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ABSTRACT

Context. The Universe’s assumed homogeneity and isotropy is known as the cosmological principle. It is one of the assumptions that
led to the Friedmann-Lemaître-Robertson-Walker (FLRW) metric and is a cornerstone of modern cosmology, because the metric plays
a crucial role in the determination of the cosmological observables. Thus, it is of paramount importance to question this principle and
perform observational tests that may falsify it.
Aims. Here, we explore the use of galaxy cluster counts as a probe of a large-scale inhomogeneity, which is a novel approach to the
study of inhomogeneous models, and we determine the precision with which future galaxy cluster surveys will be able to test the
cosmological principle.
Methods. We present forecast constraints on the inhomogeneous Lemaître-Tolman-Bondi (LTB) model with a cosmological constant
and cold dark matter, basically a ΛCDM model endowed with a spherical, large-scale inhomogeneity, from a combination of simulated
data according to a compilation of ‘Stage-IV’ galaxy surveys. For that, we followed a methodology that involves the use of a mass
function correction from numerical N-body simulations of an LTB cosmology.
Results. When considering the ΛCDM fiducial model as a baseline for constructing our mock catalogs, we find that our combination
of the forthcoming cluster surveys will improve the constraints on the cosmological principle parameters and the FLRW parameters
by about 50% with respect to previous similar forecasts performed using geometrical and linear growth of structure probes, with
±20% of variations depending on the level of knowledge of systematic effects.
Conclusions. These results indicate that galaxy cluster abundances are sensitive probes of inhomogeneity and that next-generation
galaxy cluster surveys will thoroughly test homogeneity at cosmological scales, tightening the constraints on possible violations of
the cosmological principle in the framework of ΛLTB scenarios.

Key words. cosmology: observations – galaxies: clusters: general – cosmological parameters – space vehicles – surveys –
methods: data analysis

1. Introduction

The standard cosmological model is based on the assump-
tion that space-time can be well described by the Friedmann-
Lemaître-Robertson-Walker (FLRW) metric, which stems from
a generalization of the Copernican Principle, stating that our
location is not special in the Universe, and also from obser-
vations suggesting that, on sufficiently large scales, on the
order of 100 Mpc, the Universe is homogeneous and isotropic
(Maddox et al. 1990; Cole et al. 2005; Saadeh et al. 2016).

One of the tests of this principle could be achieved by assum-
ing an alternative metric, such as the inhomogeneous metric
of the Lemaître-Tolman-Bondi model (LTB), and confronting
it with current observations (García-Bellido & Haugbølle 2008;

February et al. 2010; Valkenburg et al. 2014; Redlich et al. 2014;
Camarena et al. 2021), studying its phenomenology through sim-
ulations (Alonso et al. 2012; Marra et al. 2022), or forecast-
ing on the ability of forthcoming surveys to constrain such
a deviation from the standard assumption (Amendola et al.
2018; Camarena et al. 2023). In this work, we undertake this
task and attempt to determine the precision achievable on the
cosmological parameters of the ΛLTB model (i.e., the LTB
model endowed with a cosmological constant) by using galaxy
cluster abundance data obtained from forthcoming surveys.
This follows from previous studies, which show that clus-
ter counts are capable of placing constraints on the standard
cosmological model and its extensions (Rapetti et al. 2010;
Ilić et al. 2019).
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The study of clusters has had a major role in establish-
ing today’s most accepted cosmological model, the cosmologi-
cal constant and cold dark matter (ΛCDM) model, by pinning
down the values of dark matter and dark energy abundances
(Bocquet et al. 2019). Clusters’ progenitors are the ingredients
of our Universe, associated with the primordial inflationary
stage, after which the growth of the density perturbations was
amplified by gravity, creating what we now know as large-scale
structures (LSSs; Peebles 1982). As such, the abundance of
galaxy clusters is very sensitive to the LSS power spectrum and
to the growth rate of their density perturbations. On top of that,
galaxy cluster abundances are also sensitive both to the cosmo-
logical parameters and to the late evolution of the Universe, as
these objects were the last to form according to the bottom-up
hierarchical formation model (Blumenthal et al. 1984). We need,
however, to properly calibrate the mass observable proxy used
to relate the mass function, which describes the mass distribu-
tion of dark matter halos, to the observed clusters. Therefore, a
miscalibration could be one of the sources of the discrepancy
found in the value of the matter amplitude fluctuation parame-
ter, σ8, when constrained by deep probes in comparison to local
ones (Sakr et al. 2022). Thus, we discuss later in this study the
modeling of the ΛLTB mass function, as well as the calibration
of the mass proxy accessed through a scaling relation proper to
each survey.

