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Working Session n°1: Signals 
 

Properties of signals (linearity, periodicity, principle of superposition, dilation, time reversal, 

time shift, time invariance, memory, causality, stability), energy content and power, 

Fourier series and analysis 
 

 

 A mathematical appendix is located at the end of this work session. Thank you for reading it. 

 

 
 

▪ Exercise 1) We consider the following signals f(t) et g(t): 
 

f(t) = A. cos(ωt)  and  g(t) = {

t + 7   for − 7 ≤ t ≤ −3
4      for  − 3 ≤ t ≤ 3
−t + 7     for   3 ≤ t ≤ 7
0              Elsewhere

 

 

1.1) Calculate the signal energy over one period for f(t) and the energy content of g(t). 
 

1.2) Calculate the average power of both signals. 

 

 
 

▪ Exercise 2) Demonstrate whether or not the following systems are linear: 
 

 

 
 

 

 

2.1)  y(t) = A. x(t) with, A constant. 
 

2.2)  y(t) = x3(t). 

 

 

▪ Exercise 3) If x1(t) and x2(t) are two solutions of the following differential equation which represents a 

certain evolutionary process: 

x′′(t) + x′(t) + x(t) = cos t, 
 

 

Concerning x1(t)+x2(t), is it solution of this equation? 

What great principle manages this aspect in physics? 

 

 

▪ Exercise 4) Graph the following signals: 

 

4.1) x(t) = H(t + 2) − H(t − 1) + Tri1(t − 1), with H(t) the Heaviside echelon and Tri(t) the triangle  

distribution. 

 

4.2) y(t) = x(−t),    4.3) z(t) =
d

dt
y(t), 

 

4.4)  ω(t) = x (
t

2
+ 1).  

 
 

 

 

Entrance x(t) Exit y(t) System 



 

 

 

 

 

 

 

 

 

 
 

▪ Exercise 5) Consider the following function x (t): 

 

 
 

5.1) Calculate the energy E of the signal x(t) over a period T (we will calculate between [0-2] as a T period).  

Then, determine its average power P. 
 

5.2) Determine the Fourier series development of x(t). 
 

5.3) Represent the power spectrum of x(t) for the first five harmonics. 

 

 

 

▪ Exercise 6) The purpose of this exercise is to determine the Fourier series of rectified sine signals (half-wave 

rectification and full-wave rectification). 

 

6.1) Determine the Fourier series development of x(t) which represents the sinusoidal signal rectified in  

half-wave (such a signal is obtained by the use of a diode). The period is defined by T0=1/ and  

we recall that by definition the average value of the signal gives the a0 coefficient: 
 

{
x(t) = sin(2πν0t)  for   0 ≤ t ≤

T0
2

x(t) = 0                  for    
T0
2
≤ t ≤ T0

 

 

Represent its spectrum. 

 

 

6.2) Determine the Fourier series development of x(t) which represents the sinusoidal signal rectified in  

full-wave (such a signal can be obtained by the use of a diode bridge). The period is defined by  

T0=1/. 

x(t) = |sin(2πν0t)|    for   0 ≤ t ≤ T0 
 

Represent its spectrum and conclude taking into account 6.1). 

  

t 

x(t) 

t 

1 

T -T 

triT(t) = ൝1 − ฬ
t

T
ฬ  if |t| < T

0 if t > T

 

1 

Heaviside echelon 

H(t)=ቄ
1 if t > 0
0 if t < 0

 

t 

1 

ΠT(t) =  rect ൤൬
t

T
൰൨ = ൝1  if |t| <

T

2
0   if not

 

t 
-T/2 T/2 



 

 
 

 

 Mathematical form (decomposition in Fourier series, calculation of Fourier coefficients).  

 

x(t) = a0 +∑ ൤an. cos ൬
2πnt

T
൰ + bn. sin ൬

2πnt

T
൰൨

∞

n=1

 

with, 

 

a0 =
1

T
∫ x(t)

T

0

. dt  , an =
2

T
∫ x(t)

T

0

. cos ൬
2πnt

T
൰dt     and    bn =

2

T
∫ x(t)

T

0

. sin ൬
2πnt

T
൰dt       (n > 0) 

 

 

Remark on spectrum:  The power of the harmonic of n-rank will be:  
1

2
(an

2 + bn
2)   and,  a0

2  for the harmonic 

of 0-rank. 

