξ = 1
c
e−nρ̄δ0

ρ̄ and we obtain

P
{
D(Wn ◦ UCn∥Wn ◦ U⊗n

X ) > ξ
}
≤ c.

9This choice of scaling is compatible with the existence of a suitable
sequence of nested lattices, see Appendix D.



15

APPENDIX D
EXISTENCE OF A SEQUENCE OF NESTED LATTICES FOR

SECRET KEY GENERATION

In this section, we show the existence of a sequence of
nested lattices Λ

(n)
3 ⊂ Λ

(n)
2 ⊂ Λ

(n)
1 such that Λ3 is KL

secrecy-good, Λ2 is AWGN-good and Λ1 is KL secrecy-
good. By Remark 10, it follows that Λ1 and Λ3 are also
L1-secrecy good. Note that we don’t need covering-goodness,
which requires more stringent conditions on the parameters
[68].

We will follow the construction in [67]. We denote by VB,n
the volume of the n-dimensional ball of radius 1. Given P3 >
P2 > P1 > 0, let ai = log 1

Pi
for i = 1, 2, 3. We consider the

dimensions k3 < k2 < k1 ≤ n defined as follows:

ki =

⌊
n

2 log p

(
log

(
4

V
2/n
B,n

)
+ ai

)⌋
, i = 1, 2, 3,

where p = ξn3/2, and ξ is taken to be the smallest number
in the interval [1, 2) such that p is prime [67, Section IV]10.
Let C1 be uniformly sampled from the set of all linear (n, k1)
codes over Fp, with generator matrix G1 (in column notation).
We denote by G2 and G3 the submatrices of G1 corresponding
to the first k2 and k3 columns respectively, and by C2, C3
the corresponding linear codes. Finally, we define the lattices
Λ̃i =

1
pCi+Zn and Λi = αpΛ̃i for i = 1, 2, 3, where α = 2

√
n
p .

Then by [67, Theorem 1 and Theorem 6], the matrices G1, G2,
G3 are full rank and the nested lattices Λ

(n)
3 ⊂ Λ

(n)
2 ⊂ Λ

(n)
1

obtained in this way are good for quantization and coding with
probability that tends to 1 when n→ ∞ and

lim
n→∞

V 2/n(Λ
(n)
i ) = 2πePi, i = 1, 2, 3.

Note that we have taken the same scaling as in (52). In
particular, when n → ∞ we have p → ∞, α → 0 and
αp→ ∞.

Moreover, α = 2
ξn satisfies the condition α = o

(
1
nc

)
in

Appendix C. Therefore, due to Remark 12 the lattices Λ3 and
Λ1 are also KL secrecy-good with probability close to 1, which
concludes the proof.

APPENDIX E
OPTIMAL PUBLIC RATE / SECRET KEY RATE TRADE-OFF

In this section, we derive the optimal trade-off between
public rate and secret key rate from [23] for the setting
in our paper. Note that Theorem 4 in [23] doesn’t directly
apply to our model because our source doesn’t necessarily
satisfy X → Y → Z. However, the proof of Lemma 6 in
[23] shows how to obtain a new source (X̄, Ȳ, Z̄) which is
degraded (X̄ → Ȳ → Z̄) and has the same achievable region
(R(X,Y,Z) = R(X̄, Ȳ, Z̄)). In particular, translating the proof
into our notation, we can take X̄ = X, Ȳ = Y and

Z̄ =
σzρxz
σyρxy

Y + N̂,

10Note that the conclusions of [67] still hold for any p = Θ(n
1
2
+δ) with

δ > 0, see Remark 7 in that paper.

where N̂ is independent of all other random variables and has
variance σ2

z

(
1− ρ2xz

ρ2xy

)
.

From elementary computations we see that σz̄ = σz , ρxz̄ =
ρxz and ρyz̄ = ρxz

ρxy
.

In our notation, the optimal trade-off given by Theorem 4 of
[23] is given by

RK ≤ 1

2
log

(1− ρ2ȳz̄)(1− ρ2x̄z̄)− (ρx̄ȳ − ρȳz̄ρx̄z̄)
2e−2RP

(1− ρ2ȳz̄)(1− ρ2x̄z̄)− (ρx̄ȳ − ρȳz̄ρx̄z̄)2
.

In terms of the original variables X,Y,Z, after simplifying the
expression we obtain the optimal trade-off

RK ≤ 1

2
log

(1− ρ2xz)− (ρ2xy − ρ2xz)e
−2RP

1− ρ2xy
.

(Recall that ρxy > ρxz in our setting). Using the notation
σ2
1 = σ2

x(1− ρ2xy), σ
2
2 = σ2

x(1− ρ2xz) from our paper, this is
equal to

RK ≤ 1

2
log

(
e−2RP +

σ2
2

σ2
1

(1− e−2RP )

)
. (53)

APPENDIX F
PROOF OF LEMMA 6

The first derivative of the function ψ(ρ) = ψ(ρ|W,pX) is

ψ′(ρ) =

∑
x∈X pX(x)

∫
Y

Wx(y)
1+ρ

((W◦pX)(y))ρ log Wx(y)
(W◦pX)(y)dy∑

x∈X pX(x)
∫
Y

Wx(y)1+ρ

((W◦pX)(y))ρ dy

=
f(ρ)

g(ρ)
.

Then we have

g(0) = 1,

f(0) =
∑
x∈X

pX(x)

∫
Y
Wx(y) log

Wx(y)

(W ◦ pX)(y)
dy = g′(0),

f ′(0) =
∑
x∈X

pX(x)

∫
Y
Wx(y)

(
log

Wx(y)

(W ◦ pX)(y)

)2

dy.

The conclusion follows since

ψ′′(0) =
f ′(0)g(0)− f(0)g′(0)

g2(0)
.
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