Forecasts on constraints on the ΛLTB model were pre-
viously presented in Amendola et al. (2018), and recently in
Camarena et al. (2023) using cosmic microwave background
anisotropies (Planck Collaboration VI 2020), mock data of
baryonic acoustic oscillations (Euclid Collaboration 2020), the
Compton-y distortion (Fixsen et al. 1996), and kinetic Sunyaev-
Zeldovich data (Reichardt et al. 2021). In this work, we per-
form a similar study, but aim to benefit from the nonlinear
scales that the galaxy clusters additionally probe, expected to
be obtained from constructed ‘Stage-IV’-like mock catalogs,
such as Euclid (Laureijs et al. 2011; Euclid Collaboration 2022).
The latter is an M-class space mission of the European Space
Agency (ESA) which will allow the optical detection of clus-
ters previously unattainable in terms of the depth and area cov-
ered. Along with it, we also consider clusters detected from the
Legacy Survey of Space and Time (LSST) survey, performed
at the Vera C. Rubin Observatory (and hereafter named Rubin)
(LSST Science Collaboration 2009) and the eROSITA survey
X-ray based cluster counts (Pillepich et al. 2012), and the Dark
Energy Spectroscopic Instrument (DESI; DESI Collaboration
2016a). The former two, using richness as the same mass observ-
able proxy, are complementary in terms of redshift and sky
coverage, while eROSITA and DESI will allow us, each with
a different detection method – respectively, X-ray and spec-
troscopy – to further extend the redshift range as well as the
number of clusters detected.

Our paper is organized as follows: in Sect. 2 we briefly
review the modeling of galaxy cluster counts in ΛLTB. In Sect. 3
we present the surveys’ specifications and scaling relations mod-
eling. Lastly, our results are presented and discussed in Sect. 4
before we conclude in Sect. 5.

2. Modeling galaxy cluster counts in ΛLTB

2.1. The ΛLTB model

The ΛLTB model is a spherically symmetric, inhomogeneous
space-time with a cosmological constant, Λ, and cold dark mat-
ter (CDM), as in Valkenburg et al. (2014) or Camarena et al.

(2023). For the sake of self-consistency, we now summarize the
key equations of the model, from the aforementioned papers,
which are necessary to understand the galaxy cluster counts
methodology detailed in Sect. 2.2.

The ΛLTB line element is of the form

ds2 = −c2dt2 +
R′2(t, r)

1 − K(r) r2 dr2 + R2(t, r)
(
dθ2 + sin2 θ dφ2

)
, (1)

where c is the speed of light, K(r) is an arbitrary function of
the spatial coordinate, r, and a prime denotes a partial derivative
with respect to r. If K is constant and R(t, r) = a(t) r, Eq. (1)
becomes the FLRW line element where a(t) is the FLRW scale
factor. From Eq. (1) one can define longitudinal a‖ = R′(t, r) and
transverse a⊥ = R(t, r)/r, scale factors, and longitudinal, H‖, and
transverse, H⊥, expansion rates given by

H‖ ≡
ȧ‖
a‖
, H⊥ ≡

ȧ⊥
a⊥
, (2)

where the dots represent partial derivatives with respect to cos-
mic time. Assuming a cosmological constant, the general rela-
tivity (GR) equations allow one to derive a FLRW-like equation
for the ΛLTB model,

H2
⊥

H2
⊥0

= Ωm,0

(
a⊥0

a⊥

)3

+ ΩK,0

(
a⊥0

a⊥

)2

+ ΩΛ,0, (3)

where H⊥0 ≡ H⊥(t0, r), a⊥0 ≡ a⊥(t0, r), and ΩΛ,0, ΩK,0, Ωm,0 are
the present-day, t0, density parameters associated with the cos-
mological constant, curvature, and matter, respectively. These
parameters are functions of the coordinate r and satisfy the clo-
sure relation Ωm,0(r) + ΩK,0(r) + ΩΛ,0(r) = 1. Using the GR
geodesics equation with the metric Eq. (1) gives

dt
dz

= −
1

(1 + z) H‖(t, r)
, (4)

dr
dz

= −
c

√
1 − K(r) r2

(1 + z) a‖(t, r) H‖(t, r)
. (5)

As is seen, Eqs. (4) and (5) are essential in our analysis because
their integration provides a relation between r, t, and z, allowing
the ΛLTB galaxy cluster’s mass function to be expressed as a
function of redshift, which is a key quantity in the modeling of
the survey cluster counts described in Sect. 3.

As is shown in Camarena et al. (2023), the ΛLTB model can
be parameterized by the arbitrary functions K(r) and m(r) that
enter in the definition of

Ωm,0(r) =
2 G m(r)

H2
⊥0 a3

⊥0 r3
, ΩK,0(r) = −

K(r) c2

H2
⊥0 a2

⊥0

, (6)

where m(r) is the Euclidean mass profile of the large-scale inho-
mogeneity

m(r) =

∫ r

0
dr′ 4π ρm(t, r′) a‖ a2

⊥ r′2, (7)

and where ρm(t, r) is the matter density. The cosmological con-
stant density parameter is ΩΛ,0(r) = Λ c2/(3 H2

⊥0) = 1−Ωm,0(r)−
ΩK,0(r). Once the radial coordinate, r, is fixed in such a way that
m(r) ∝ r3, with a normalization described below, the curvature
profile, K(r), is the sole free function left in the model, which
can be modeled as