 

 

Remark on the parity of the real signal x(t):    If x(t) even, then bn=0  ;   if x(t) odd  an=0.  

 

  



 

Working Session n°2: Signals 
 

Fourier transforms, Distributions, Convolution, Correlation 

Diffractive optics application 
 

 

 A mathematical appendix is located at the end of this work session. Thank you for reading it. 

 
 

▪ Exercise 1) We recall that the Fourier Transform (FT) and its inverse definitions are written respectively 

f̃(ν) = FT[f(t)] = ∫ f(t). e−i2πνtdt
+∞

−∞
, and f(t) = FT−1[f̃(ν)] = ∫ f̃(ν). ei2πνtdν

+∞

−∞
. 

 

Calculate the Fourier Transform (FT) of the following signals (for each case we will graphically represent the 

signal and its FT or module): 

 

1.1) ‘Door distribution’ signal ΠT(t) or rect (
t

T
)  defined by: ΠT(t) = {

1  if |t| <
T

2

0   if not
. Demonstrate that 

FT[ΠT(t)] = T. sinc(πνT). 

 

1.2)  The signal f(t) = ቄ
1  if  0 < t < 1

0   if not
 by two various methods (first the integral calculation, and then using a 

shift applied directly to the previous ΠT=1(t) signal). For the second method, we recall the specific 

property  f(t) ∗ δ(t − t0) = f(t − t0). 

 

1.3) ‘Exponential discharge’ signal defined by (with a>0): f(t)= {e
−at  if t ≥ 0
0       if t < 0

. 

 

1.4)  ‘Symmetric exponential’ signal defined by (with a>0): f(t)= e−a|𝑡|  

 

1.5)  ‘Damped oscillation’ signal defined by: f(t)= {
e−at. sin(2πν0t)  if  t ≥ 0
0                            if  t < 0

 . 

 

1.6)  ‘Damped oscillation’ signal defined by: f(t)= {
e−at. cos(2πν0t)  if  t ≥ 0
0                            if  t < 0

. 

 

1.7)  Gaussian signal defined by: f(t)= e
−൬

π.t2

a2
൰
 .  Demonstrate that the FT of a Gaussian is a Gaussian. 

 

 
 

▪ Exercise 2) We recall that the convolution and correlation definitions between two f(t) and g(t) signals are 

written respectively: 

Convolution: f(t) ∗ g(t) = ∫ f(t). g(τ − t)dt
+∞

−∞
= ∫ f(τ). g(t − τ)dτ

+∞

−∞
, , and 

Correlation (or cross-correlation): 𝒞fg(τ) = f(t) ⊛ g(t) = f(t) ∗ g∗(−t) = ∫ f(t). g∗(τ + t) dt
+∞

−∞
. 

 

2.1) Calculate the ‘auto-correlation’ function 𝒞ΠΠ(τ) of the door distribution (see 1.1) by drawing the common 

area. We will naturally call this signal and such a result: T. tri2T(t). 

 

2.2) Calculate by a simple way its FT, that is, FT[𝒞ΠΠ(τ)], by using that: T. triT(t) = ΠT(t) ∗ ΠT(t). What 

remarks can be said about this autocorrelation function which will be defined as the spectral energy 

density, later. 



 

 

 

▪ Exercise 3) Let f(t) be the signal composed of ΠT(t) and an echo of ΠT(t) : 𝑓(𝑡) = ΠT(t) + 𝑎.ΠT(𝑡 − 𝑡0) 

 

3.1) Calculate 𝒞ff(τ). 
 

3.2) Calculate the spectral density energy FT[𝒞ff(τ)]=|f̃(ν)|
2
, trace its general appearance. 

 

 

▪ Exercise 4) We consider the signal f (t) shaped by the ‘periodization’ of Πτ(t) with a temporal step T T > τ, 

that is: f (t)= Πτ(t) ∗ШT(t) with the Dirac comb ШT(t)=∑ δ(t − nT)+∞
n=−∞ . 

 

4.1) Calculate its Fourier transform FT[f(t)]. 
 

4.2) Calculate and trace its autocorrelation function and show that it is periodic. 

