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Abstract—Many blockchain protocols and applications require
access to a reliable source of distributed random numbers.
This has led to the recent interest in the study of distributed
random number generation (RNG) and randomness beacons.
Numerous approaches have been proposed in the literature, using
different cryptographic techniques and working under different
assumptions. A problem that has recently been studied is that
of generating secret random numbers. There is a natural use-
case for this. Suppose a casino CASSIE wishes to offer its
gambling games as a smart contract. It is not viable to generate a
fresh distributed random number for each bet. Instead, a secret
random number should be generated at predefined intervals,
e.g. each day, and used as a seed to create the randomness for the
whole day. This seed should only be known to CASSIE. Moreover,
at the end of the day, CASSIE should be able to disclose the seed
and prove that there was no tampering.

In this work, we propose a simple and novel distributed ran-
dom beacon protocol that generates distributed random numbers
while preserving secrecy. The generated random number can be
used in DeFi applications, such as decentralized casinos, for some
time, until it is published along with proof that it is indeed the
output of our random beacon. In addition to achieving the desired
secrecy property, our approach is also efficient and requires the
same amount of computation and communication as non-secret
random beacons. Our protocol can easily be implemented as a
smart contract.

Index Terms—Random Beacon, Secret Randomness,
Blockchains

I. INTRODUCTION

Motivation for Random Beacons. Many applications taking
advantage of recent advancements in blockchain rely on ran-
domness, namely on the decentralized generation of random
numbers. One notable example is Proof-of-Stake (PoS), a
widely adopted energy-efficient blockchain consensus proto-
col. In PoS, each node is selected as the validator/miner
for the next block with a probability proportional to their
stake [1]–[3]. Random beacons are also important in emerging
blockchain-based gambling applications, such as casinos and
lotteries.
Existing Random Beacons. Due to the deterministic nature
of blockchain protocols, generating random numbers is a
challenging task, attracting active research in this area [4]–
[14]. Some approaches use the blockchain state, such as a
block hash or timestamp, as the source of distributed ran-
domness [2]. However, these methods are susceptible to miner
manipulation and give miners an unfair advantage over other

participants of the network. In other approaches, all nodes or
a random subset of the nodes form a committee to jointly run
a distributed protocol to generate fresh random numbers and
incur additional gas [15]–[25]. These approaches assume that
one or the majority of nodes will honestly follow the protocol,
and defend against the malicious nodes using cryptographic
techniques such as commitment schemes [26], [27], publicly
verifiable secret sharing (PVSS) [7], [28]–[31] or verifiable
delay functions (VDF) [26].

Motivation for Secret Randomness. Generating a secret
random number on the blockchain was recently considered
in [12]. While previous random number generation (RNG)
protocols succeed in providing bias-resistant distributed ran-
domness, using commitment schemes, PVSS, or VDFs, there
has not been much research on applications that require the
random number to be secret while being used. For example,
consider an online casino CASSIE who wishes to provide
gambling and lottery games as a smart contract. Generating a
fresh random number for each bet is both too time-consuming
and far too expensive, since it uses both gas and rewards to
incentivize participation in the RNG. Thus, it would be much
more natural to have a decentralized protocol that generates
a single fresh random number at the beginning of each day
and then keep this random number private to CASSIE and
use it as a seed to generate further random numbers for each
bet during the day. Of course, the random seed should be
publicly verifiable later, at the end of the day, in order to
prove to the players that the casino did not manipulate the
games’ results. See [12] for more on this point. While [12]
provided an approach for generating secret random numbers
on the blockchain, their method is inefficient and has a
quadratic communication complexity, i.e. Θ(n2) where n is
the number of RNG participants. This is in contrast to non-
secret decentralized RNG protocols that only require linear
communication. In this work, we close this gap and provide
simple and novel decentralized RNG protocols that ensure
secrecy without compromising on security or efficiency. Our
protocols have a communication complexity of O(n).

Our Contributions. In this work, we propose two Secret
Random Number Generation (SRNG) protocols, SRNG1 and
SRNG2. Both protocols use a novel approach to generate
random numbers using a public key encryption scheme, veri-



fiable delay functions (VDFs) and commitment schemes. The
former requires only one round of communication from the
participants, whereas the latter needs two rounds. SRNG2
provides stronger tamper-resistance guarantees than SRNG1.
Both approaches are efficient, requiring only O(n) overall
communication for an RNG committee of n members.