K(r) = KB + (KC − KB) P3(r/rB), (8)
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where rB is the comoving radius of the spherical inhomogeneity,
KB is the curvature outside the inhomogeneity, and KC is the
central inhomogeneity curvature. The function P3 enables us to
specify at convenience the radial profile of the central void. We
modeled this function, as in Camarena et al. (2023), as

P3(x) =

{
1 − exp

[
− (1 − x)3/x] for 0 ≤ x < 1

0 for 1 ≤ x , (9)

with x = r/rB. From the density parameters in Eq. (6) and the
above closure relation, we determined the missing normaliza-
tion of the mass, m(r) = Ωout

m,0 (Hout
0 )2 r3/(2 G), as well as KB =

−Ωout
K,0 (Hout

0 /c)2, which allowed us to determine the volume-
averaged integrated matter density contrast,

δ(r, t0) =
3 m(r)

4πR3(t0, r) ρ out
m (t0)

− 1 =
Ωm,0(r)
Ωout

m,0

[
H⊥0(r)
Hout
⊥0

]2

− 1.

(10)

In these expressions the quantities denoted by the superscript
“out” are taken at r = rB. We note that the curvature profile
outside the LTB void (r ≥ rB) is set to K(r) = KB, and the KC is
directly related to the central under-density contrast δ(r = 0, t0),
as is discussed in Camarena et al. (2023).

2.2. Halo mass function in the ΛLTB model

The formalism adopted in this work is based on the mass
function derived from LTB N-body simulations in Alonso et al.
(2012). Although the latter deals with the original LTB model,
we assume that this strategy is still valid for ΛLTB if the dark
energy is accounted for. Indeed, simulations in FRLW metrics
show that in general the nonlinear LSS formation in ΛCDM is
obtained in models that change the background, by replacing the
growth in the new theory Baldi (2012), a fix in line with what we
adopted next in our modeling.

In the context of the ΛLTB model, we need to account
for the density perturbations at cluster scales inside and out-
side the ΛLTB void. The variance of the density perturbations
at very large radii, outside the void, matches that of a FLRW
cosmology:

σ2(M, z) =
1

2π2

∫ ∞

0
dk k2 Pm(k, z) W2 [k Rth(M)] , (11)

where M is the mass inside a sphere of radius Rth(M) =[
3 M/(4 π ρm)

]1/3, ρm is the matter density, W(k Rth) is the
Fourier transform of a top-hat filter at the scale Rth, and Pm(k, z)
is the linear matter power spectrum of a ΛCDM universe at red-
shift z and wave number k.

Following Alonso et al. (2012), inside the ΛLTB void,
σ(M, z) needs to be scaled by a factor, f , which is the ratio
between density perturbations at two regimes:

f (t, r) =
δα(t, r)

δα(t, r → ∞)
, (12)

where δα is the linear density perturbation, with δα(t, r → ∞)
matching the linear density contrast of the ΛCDM model. For
small values of shear (see Eq. (14) below), it can be approxi-
mated by

δα(t, r) = δ̄(t, r) [1 + α ε(t, r)] , (13)

which depends on the normalized shear parameter, ε. The latter
is defined as

ε ≡

√
2
3

Σ2

Θ2 =
H⊥ − H‖

2 H⊥ + H‖
, (14)

giving the ratio between the square of the background shear,
Σ, and the expansion parameter, Θ, where Σ2 = Σi j Σi j

is the square of the background shear, and Θ the expan-
sion parameter of a congruence of comoving geodesics (see
García-Bellido & Haugbølle 2009 for further details). Finally, in
Eq. (13), α is a correction parameter that can be constrained from
simulations or observations that we will discuss in Sect. 4, and
δ̄(t, r) is the local linear density contrast given by

δ̄(t, r) ∝ D(Ωm,0(r),R(t, r)/R0(r)), (15)

where

D(Ωm,0(r), a) = a · 2F1

[
1
3

; 1;
11
6

;
Ωm,0(r) − 1

Ωm,0(r)
a
]
, (16)

with 2F1(a, b; c; z) the Gauss hypergeometric function and D
the growth factor in a ΛCDM universe with matter parameter
Ωm,0 (Bueno Belloso et al. 2011; Nesseris & Sapone 2015). We
note that in our case we observe the redshift, therefore all the
above equations were computed in z(r, t) using Eqs. (4) and (5)
to then interpolate between the variables. In this framework,
Alonso et al. (2012) modeled the mass function in LTB based on
a FLRW mass function, with σ replaced by σ(M, z) f (t, r). Here,
we adopted the same method and wrote the comoving number
density of halos of mass, M, and redshift, z, as

n(M, z) = −
ρm,0

M
F

[
σ(M, z) f (t, r)

] d ln
(

[σ(M, z) f (t, r)
]−1 )

dM
,

(17)

where ρm,0 = ρm(z = 0), and the F function taken from
Despali et al. (2016) is

F (σ) = ν A

√
2 a
π

[
1 +

(
1

a ν2

)p]
exp

[
−

a ν2

2

]
. (18)

ν ≡ δc/σ(M, z), where δc is the linear density threshold at
the present time outside the void for nonlinear collapse and
(a, A, p) = (0.3295, 0.7689, 0.2536). We rescaled following
Despali et al. (2016) to match the survey mass definition.