 

 

▪ Exercise 5)  - In addition, will be not corrected in session - 

We consider both signals: f1(t) = a1. ΠT(t − T) and f2(t) = a2. ΠT′(t − T′), with ai=1,2 constants and T’<T. 

 

5.1) Calculate and trace 𝒞f1f2(τ) the cross-correlation function between the f1 and f2 signals. 
 

5.2) Calculate 𝒮f1f2(ν) the cross-energy spectrum function defined as FT[𝒞f1f2](ν). 
 

5.3) We consider now that f1 undergoes a time shift: f1
new(t)=f1(t) ∗ δ(t − t0). What is the effect on the new 

calculation of the cross-correlation and the cross-spectrum functions respectively. 

 

 

▪ Exercise 6) We consider the signal f (t)= e−at H(t), with H(t) the Heaviside echelon. 

 

6.1) Calculate the auto-correlation function 𝒞ff(τ), with >0. 
 

6.2) Calculate the spectral energy density 𝒮ff(ν) = |f̃(ν)|
2
= |FT[f(t)]|2 . We give FT[e−at H(t)] =  

1

a+i2πν
 

and that the primitive of 
1

1+𝑥2
 is arctan. 

 

6.3) Calculate the integral ∫ |f(t)|2 dt
+∞

−∞
 and conclude with Parseval-Plancherel theorem. 

 

 

▪ Exercise 7) Diffractive optics application, towards optical filtering 
 

▪ Notions required 
 

Introduction to the optical signal and definition of two-dimensional Fourier Transform (FT): 

It is possible to define an object as 'source' of the optical signal and consider it in terms of amplitude a(x,y) 

and phase (x,y), both varying spatially. We will then define a transparency spatial function P(x,y) associated 

with this object as P(x,y)=a(x,y).ei(x,y). In optics, such object could represent a blade, a lens, a diffracting pupil, 

a diaphragm… 

By analogy to time signals (time s  frequency Hz), this two-dimensional spatial function P(x,y) (spatial 

dimensions : m, m) is associated with a Fourier spectrum which will be a two-dimensional FT (m-1, m-1). 

The two-dimensional FT is obtained by generalization of the one-dimensional integral, that is: 



 

P̃(u, v) = FT[P(x, y)] = ∫ ∫ P(x, y). e−i2π(u.x+v.y)dx. dy

+∞

−∞

+∞

−∞

 

This spectrum will be a spectrum of spatial frequencies of the object and will thus allow possible filtering, 

descrambling, contrast inversion operations into such a so-called Fourier plane. 
 

Theoretical reminder of diffraction (see Born and Wolf, ‘Principles of Optics): 

The calculation of the complex diffracted amplitude 𝒜(P0(x0, y0, z0)) (or so-called Fresnel Kirchhoff integral) 

is written at a z0-distance from an origin O: 
 

𝒜(P0(x0, y0, 0 + z0)) =
eik.z0

i. λ. z0
∬𝒜(O(ξ, η, 0)). e

ik൤
(ξ−x0)

2

2.z0
+
(η−y0)

2

2.z0
൨
 dξ. dη

Σ0

 

 

 

 

 

 

 

 

 

 

 

Such an expression at a z0-long distance (or Fraunhofer regime) is simplified by: 
 

𝒜(P0)=B. P̃ (u =
x0

λ.z0
, v =

y0

λ.z0
),  

with, BFresnel = constant =
eik.z0

i.λ.z0
. e

i
π(x0

2+y0
2)
2

λ.z0 at a z0-distance, and then BFraunhofer = 
eik.z0

i.λ.z0
  (without dependence on 

x0 and y0) at a z0-long distance, and k = 2π λ⁄  the absolute wave vector. 

 

This means that in Fraunhofer's regime (or at a long distance) the complex amplitude of the diffracted optical 

field is directly proportional to the FT of the pupil object! Is it necessary to recall that the illuminance (intensity) 

will be therefore Ε(P0)=
1

λ2.z0
2 |P̃ (

x0

λ.z0
,
y0

λ.z0
)|
2
? 

 

 

▪ Calculation of diffraction patterns 
 

7.1) The object consists of a horizontal slit of a-width, inside which an amplitude network R has a sinusoidal 

intensity modulation R(ξ, η)=[1 + 𝑐𝑜𝑠(2𝜋𝑁0𝜉)] × 1𝜂. 