II. PRELIMINARIES

Aggregation of multiple inputs. Previous RNG protocols, such
as [5]–[7], mostly share the same simple idea to ensure decen-
tralization: to allow each member of a group of participants
to contribute a part of randomness and use an aggregation
function to combine multiple input local random numbers into
a decentralized random output. Popular choices of aggregation
functions include xor or modular summation. Assume the
RNG protocol is designed to generate an m-bit integer v
uniformly at random from S = {0, 1}m. Each participant Pi

of the protocol should independently sample an m-bit integer
si uniformly at random using her own random source, for
example, by rolling a fair coin m times. Then, the modular
summation formula defines v as v :=

∑n
i=1 si (mod 2m),

where n is the number of participants. Using the modular
summation aggregation, the distribution of v is uniform if
at least one out of the n participants honestly samples her
value uniformly at random. For simplicity, sometimes we do
not explicitly mention (mod 2m). We also denote 2m by M.
While the protocol looks simple at first glance, implementing
it in a decentralized setting is complicated by the existence
of malicious participants who violate the protocol. To ensure
such parties cannot abort the protocol, we can use commitment
schemes and VDFs or PVSS schemes. In this work, our
protocol does not use PVSS to avoid the overall quadratic
communication complexity.

Commitment schemes. One attack that a malicious participant
can perform is to delay choosing her value until all other
participants submit their values. Based on all other values
si, the malicious participant can successfully bias the RNG
output by carefully choosing her own value. A commitment
scheme can help prevent this attack using a two-stage protocol.
In the first stage, every participant sends a commitment
ci = hash(si||noncei), where hash is a cryptographic hash
function and noncei is a random value so that the malicious
participant does not know si from ci. In the second stage,
everyone reveals si and noncei to match ci. A malicious
participant can still try to tamper with the final output by not
revealing her value in the second stage. However, this can be
disincentivized by deposits and further prevented by making
the final output unpredictable using verifiable delay functions
(VDFs) [26].

VDF. Informally, a verifiable delay function [32] is a function
f , that given an input x takes at least time t to compute
the output y = f(x), even if using many processors in
parallel. However, a proof π can be efficiently computed
along with the computation of y, such that a third party can
verify whether y is indeed f(x) in a much shorter time using

only one processor, with the help of π. In RNG protocols
using commitment schemes, a participant can be requested to
provide a VDF that evaluates to her contribution to the RNG,
so that in case of non-revelation, this value can be restored.
The values cannot be revealed by evaluating VDF during the
commitment stage, since the parameter t shall be chosen to
ensure it takes a long time to evaluate the VDF.

RNG smart contracts and open protocols. Using smart
contracts (SC) to implement RNG protocols allow other par-
ticipants of the blockchain to join and interact with the SC
owner CASSIE while reaching a consensus.

Desired Properties. In SRNG, we aim to achieve the following
desired properties:
• Secrecy. The final random value should be known only

to CASSIE. Other parties can know the value only if
CASSIE reveals it to them. Secrecy must be satisfied even
in case of a collusion among all players but one.

• Tamper-resistance. As long as at least one party is honest,
no party should be able to affect the resulting random
value v or its distribution, even if there is malicious
activity by some of the participants (including CASSIE).

• Auditability. CASSIE should be able to disclose the final
random number v and prove to the other participants that
the disclosed value was truly generated by the protocol
and not changed by CASSIE.

III. OUR APPROACH

In this section, we present our SRNG protocols. Both pro-
tocols are efficient and secure while guaranteeing the secrecy
of the generated random numbers. SRNG2 provides a stronger
guarantee of tamper-resistance than SRNG1.

A. SRNG1

An instance of the SRNG1 protocol generating one secret
distributed random number consists of the following steps.
See 1 for an illustration.

Step 1. Initialization. CASSIE calls the initial function
of the smart contract, asking for the generation of a new
random integer in the range {0, 1, 2, . . . , 2m − 1}. Recall that
M := 2m. She should specify the amount of reward R that she
is willing to pay to the players, and the amount of deposit dc
that she will lose if she is found to have violated the protocol
later. In total, CASSIE deposits R + dc with the contract.
Additionally, CASSIE generates a new public/private key pair
(pk, sk). She keeps sk secret but submits pk to the contract,
so that it is public and visible for the participants who can
send their contributions si in encrypted form. Finally, CASSIE
selects a VDF with evaluation time tV DF . CASSIE sets a
time limit tsubmit that is significantly smaller than the VDF
evaluation time tV DF . Every participant must send her value
in time tsubmit. For example, a real-world casino might set
tsubmit to be 10 minutes and tV DF as several hours.