We modified the monteLLTB code used in Camarena et al.
(2021) to include a cluster counts module that implements
the halo mass function recipe described above1. The linear
mater power spectrum was normalized using the σ8,0 param-
eter, defined as the root mean square of the variance of den-
sity fluctuations at R = 8 h−1 Mpc in ΛCDM. In this work, we
provide forecasts involving the following cosmological parame-
ters: h = H0/(100 km s−1 M−1 pc) (where H0 := H⊥(r → ∞) =
H‖(r → ∞) is the Hubble constant), Ωm,0 := Ωm,0(r → ∞), σ8,0
(hereafter denoted as σ8), δ0 := δ(r = 0, t0), and zB is the bound-
ary redshift corresponding to rB. The last two parameters are
specific to the LTB void model, whereas the first three param-
eters of this list are in common with the ΛCDM cosmological
model. Regarding the later, we adopted a flat ΛCDM fiducial
model with h = 0.67, Ωm,0 := Ωout

m,0 = 0.32, ΩK,0 := Ωout
K,0 = 0

(i.e., KB = 0), σ8 = 0.83, and a spectral index of primordial
scalar perturbations, ns = 0.965.

1 https://github.com/davidcato/monteLLTB
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3. Survey specifications and scaling relations
modeling

3.1. Euclid and Rubin surveys’ richness-based cluster counts

3.1.1. Euclid-like cluster number counts forecast

To estimate the number of cluster counts, we used the forecast
of Sartoris et al. (2016), in which the observable quantity is the
observed mass, Mobs, with a sky coverage of Ωtot = 15 000 deg2.
The estimated number counts for a redshift bin, zl, and mass bin,
Mobs,m, can be expressed as

Nl,m =

∫
Ωtot

dΩ

∫ zl+1

zl

dz
dV

dz dΩ

×

∫ +∞

0
dM n(M, z)

1
2

[erfc(xm) − erfc(xm+1)] , (19)

where n(M, z) is the mass function, dΩ is the solid angle element
in units of steradian, erfc is the complementary error function,
and dV

dz dΩ
is the derivative of the comoving volume with respect

to the redshift and solid angle element, defined as

dV
dz dΩ

=
(1 + z)2 dA(z)2c

H‖(z)
, (20)

where dA(z) = R[t(z), r(z)] is the angular diameter distance and
c the speed of light. Finally, xm = x (Mobs,m,`) is defined in each
mass bin, m, and redshift bin, `2, as

x (Mobs,m) =
ln(Mobs,m/M0) − ln(M/M0) − ln(Mbias/M0)√

2σ2
Mobs,m

, (21)

where M0 = 1 h−1 M�. We defined the mass bias and the vari-
ance, σ2

Mobs,m
, to be the same as in S16:

ln(Mbias/M0) = BM,0 + αE ln(1 + z), (22)

σ2
Mobs,m

= σ2
Mobs,0 − 1 + (1 + z)2 β. (23)

To estimate the number counts, we considered equally spaced
redshift bins ranged in z ∈ [0.9, 2.0], with a width of ∆z = 0.1.
As for the limiting mass, we defined a mass selection function
similar to the one in S16. In our analysis, we performed two
types of tests. In the first one, we fixed the nuisance parameters
above to the best fit of (BM,0, αE , σMobs,0, β) = (0.0± 0.05, 0.0±
0.05, 0.2±0.07, 0.125±0.00625), while in the second, we found
the best-fit values for the same parameters, as is described in
Sect. 4.

3.1.2. Rubin-like cluster number counts forecast

For Rubin, we followed The LSST Dark Energy Science
Collaboration 30 (2018) and Murata et al. (2018), which mod-
eled the galaxy cluster number counts as a function of their
observed cluster richness. The probability of observing a certain
richness, λ, given a mass, M, was modeled as

P(ln λ|M) d ln λ ≡
1

√
2πσln λ|M

exp
[
−

x2(λ,M)
2σ2

λ|M

]
d ln λ, (24)

with x defined by

x(λ,M) ≡ ln λ −
[
A + B ln

(
M

Mpivot

)
+ C ln (1 + z)

]
, (25)

2 We drop from now on the redshift index from the scaling relations
when there is a z dependence for better readability.

with Mpivot = 3×1014 h−1 M�, and A, B, and C the dimensionless
constants set below. Thus, the number counts at a given redshift
and richness bin can be described by the following expression:

N =

∫
Ωtot

dΩ

∫ zmax

zmin

dz
dV

dz dΩ

∫
dM n(M, z)

∫ λmax

λmin

dλ
λ

P(ln λ|M)

=

∫
Ωtot

dΩ

∫ zmax

zmin

dz
dV

dz dΩ

∫
dM n(M, z) S (M|λmin, λmax),

(26)

where the subscripts min and max denote the minimum and max-
imum in each bin and S (M|λmin, λmax) is expressed as