Write the full pupil expression P(ξ, η). Then calculate and represent the diffraction pattern at a long distance. 
 

7.2) When the object is positioned attached to a lens L with focal length f, then the FT of such an object will 

be shaped and positioned at the focal point of the image. 

We consider a diaphragm type object composed of two rectangular openings such as (Δξ, Δη the widths and 

heights): 

P(ξ, η)=ΠΔξ,Δη(ξ, η) ∗ δ(ξ − ξ0, η − η0 )
×
et

 ΠΔξ,Δη(ξ, η) ∗ δ(ξ + ξ0, η + η0 ) 

Draw and represent such a pupil or diaphragm. Then, calculate the diffraction pattern plus the intensity directly 

observed laying into the image focal plane (that is at a z0=f distance). 

 
 

A mathematical appendix is located after. 

Diffracting object 

or pupil P() 

  

O 

0 

0+z0 

x0 

y0 

P0 



 

 Mathematical form (FT and Distributions definitions).  
 

▪ Distributions, some definitions: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

▪ Some FT and properties: 
 

δ(t) 1 

1 δ(ν) 

ΠT(t) = rect ൬
t

T
൰ 

sin(πνT)

πν
= T. sinc(πνT) 

sinc(πbT) 
1

b
Π1
b

(ν) 

ei2πν0t δ(ν − ν0) 

δ(ν − ν0) e−i2πν0t 

a. cos(2πν0t) 
a

2
[δ(ν − ν0) + δ(ν + ν0)] 

a. sin(2πν0t) 
a

2i
[δ(ν − ν0) − δ(ν + ν0)] 

ШT(t) 
1

T
Ш1/T(ν) 

a. e−π.b.t
2
 

a

√b
e−

π
b
.ν2

 

a.ΠT(t). e
−
|t|

b  , with b>0 
a. b

1 + i2πbν
 

a. e−
|t|

b  , with b>0 
2ba

1 + (2πbν)2
 

tri2T(t) T2. sinc2(πνT) 

 

FT [
dn

dtn
f(t)] = (i2πν)n. f̃(ν)  ;   FT[f(t − t0)] = e−i2πνt0 . f̃(ν)  ;  FT[f(a. t)] =

1

|a|
. f̃ (

ν

a
). 

 

FT[f(t) ∗ g(t)] = f̃(ν). g̃(ν)    ;    FT[FT[f(t)]] = f(−t)   ;     FT[f ∗(t)] = f̃ ∗(−ν). 
 

|f̃(ν)|
2
=FT[𝒞ff(τ)]. 

 

▪ Parseval-Plancherel theorem: 
 

∫ f(t). g∗(t) dt =
+∞

−∞ ∫ f̃(ν). g̃∗(ν) dν
+∞

−∞
   ;   then    ∫ |f(t)|2 dt =

+∞

−∞ ∫ |f̃(ν)|
2
 dν

+∞

−∞
. 

1 

Heaviside echelon 

H(t)=ቄ
1 if t > 0
0 if t < 0

 

t 

t 

1 

ΠT(t) =  rect ൤൬
t

T
൰൨ = ൝1  if |t| <

T

2
0   if not

 

t 
-T/2 T/2 

t 

1 

T -T 

tri2T(t) = ൝1 − ฬ
t

T
ฬ  if |t| < T

0 if t > T
 

Sign 

sgn(t)=ቄ
   1 if t > 0
−1 if t < 0

 

1 

-1 

FT 

1 

Dirac 
δ(t−t0) 

t 
t0 



 

Working Session n°3: Signals 
 

Systems and properties (linearity, time invariance, memory, causality, stability), 

Impulse/percussion response, Convolution, Transfer function, 

Discrete Fourier transforms (DFT) and series 

 

 Some definitions: 
 

Memoryless: a static system without memory (or memoryless) is such that the output signal s(t0) at time t0 

only depends on the input signal e(t0) at the same time t0; s(t) function of e (t). 

Then, a dynamic system with memory can be defined by an output signal s(t0) function of inputs e(t) at times 

with t ≤t0 and/or output s(t) with t <t0. 
 