Step 2. Value Submission. Every participant of the blockchain
network can choose a random value si and a random nonce
noncei. Participant Pi sends the encrypted ci = Encpk(si)
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Fig. 1. Illustration of the steps in our SRNG1 protocol.

by calling the smart contract’s submit function. The smart
contract also keeps track of idi, i.e. Pi’s identity/address on
the blockchain for future reward payments.

Step 3. Aggregation. Upon completion of the previous phase,
CASSIE can decrypt all the submissions and obtain each si.
Next, she computes v =

∑n
i=1 V DF (si) (mod M). It takes

time tV DF for CASSIE to evaluate VDF on n values using
n processors in parallel. For each evaluation of V DF (si),
CASSIE obtains the result xi = V DF (si) and a proof πi of
its correctness. CASSIE can use v =

∑n
i=1 xi as the desired

secret random number.

Step 4. Announcement and Verification. At the end of the
gambling day, CASSIE has a deadline to call the announce
function of the smart contract. This publishes her secret
key sk, the decrypted values {si}, the VDF results {xi =
V DF (si)} and the proofs {πi} for efficient public verification,
and the final value v. Each participant is also paid a reward
of R/n.

When handling the announce transaction, the smart con-
tract checks its validity: 1) the revealed secret key sk matches
the public key pk, 2) {si} match the decryption of {ci} under
the secret key sk, and 3) {xi} is the result of evaluating
the VDF on {si}, with the proof {πi}. If any check fails,
the contract will claim the deposit dc that was put down by
CASSIE by not refunding it.

Since the smart contract knows the value of v at this point,
it is also possible to verify that CASSIE has not cheated in
any of the bets that were placed during the day or to penalize
her for any cheating. This is an orthogonal issue that depends
on the details of the casino games being played and is handled
exactly as in the previous secret RNG method of [12].

B. SRNG2

In SRNG1, each participant only sends one transaction to
the contract, which saves transaction fees. This protocol’s

security lies in the impossibility of evaluating the VDF within
tsubmit time so that a malicious party cannot find a suitable
value to tamper with the result during the submission phase.
However, it is possible to bias the output if CASSIE herself
is malicious. For example, suppose there are two participants
P1 and P2. While P1 is honest and sends encryption of s1 to
the smart contract, P2 is malicious and controlled by CASSIE.
As a result, P2 can decrypt s1. Although P2 does not know
x1 = V DF (s1), she can set s2 to be the same as s1, so that
the output v = 2 ·x1 is guaranteed to be an even number. This
is considered a violation of tamper-resistance. Specifically,
if the downstream application chooses a winner based on
whether the random number is odd or even, then CASSIE
can manipulate the game.

The tampering issue above only exists if CASSIE herself
takes part in the tampering. It is not serious in most real-world
applications. It might be alleviated by using an alternative
aggregation formula instead of modular summation or by care-
fully using the random number in the downstream application.
Another solution would be to apply a hash function one more
time before using the random number, i.e. use hash(v) instead
of v. However, without the random oracle assumption, hash
functions are not proven to preserve the uniform distribution.
Therefore, we propose SRNG2, which uses a commit-reveal
strategy to ensure a stronger tamper-resistance. This comes at
a cost of one extra message per participant.

Step 1. Initialization. This step is similar to SRNG1. In
addition to SRNG1’s initialization, CASSIE sets a value dp,
which is the deposit every participant is required to post
with the smart contract. She also specifies the duration of the
commitment stage and revealing stages as tcommit and treveal,
respectively. treveal is chosen to be much smaller than tV DF .

Step 2. Commitment. Each participant Pi submits the commit-
ment c′i = hash(Encpk(si)||noncei) and pays the deposit dp
by calling the commit function of the smart contract. Here,



noncei is a nonce chosen by Pi and used as a salt for the
hash function.

Step 3. Revealing. Pi calls the reveal function of the smart
contract to open the hash. More specifically, she reveals ci =
Encpk(si) and noncei. The smart contract checks whether
hash(Encpk(si)||noncei) = c′i and rejects the transaction
otherwise.