S (M|λmin, λmax) ≡
∫ λmax

λmin

d ln λ P(ln λ|M) =
1
2

[
erf

(
x(λmax,M)√

2σλ|M

)
− erf

(
x(λmin,M)√

2σλ|M

)]
. (27)

erf is the error function, and the scatter, σln Λ|M , is expressed as

σλ|M = σ0 + qM ln
(

M
Mpivot

)
+ qz ln (1 + z) . (28)

Here, we considered nine equally spaced redshift bins in the
interval [0.0, 0.9], and 20 richness bins within the interval
[20, 220] with a sky coverage of Ωtot = 18 000 deg2. In Sect. 4
we show results for the ΛLTB forecast, obtained by fixing the
parameters (σ0, A, B, C, qM , qz) to the best fit of (0.456, 25 ±
5, 1 ± 0.8, 0 ± 1.2, 0 ± 0.05, 0 ± 0.2), as well as results when
finding the best-fit values for these same parameters.

3.2. eROSITA-like survey X-ray-based cluster counts

Unlike the Euclid and Rubin surveys, eROSITA detects X-ray
emission from clusters. Thus, our scaling relation is based
on X-ray properties, as is described in Pillepich et al. (2012).
Galaxy clusters were sorted in terms of the photon counts that
will be detected by the eROSITA telescope. The counts were
converted to dark matter haloes by taking into account the prop-
erties of the X-ray detector and the integration time of the obser-
vations. The X-ray cluster counts can be computed in a given
redshift bin and observed temperature, T , as

N =

∫
Ωtot

dΩ

∫ zmax

zmin

dz
dV

dz dΩ

∫
dM n(M, z)

×

∫
T (Mmin)

d ln TX P(ln TX|M), (29)

where the subscripts min and max denote the minimum and max-
imum in each redshift bin and TX = T/T0, where T0 = 1 keV
and T (Mmin) is the temperature bin lower limit obtained using
Eq. (30). This would correspond to the mass taken from the fol-
lowing range, log10(Mmin/M0) ∈ [13.0, 13.7, 14.0], at the three
redshift bins with edges z ∈ [0.24, 0.3, 0.4, 0.52], and a sky cov-
erage of Ωtot = 27 500 deg2 for this survey. P(ln TX|M) is the
probability distribution of the X-ray temperature, TX, given the
mass,

P(ln TX|M) =
1√

2πσ2
TM

exp
{
−

[
ln TX − µT

]2

2σ2
TM

}
, (30)
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µT is given by the scaling relation

µT = αTM ln
(

M500

βTM

)
+ βTM ln E(z) + ln

(
5 keV

T0

)
, (31)

and E(z) = H(z)/H0. The best-fit parameter values for this rela-
tion and the scatter, σTM, are (see Pillepich et al. 2012)

αTM = 0.65 ± 0.03, (32)

βTM = (3.02 ± 0.11) × 1014 h−1 M�, (33)
σTM = 0.119. (34)

3.3. DESI-like survey velocity mass determination-based
cluster counts

In DESI, the total luminosity of a given cluster within a 1 Mpc
radius (L1 Mpc) is the mass proxy. This luminosity is related
(and calibrated) to the mass, according to the scaling relation
Eq. (35), below, as in Zou et al. (2021), where a fast clustering
algorithm to identify the clusters was applied to the photomet-
ric redshift catalog. The total masses of the galaxy clusters were
derived using a calibrated richness–mass relation that is based on
the observations of X-ray emission, and the Sunyaev-Zeldovich
effect:

log10(L1 Mpc/L∗) =
log10(M500/M0)

a
−

b
a

log10(1 + z) −
c
a
, (35)

where L∗ is the characteristic luminosity and M0 = 1 h−1 M�.
The best-fit parameters of the above relation are (Zou et al. 2021)

a = 0.81 ± 0.02, b = 0.50 ± 0.14, c = 12.61 ± 0.04. (36)

The above parameters were obtained from a photometric cat-
alog containing sources that are used to obtain the spectro-
scopic measurements of their redshift. Therefore, we rescaled
the error of the redshift parameter, b, to reflect the improvements
in the error of z with respect to the expected accuracy of the
spectroscopic measurements in DESI Collaboration (2016b) to
reach more realistic constraints, and not heavily underestimate
the power of DESI. Given the observables of this survey, we
modeled the number counts in a given redshift and luminosity
bin as

N =

∫
Ωtot

dΩ

∫ zmax

zmin

dz
dV

dz dΩ

∫
dM n(M, z)

∫
ymin

dy P (y |M) ,

(37)

where the subscripts min and max denote the minimum and
maximum in each redshift bin, where y = log10(L1 Mpc/L∗), and
where P (y |M) has a probability that follows a Gaussian distri-
bution similar to Eq. (30). For DESI, we took redshift bins with a
thickness equal to 0.1 in the range z = [0.0, 1.0], a sky coverage
of Ωtot = 20 000 deg2, and lower limits for y as presented below,
for the numerical evaluation of the integrals in Eq. (37):

ymin = log10(L1 Mpc/L∗)min ∈ [1.65, 2.13, 2.35, 2.50, 2.61, 2.69,
2.76, 2.83, 2.88, 2.93]. (38)