Causality: Such causal system have an output signal s(t0) which depend on the previous values (and also the 

present moment) of the input signal e (t), with t ≤t0. 
 

Stability: a system will be stable if any bounded input e(t) gives a bounded output s(t). 

 

▪ Exercise 1) Discuss the properties of memory, causality, norm (bounded input/output) and stability, 

temporal invariance of the following systems: 

 

1.1) y(t) = x(t-6),  1.2) y(t) = x2(t), 
 

1.3) y(t) = x(t).sin(0t), 1.4) y(t) = 
d

dt
x(t). 

 
 

Theorem: For a system described by a convolution operator to be causal, it is necessary and sufficient that its 

impulse response h(t) is zero for the negative values of the variable t. The system is then causal; this means 

that the exit cannot precede the entry. Thus, for the entrance δ(t) (Dirac impulse), corresponding to the non-

zero entry at t=0, the impulse response h(t) is necessarily zero for t negative and s(t) = h(t) ∗ δ(t) = h(t). 

 

▪ Exercise 2) Discuss the properties of memory, causality, norm and stability of the following systems and 

impulse responses: 
 

 

2.1) h(t) = 4.δ(t),   2.2) h(t) = cos(πt).H(t + 1) with H(t) the Heaviside echelon. 
 

 

 

 

 

 

 

 

 

 

▪ Exercise 3) For a given system we have respectively the input signal x(t) = H(t-1) and the impulse (or 

percussion) response of the system equal to h(t) = x(t) = e-t.H(t) ; deduce the ouput signal y(t). 

 

 

▪ Exercise 4) For a given system, we have x(t) = e−t. H(t + 2) and h(t) = e−t. H(t), with H Heaviside echelon. 

Find the response function y(t). 

1 

Heaviside echelon 

H(t)=ቄ
1 if t > 0

0 if t < 0
 

t 

1 

Dirac 
δ(t) 

t 

t=0 



 

▪ Exercise 5) We consider the system whose input e(t) and output s(t) are connected by the relation: e(t) = 

h(t) ∗s(t), with h(t) =ΠT (t −
T

2
) = rect [(

t

T
) −

1

2
]. 

 

 

 
 

 

 

 

5.1) Represent h(t). We consider e(t) = A cos(2πυ0t); calculate s(t) and show that: 
 

s(t) = A.
sin(2πυ0t) − sin[2πυ0(−T + t)]

2πυ0
 

 

5.2) We can write s(t) = A(ν0). cos[(2πυ0t) − ϕ(ν0)]. Calculate  A(ν0) and ϕ(ν0). Represent them as a 

function of ν0. 
 

5.3) We consider that the input signal e(t) is arbitrary. Express S̃(ν) as a function of H̃(ν). Represent |H̃(ν)| 

and arg[H̃(ν)]. 

 

 

▪ Exercise 6) - In addition, will be not corrected in session – 
 

We consider a system whose output and input are linked by (∀𝑡): 

 

∑an

N

n=0

dns(t)

dtn
= ∑ bm

M

m=0

dme(t)

dtm
 

 

6.1) Show that this system has the linear characteristic or property. Check that ei2πν0t is an eigen-function of 

such system. 
 

6.2) Assuming that the Fourier transforms (FT) of e(t) and s(t) plus their derivatives up to the order M and N 

have a meaning (or exist), give the relation linking the FT of s(t) to that of e(t). 
 

6.3) The system is supposed to be stable, in practice how can we calculate its impulse (or percussion) response 

h(t)? 
 

6.4) The system being assumed to be causal, what can we say about its impulse response? Give the expression 

of its transfer function H̃(ν). 
 

 Reminder and analogy/ definitions: 
 

The Fourier series decomposition was f(t) =  ∑ ck. e
ik2πνt+∞

k→−∞ , with ck =
1

T
∫ f(t). e−ik2πνtdt
T

0
. 

 

By analogy, the DFT (N-points sampled at a period (
νsampling

N
)) will be then defined by: 

f̃N(n) =  ∑ fN(k). e
−i2πk

n
N

N−1

k=0

 

 

▪ Exercise 7) Find and write the Discrete Fourier transform (DFT) of the signal x[n] = {2, 0, −1, 3}. 