Step 4. Aggregation. CASSIE decrypts the values to obtain
each si = Decsk(ci) and excludes the shares from malicious
participants who committed to two different values or failed
to reveal the committed value. She can now compute v =∑n

i=1 V DF (si) mod M in sequential time tV DF along with
a VDF proof πi for each V DF (si).

Step 5. Announcement and Verification. At the end of the
gambling period, CASSIE calls the announce function to
publish the secret key sk, decrypted values {si}, VDF outputs
{xi = V DF (si)} and VDF proofs πi. This function also
returns the deposit dp and pays a reward R/n to each honest
participant who correctly and punctually revealed their value.

The smart contract checks that in the announce transac-
tion: 1) the revealed secret key sk matches the published pk,
2) {si} are the decryption results of {ci}, 3) The VDF values
are computed correctly as in SRNG1.

All other details are exactly as in SRNG1.

IV. DISCUSSION AND SECURITY ANALYSIS

A. SRNG1

Secrecy. Assume the n participants are not controlled by
the same party and at least one of them is honest. Then,
under the protection of public-key encryption, unless CASSIE
wants to release the final random number v, no party can
know every si, thus cannot know v. By the aggregation
formula, even if a party knows all values except one si, v
is still unpredictable and uniformly-distributed as long as si
is uniformly-distributed.

Tamper-resistance. a) Every participant is only required to
send one message throughout the protocol, that is, during the
submission stage. At the submission stage, every participant
except CASSIE does not know other participants’ values. b)
Even CASSIE does not know any information about V DF (si)
if Pi is an honest participant so she cannot dominate v
arbitrarily by submitting a complement value herself. However,
a tampering similar to the one used above to motivate SRNG2
is possible.

Auditability. The secret key sk should be publicized so that
each si will be publicized. VDFs allow efficient public ver-
ification given that CASSIE should evaluate V DF (si) and
provide proof πi. If CASSIE fails to publish this data, she
will lose her deposit.

Communication complexity. Each participant only sends one
transaction of O(1) length. In total, there are n+2 transactions
and the overall length is O(n). Thus, our approach is asymp-
totically optimal in terms of communication complexity.

Liveness. Firstly, if CASSIE is dishonest and does not call
the announce function, any blockchain account can call
the withdraw function to send rewards to participants and
also earn some deposit. The remaining deposit of CASSIE
is burnt. Therefore, it is not likely that CASSIE does not
call the announce function. Secondly, a participant cannot
prematurely terminate the protocol or cause it to fail, because
she only interacts with the smart contract once.

B. SRNG2

Secrecy. SRNG2 guarantees secrecy by cryptographic hash
functions at the commitment stage and public key encryption
at the revealing stage. It provides the exact same guarantees
as in SRNG1.

Tamper-resistance. Participants cannot manipulate v because
they do not know the values si of others at either the
commitment stage or revealing stage. In contrast to SRNG1,
CASSIE cannot tamper with v due to her inability to invert
the hash function and know other players’ values during the
commitment phase. Note that CASSIE, if she takes part as a
player, has to already commit to her value in this phase and
the deposit dp is assumed to be large enough to deter any
dishonest act of non-revelation.

Auditability. The same argument as in SRNG1 holds.

Communication complexity. Each participant sends one trans-
action at the commitment stage and another transaction at
the revealing stage. Since we have n participants, the total
number of transactions would be 2 · n. Additionally, CASSIE
calls initial and announce functions and sends O(n)
bits. Thus, the total communication complexity is O(n) and
asymptotically optimal.

V. CONCLUSION

Secret random beacons are useful in applications such as
decentralized casinos, where the casino wants to use a decen-
tralized random number for games but has to keep the random
number secret for a predetermined amount of time, e.g. a day,
and make it publicly verifiable afterwards. Considering such
application scenarios, this work presented a novel efficient
decentralized protocol to generate secret random numbers.
We designed two variants based on public-key encryption,
commitment schemes, and verifiable delay functions. Both
protocols are shown to satisfy the requirements of distributed
secret random beacons and can be implemented as smart
contracts. In comparison with the only previous approach for
secret RNG on the blockchain, i.e. [12], our protocols reduce
the communication complexity from quadratic to linear with
respect to the number of participants.
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