Finally, for illustrative purposes, Fig. 1 shows integrated clus-
ter counts in the redshift bins of the surveys used in this work,
for a given ΛLTB model versus our fiducial ΛCDM cosmology.
The cluster counts modifications within the ΛLTB model are, as
expected, correlated with the void profile chosen in this work. In
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Fig. 1. Bars with heights representing cluster number counts in each of
the redshift bins considered for the different surveys used in this work
for ΛCDM. {δ0, zB} = {0.0, 0.0} versus ΛLTB with {δ0, zB} = {−0.5, 0.5},
while the other parameters were kept at their fiducial values.

particular, we see that the Euclid sample change to the cluster
counts is not noticeable. This is because its redshift bins fall out-
side the LTB void in the values adopted here. Though it will still
serve to break degeneracies with the FRW cosmological param-
eters, Euclid is also expected to observe lower redshifts than our
sample; however, here we already used those redshifts for the
Rubin sample, since we considered both as our baseline unified
survey. Other estimators were used in Camarena et al. (2023),
as was detailed in the introduction, with similar constraints on
the cluster counts, as we shall see later, but we still need to
model other observables within ΛLTB, such as galaxy lensing
or clustering, in order to be able to further benefit from Euclid or
other similar high-redshift surveys for which the aforementioned
probes constitute their main observational targets.

In the following sections, we consider three forecast scenar-
ios that differ by the degree of control one may have on the differ-
ent systematic effects related to the nuisance parameters involv-
ing the scaling relations of the surveys described in this section.
In Sect. 1 we list the cosmological and nuisance parameters of
our modeling as well as the priors assumed in each scenario.
These scenarios are:

– Optimistic settings: only the cosmological parameters are
left free to vary with flat priors. In this case the nuisance
parameters are fixed to their fiducial values.

– Realistic settings: the cosmological parameters are left free,
while we consider Gaussian priors for the nuisance parame-
ters of our probes.

– Pessimistic settings: the cosmological as well as the nuisance
parameters of all surveys are left free to vary.

4. Results

We are mainly interested in assessing, as closely as possible,
the constraints on the ΛLTB model from a Euclid-like survey
when optimally combined with Rubin-like survey data. For that,
our baseline approach was to combine cluster observations from
Euclid and Rubin, knowing that Euclid is expected to perform
better at high redshifts, for z > 0.9, whereas Rubin provides
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information for z < 0.9. We started with an optimistic case,
assuming that we would have good control over the systematic
effects, and thus we fixed their associated nuisance parameters to
their fiducial values. We also fixed the correction parameter, α, in
Eq. (13) to α = 2, the value found by simulations to give the best
fit (Alonso et al. 2012). Furthermore, we also explored the case
where α is left free to show that the impact on the results is min-
imal, as is seen in Fig. A.1. Finally, as in Camarena et al. (2023),
we chose a flat prior for zB ∈ [0, 0.5], since for δ0 ≈ 0 the param-
eter space is highly degenerate with higher arbitrarily values of
zB. This baseline was then compared to the case in which we
added data from eROSITA or DESI, these two being independent
of each other. Thus, this led to three additional cases of combin-
ing survey information: Euclid + Rubin + DESI, Euclid + Rubin
+ eROSITA, and finally Euclid + Rubin + DESI + eROSITA. We
also show the results of combining all the probes. These combi-
nations are expected to offer tighter constraints than our baseline
since we also fixed the nuisance parameters for these two probes
in our first case.

We then repeated the same approach, but this time allowed
the nuisance parameters of the baseline probes to vary within
large priors in less optimistic configurations. We also combined
Euclid and Rubin datasets with the eROSITA and DESI datasets
in this scenario in order to break the degeneracies and balance
the expected weakening of the constraints in the baseline case
with Euclid and Rubin alone. This is expected to tighten the
constraints even with wide priors on the primary probes’ nui-
sance parameters. Finally, we ran a further case, in which we
combined all four probes at once, but this time with the most
pessimistic settings, leaving all the nuisance parameters free to
vary, in order to assess the loss of precision from this full auto-
calibration approach.

4.1. Optimistic case assuming good control over the
systematic effects

In this subsection, we start by showing, in Fig. 2, the marginal-
ization of the parameters considered for the forecast using our
baseline (Euclid + Rubin). We also show, in the same figure,
the baseline with the addition of the secondary survey probes
described in Sects. 3.2 and 3.3, all with fixed nuisance parame-
ters, as this will be our optimistic case, in which we have control
over the systematic effects. We also show in Table 2 the gain in
accuracy for all the combinations and cases, which we discuss
later with respect to the most pessimistic case in which all the
parameters, including the nuisance ones, were left free to vary.