 

▪ Exercise 8) Considering the signal sequence x[n] = ∑ δ(n − 4k)+∞
𝑘=−∞ . Represent and sketch several period 

of x[n]. Calculate the Fourier coefficient ck of x[n]. 

Entrance e(t) 
E() 

Exit s(t) 
S() 

 

Impulse response h(t) 

Transfer function H̃(ν) 
 



 

Working Session n°4: Signals 
 

Sampling operation, Discrete Fourier transforms (DFT), Filtering, Modulation/demodulation 

 

 

▪ Exercise 1) We consider a sinusoidal signal function x(t) = cos(2πν0t) with ν0 frequency. Show that if 

there is synchronization between the signal and the sampling operation (it means ν0 = k.
νs

N
, with νs  the 

νsampling and k integer), then the DFT reconstructs exactly the spectrum of the previous x(t) function. 
 

[Note: You can already write the sampled signal xs(t); Then calculate X̃s(ν) and plot such a spectrum... Finally 

discuss the spectral aliasing to conclude]  

 

 
▪ Exercise 2) The signal x(t) = cos(200πt) + 2 cos(320πt)   is ideally sampled at the frequency of 

νsampling = 300 Hz. We process this sampled signal obtained by a low-pass filter whose cut-off frequency is 

νcut = 250 Hz. What are the spectral components collected at the filter output? 
 

[Note: Write the sampled signal xs(t); Then calculate X̃s(ν) and plot such a spectrum... Finally discuss on the 

positive side of the spectrum the positioning and effect of νcut]  

 

 
▪ Exercise 3) - In addition, will be not corrected in session – 
 

By using the definition of the DFT, calculate the DFT of the following discrete sequence: 
 

 

 

 

 

 

 

 
 

 

[Note: N = 8 terms, then f̃N(n) = ∑ fN(k). e
−i2πk

n

Nk=N−1=7
k=0  ]  

 

 

▪ Exercise 4) The goal will be to study the filtering aspect of a known circuit by directly taking the FT from 

the differential equation. We consider the following RC circuit: 

 

 

 

 

 

 

 

 
4.1) Establish the differential equation that links the output voltage s(t) to the input voltage e(t). Calculate the 

transfer function H̃(ν) and the impulse response h(t). 

[Note: you have to apply FT directly to the whole differential equation to calculate H̃(ν) . Then to 

determinate h(t) we recall that:  e−at. H(t)

  FT   
→   

FT−1
←   

1

a+i2πν
 ] 

 

R 

C s(t

) 
e(t

) 

i(t) 

1 

f(k) 

k 
0    1    2    3    4    5    6   7 

■    ■    ■                           

■ 

■    ■     ■    ■ 

■     



 

4.2) Represent the amplitude spectrum |H̃(ν)| and the phase spectrum arg[H̃(ν)]. Show that this system is a 

low pass filter. 
 

4.3) We consider the input signal e(t) = A. ΠT (t −
T

2
). Draw the graph of the output signal s(t) in the following 

cases:  a) 0<T<+∞ ;  b) T→ +∞ ;  c) T→ 0. 
 

4.4) We consider e(t) = A. 𝑒−𝑎𝑡 H(t) , with H(t)Heaviside unity echelon  and a>0. Calculate the energy 

spectral density of the output signal s(t). 

[Note: This question can be answered directly after 4.2)] 

 

 

▪ Exercise 5) Chopper modulation/demodulation 
 

We wish to send a signal x(t) on a communication channel using amplitude modulation (AM) at a carrier 

frequency of fc. For this purpose, we propose to use a chopper modulation technique, which consists of passing 

the signal x(t) through a ‘on/off’ gate driven at the frequency called fc ; this operation basically results in the 

multiplication of the signal x(t) with a periodic square signal with 50% duty cycle. 

 

5.1) Show that this modulation technique can be used, along with appropriate filtering, to produce an amplitude 

modulated signal. 

 

5.2) Corollary for coherent chopper demodulation: show that the same technique can be used to demodulate a 

AM-modulated signal xAM(t) = [Ac + x(t)]. cos(2πfct+), provided the ‘on/off’ square signal is well in 

phase with the carrier. 

  



 

Working Session n°5: Signals 

 

Laplace integral and transforms, Region of Convergence (RoC), Distributions, 

Systems, Causality and Stability, Impulse/percussion response, 

Transfer function, Z-transform…. 