We first observe that the cosmological parameters, Ωm,0, h,
and σ8, are constrained to a percent level while the density of
the void, δ0, does not prefer any value over the null one corre-
sponding to its FLRW value. However, the redshift border, zB, of
the void is constrained to 0.4 and below at the 95% confidence
level. Furthermore, as one could expect, when we add additional
information from the secondary probes, we better constrain the
FLRW-like parameters, especially Ωm,0, with the latter show-
ing a gain of about 40%, as is seen in Table 2, while h and σ8
increase by more than 10%. For the ΛLTB parameters, δ0 still
shows no preference within each optimistic case, while the zB
constraints increase by a factor of three when we combine all
of the probes. We also notice that the baseline plus DESI offers
similar constraints as the baseline plus eROSITA – due to the
fact that eROSITA covers a larger sky area than DESI, while the
latter spans a wider range and higher redshifts. Additionally, as
was expected, our gain is further improved when we combine all
of the probes. Finally, we also compare our results with the work
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Fig. 2. ΛLTB 68% (darker color) and 95% (lighter color) confidence
contours for Euclid and Rubin survey probes (orange), for when we
include the DESI survey probe (green), the eROSITA survey probe
(blue), and both (yellow) in the optimistic case (see Sect. 4.1).

Table 1. Cosmological and nuisance parameter priors.

Cosmo. δ0 zB Ωm,0 h σ8
param. [−1, 1] [0, 0.5] [0.1, 0.9] [0.3, 1.2] [0.7, 1.0]

Euclid BM,0 αE σMobs ,0 β
[−0.05, 0.05] [−0.05, 0.05] [0.13, 0.27] [0.124, 0.126]

Rubin A B C qM qz
[20, 30] [0.2, 1.8] [−1.2, 1.2] [−0.05, 0.05] [−0.2, 0.2]

eRosita αTM βTM/1014 h−1 M�
[0.62, 0.68] [0.291, 3.13]

DESI a b c
[0.79, 0.83] [0.4995, 0.5005] [12.57, 12.65]

Notes. The fiducial values are at the center of the display ranges, except
for the fiducial value of zB, which was set to zB = 0.

of Camarena et al. (2023), as is shown in Table 3, where we only
compare the optimistic case with all of the probes, so as to be on
an equal footing with the aforementioned author’s work. Overall,
we get better constraints on our parameters than Camarena et al.
(2023), getting an improvement of about 50% for the FLRW
parameters, 35% for zB, and almost the same for δ0.

4.2. Realistic case assuming Gaussian priors on the
nuisance parameters

Here we discuss the case in which we consider nuisance param-
eters with Gaussian priors, with averages and variances taken
from those given in Table 1. In this more realistic case, we con-
sider ourselves to have less control over the systematic effects
compared to the previous scenario, and therefore we allow some
scattering in the nuisance parameters, thereby expecting looser
constraints with respect to the optimistic case. On the other hand,
when we combine or add more probes we should get tighter con-
straints on our parameters in any of the settings considered.
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Table 2. Relative differences of the 95% confidence level with respect to the baseline (Euclid + Rubin) + DESI + eROSITA pessimistic case.

Base. opt. Base.+ Base.+ Base.+DESI Base. prio. Base.+ Base.+ Base.+DESI
DESI opt. eROSITA opt. eROSITA opt. DESI prio. eROSITA prio. +eROSITA prio.

δ0 3.5% 4.6% 4.1% 4.1% 3.5% 2.3% 4.1% 3.5%
zB 21.9% 25.9% 28.3% 61.9% −1.4% 28.3% 15.3% 38.0%
h 87% 93.0% 88.9% 93.8% −76.6% 53.2% 25.5% 58.5%
σ8 71.9% 80.5% 81.9% 87.1% −461.9% 41.4% 25.7% 60%
Ωm,0 47.5% 71% 81% 84% −275% 50% −5.0% 61.5%

Notes. Here we auto-calibrated the nuisance parameters, i.e., we assumed a non-informative prior for those parameters, as is described in Sect. 4.3,
while in the optimistic case we assumed fixed nuisance parameters, and in the ‘prio.’ case we adopted a Gaussian prior for the nuisance parameters,
taking into account the values, and their reported uncertainty as the width of the Gaussian, as is mentioned in Sect. 3. A positive value indicates a
gain, while the negative sign indicates a loss.

Table 3. Relative difference of the 95% confidence levels with respect to
Camarena et al. (2023), for the optimistic case in our analysis, in which
we fixed our nuisance parameters, as is described in Sect. 4.1.

Base.+DESI +eROSITA opt.

δ0 −3.1%
zB 36.3%
h 55.4%
As 53.3%

Ωm,0 64.0%

Notes. To be on an equal footing with that work, we show the relative
difference in terms of the amplitude of the primordial power spectrum
of scalar perturbations, As, because the aforementioned work did not
output constraints for σ8. A positive value indicates a gain, while the
negative sign indicates a loss.