 

 

 A mathematical appendix is located at the end of this work session. Thank you for reading it. 

 

 

▪ Exercise 1) We recall that the unilateral Laplace Transform (LT≡ ℒ-operator) of a function f(t) locally 

summable and null for t <0, is written : F̂(p)  = ℒ[f(t)] = ∫ f(t). e−ptdt
+∞

0
, with p complex variable. 

Thus, this mathematical tool will be strongly and naturally used for the calculation of transfer functions from 

causal impulse responses h (t) = 0 for t <0. 
 

Calculate the Laplace Transform (LT≡ ℒ), X̂(p) of the following signals and plot onto the complex plane, 

respectively the pole and the zero plus the notion of global Region of Convergence (RoC) for such signal. 

 

1.1)  x(t) = t. e−at. H(t)   [Note: it will be necessary to integrate by part] 
 

1.2)  x(t) = e−2t. H(t) + e−3t. H(t) [Note: directly by adapting result from the appendix LT table] 
 

1.3)  x(t) = e−3t. H(t) + e2t. H(−t) 
 

1.4)  x(t) = e2t. H(t) + e−3t. H(−t) 

 

 

▪ Exercise 2) Determine the inverse LT of the following spectral-function X̂(p) corresponding to a causal 

system (ℛe(p) > −1). 
 

2.1) At first, decompose the rational fraction X̂(p) =
2p+4

p2+4p+3
 into simple elements. 

 

[Note: if necessary, review the techniques and bases of decomposing fractions into simple elements]. 
 

https://fr.wikiversity.org/wiki/Fractions_rationnelles/D%C3%A9composition_en_%C3%A9l%C3%A

9ments_simples_dans_R 

https://fr.wikiversity.org/wiki/Fractions_rationnelles/D%C3%A9composition_en_%C3%A9l%C3%A

9ments_simples_dans_C 
 

 

2.2) Calculate x(t), which will be called a ‘right-sided signal’ according to ℛe(p) > −1. 

 

 

▪ Exercise 3) We consider the continuous Linear Time Invariant (LTI) system for which the input x(t) and the 

output y(t) are related by the differential temporal equation: 

  

y′′(t) + y′(t) − 2y(t) = x(t)  
 

3.1) Taking the LT of the above equation, find the transfer system function Ĥ(p). Decompose such transfer 

function Ĥ(p) into simple elements. 

 

3.2) Starting from such Ĥ(p), determine the impulse response h(t) in the case of the system is causal (RoC 

ℛe(p) > 1). 

https://fr.wikiversity.org/wiki/Fractions_rationnelles/D%C3%A9composition_en_%C3%A9l%C3%A9ments_simples_dans_R
https://fr.wikiversity.org/wiki/Fractions_rationnelles/D%C3%A9composition_en_%C3%A9l%C3%A9ments_simples_dans_R
https://fr.wikiversity.org/wiki/Fractions_rationnelles/D%C3%A9composition_en_%C3%A9l%C3%A9ments_simples_dans_C
https://fr.wikiversity.org/wiki/Fractions_rationnelles/D%C3%A9composition_en_%C3%A9l%C3%A9ments_simples_dans_C


 

 

 

▪ Exercise 4) In mathematics, the two transformations FT and LT facilitate the resolution of the differential 

equations. They provide both an automatic means to obtain a particular solution. Let us illustrate this point 

knowing that LT appears more 'general' than FT. Consider the following differential equation: 
 

 

−f ′′(t) + f(t) = δ(t) 

 

4.1) Taking LT of such equation, calculate respectively F̂(p) and show that f(t) = −H(t). sh(t) with table in 

appendix. Then, taking FT of the differential equation, determine F̃(ν) and show that f(t) =
1

2
e−|t|. 

 

4.2) By equalizing the more ‘global’ solution obtained by LT with, the 'particular' solution obtained by FT plus 

one a general solution of the homogeneous differential equation (i.e. second member = 0), then determine 

the two constants for such equality. 

 

 

▪ Exercise 5) The feedback interconnection of two causal sub-systems with functions F̂ (p) = 
1

p−2
 and Ĝ (p) =

3 is describe below (the element Σ gives an output signal equal to the sum of both input signals, taking into 

account of the minus sign here). 
 

 

 

 

 

 

 

 
 

5.1) Determine the transfer function Ĥ (p) of the feedback system represented by the above diagram. 
 

 

5.2) Determine the poles and the zeros (if any) of  Ĥ (p). Discuss the both properties together ‘causality plus 

stability’ of the system. 
 

 

5.3) We consider the input signal x(t) = e−3t. H(t), calculate the output signal y(t). [Note: we will already 

determine Ŷ (p)] 

 

 

▪ Exercise 6) - To go further - In numerical, the passage from the DFT to the Z-transform (ZT) is obtained 

by a change of complex variable z ≡ ei2πνt  and thus comes back to the calculations of series in mathematics.  
 

Calculate the Z-transforms (ZT), which is written X̌(z), of the following x(n) causal sequences; indicate their 

area of convergence. 
 

6.1)  x(n) = {
1 (𝑛 = 0)
0  (𝑛 > 0)

,  6.2)  x(n) = an ,     6.3)  x(n) = n. an. 

 

[Note: for the third case we will use, k. x(k)
ZT
→ −z.

dX̌(z)

dz
] 

A mathematical appendix is located after 

x(t) z(t) 

Σ 

− 

y(t) 

? 

𝐅̂ (𝐩) 

𝐆̂ (𝐩) 



 

 

 Mathematical form (LT and definitions).  

 

The notations 𝐋𝐓[𝐟(𝐭)] = 𝓛(𝐟(𝐭)) = 𝐅̂(𝐩) are equivalent. 

 

▪ Some Laplace transforms LT (≡ 𝓛-operator) and properties: 

 

 
 

δ(t) 1 

𝐃(𝐧)(𝐭) ≡
𝐝𝐧

𝐝𝐭𝐧
 𝐃(𝐭),    (∀ 𝐃 𝐃𝐢𝐬𝐭𝐫𝐢𝐛𝐮𝐭𝐢𝐨𝐧) 

 

Example: 

δ(n)(t) ≡
dn

dtn
 δ(t) 

𝐩𝐧. 𝓛(𝐃)   or   𝐩𝐧. 𝐃̂(𝐩)   
 

 

pn 

𝐇(𝐭) 

𝟏

𝐩
 

 

(direct : Ĥ(p) = ∫ 1. e−pt. dt
+∞

0
, for ℛe(p) > 0)   

𝐃(𝐭 − 𝐭𝟎),    (∀ 𝐃 𝐃𝐢𝐬𝐭𝐫𝐢𝐛𝐮𝐭𝐢𝐨𝐧) 
 

Example :  H(t − t0) 

𝐞−𝐭𝟎𝐩. 𝓛(𝐃)   or   𝐞−𝐭𝟎𝐩. 𝐃̂(𝐩)   
 

e−t0p

p
 

t. H(t) 
1

p2
 

tn. H(t) 
n!

pn+1
 

𝐞𝐩𝟎𝐭. 𝐭𝐧. 𝐇(𝐭)   (∀ 𝐩𝟎 𝐜𝐨𝐦𝐩𝐥𝐞𝐱) 
 

Examples:  

 

H(t). e±iωt 
 

H(t). cos(ωt) =
H(t)

2
. (eiωt + e−iωt) 

 

H(t). sin(ωt) =
H(t)

2i
. (eiωt − e−iωt) 

𝐧!

(𝐩 − 𝐩𝟎)
𝐧+𝟏

 

 

 
1

p ∓ iω
 

1

2
൬

1

p − iω
+

1

p + iω
൰ =

p

p2 +ω2
 

 
1

2i
൬

1

p − iω
−

1

p + iω
൰ =

ω

p2 +ω2
 

H(t). e±t 
 

Examples: 

 

H(t). ch(t) =
H(t)

2
. (et + e−t) 

 

H(t). sh(t) =
H(t)

2
. (et − e−t) 

1

p ∓ 1
 

 
1

2
൬

1

p − 1
+

1

p + 1
൰ =

p

p2 − 1
 

 
1

2
൬

1

p − 1
−

1

p + 1
൰ =

1

p2 − 1
 

 

 

 

▪ Plus all the properties of linearity, convolution and so on obviously… (as FT). 

𝓛 