In Fig. 3 we show the contours within this scenario for the
three cases: the baseline plus DESI, the baseline plus eROSITA,
and the baseline plus DESI and eROSITA, while the gains with
respect to the most pessimistic case are also in the same Table 2,
along with those for the optimistic scenario. As predicted, the
optimistic case shows better constraints when compared to its
realistic counterpart, close to the same gain we observe when
using cluster counts to constrain FLRW cosmological parame-
ters. For the LTB parameters, we observe an overall improve-
ment in the constraints, albeit smaller than that for the FLRW
parameters. This is also supported by the general gain seen in
the detailed Table 2, where the constraining power is degraded
in most cases by more than a factor of two for each analogous
probe, with the greatest decrease found when we compare the
baseline only, reaching a factor of three for Ωm,0 and σ8. The
difference lessens when we choose to add the two additional sur-
veys, DESI or eROSITA, to the baseline, and the lowest value is
reached when we simultaneously add these two probes, staying
around 20% lower on average. This can also be seen in Fig. 4,
where we plot the two different analyses (the optimistic case is
plotted in yellow and the realistic case in red) of the chains that
include all the considered probes.

4.3. Pessimistic constraints with auto-calibration of the
nuisance parameters

Finally, we present the most ‘pessimistic’ case, in which we con-
sider all the nuisance parameters of our probes to be free, by
using non-informative flat priors for our Bayesian analysis. In
Fig. 4, we show the cosmological and LTB model parameters
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Fig. 3. ΛLTB and nuisance 68% (darker color) and 95% (lighter color)
confidence contours for our realistic case, in which we considered Gaus-
sian priors for the nuisance parameters in Table 1 in the calibration of
the scaling relations. Here, we show the forecasts for the baseline (gray),
and we also include secondary probes in the contours (Euclid + Rubin
+ DESI (black), Euclid + Rubin + eROSITA (pink), and finally Euclid
+ Rubin + DESi + eROSITA (red)).

forecast for this scenario, together with the analogous chains for
the realistic and optimistic scenarios. The contours have widened
with respect to the more optimistic ones, since most of the gains
in Table 2 are positive; however, even when considering non-
informative priors for the nuisance parameters, we are still able
to put constrains on the LTB parameters at a higher level than
in the baseline realistic case. This is seen in Table 2, which
shows the power of a combination of probes to break and auto-
calibrate the degeneracies between the ΛLTB and the nuisance
parameters.

5. Conclusions

In this work we have forecast the forthcoming constraints for
ΛLTB, an inhomogeneous model, using galaxy cluster abun-
dance mock catalogs as our only probe, from ‘Stage-IV’-like
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Fig. 4. ΛLTB 68% (darker color) and 95% (lighter color) confidence
contours considering all the probes in this paper (Euclid + Rubin +
eROSITA + DESI). Here, we compare the optimistic case (yellow)
Sect. 4.1 with the realistic one (red) Sect. 4.2 and finally the pessimistic
one (fuchsia) Sect. 4.3.

experiments such as Euclid and Rubin, as our baseline. We have
also studied the impact of taking into account observables from
other experiments such as DESI and eROSITA.

We assumed different scenarios, reflecting our degree of con-
fidence in the collected data: an optimistic case in which we fixed
the nuisance parameters of the galaxy cluster scaling laws, a real-
istic case in which we allowed free scaling parameters within
the Gaussian prior uncertainties, and finally a pessimistic case
in which we assumed non-informative priors on the nuisance
parameters.

We find that our combination of probes yields stronger con-
straints, especially for the non-LTB parameters. The constraints
are degraded when the scaling laws are allowed more freedom in
their parameter space. However, the combination of all probes is
still able to break the degeneracies and auto-calibrate all of the
nuisance parameters, even when they are left free to vary.

We also find that the ΛLTB model is still viable, even if the
data turn out to be compatible with ΛCDM in the future. This
was also the case in Camarena et al. (2023), which combined a
plethora of geometrical probes as well as probes relating to the
growth of structures, without including clusters. However, since
our probe is further tackling the nonlinear scales for structure
formation, while retaining some geometrical information from
the sky coverage of the different surveys, we are able to get
similar or better constraints for some parameters. Moreover, we
highlight that we have separated the redshift domain of Euclid
and Rubin (for 0 < z < 1 we consider Rubin only, while for
Euclid we consider the redshift range of 1 < z < 2). While
such an analysis was not performed in Camarena et al. (2023),
our conservative approach is still competitive, highlighting the
importance of the galaxy cluster counts probe in constraining
cosmology within the ΛLTB model.
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Appendix A: Case with a free nonlinear correction
prescription parameter

As is mentioned in the main text, here we show the optimistic
case of our baseline (Euclid + Rubin) in Fig. A.1, where we
compare the constraints obtained from having a fixed α = 2 (Eq.
13) to when we set this parameter as free to vary. We observe
that the contours of these two cases are similar, as was expected
from the simulations in Alonso et al. (2010) justifying fixing α
for the other case’s analysis.
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Fig. A.1. ΛLTB 68% (darker color) and 95% (lighter color) confidence
contours for the baseline of our analysis: the Euclid and Rubin survey
probes. In yellow we present the case in which we model α to a fixed
value, whereas in red we display the case where our modeling of the
problem includes a free α with a wide prior, ∈ [0, 4].
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