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Abstract: 

 

Although the dynamics of charge transfer (CT) processes can be probed with ultimate lifetime 

resolution, the helplessness to control CT at the nanoscale constitutes one of the most important road-

blocks to revealing some of its deep fundamental aspects. In this work, we present an investigation of 

CT dynamics in a single iron tetraphenylporphyrin (Fe-TPP) donor/acceptor dyad adsorbed on a 

CaF2/Si(100) insulating surface. The tip of a scanning tunneling microscope (STM) is used to create 

local ionic states in one fragment of the dyad. The CT process is monitored by imaging subsequent 

changes in the neighbor acceptor molecule and its efficiency is mapped revealing the influence of the 

initial excited state in the donor molecule. In validation of the experiments, simulations based on 

density functional theory show that holes have a higher donor-acceptor CT rate compared to 

electrons and highlight a noticeable initial state dependence on the CT process. We leverage the 

unprecedented spatial resolution achieved in our experiments to show that the CT process in the dyad 

is governed via molecule-molecule coherent tunneling with negligible surface-mediated character.   
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Introduction 

 

Charge transfer (CT) processes are the cornerstone of a plethora of physical and chemical 

phenomena including electronic transport1, solar cell design2, organic emitting devices3, spintronics4, and 

even photosynthesis in biosystems5. CT processes occurs intrinsically at the nanoscale across this wide 

variety of disciplines6 because it is a quantum process that is influenced by various parameters such as the 

molecular symmetry, the vibrational modes or the ergodicity of the studied systems7. For these reasons, CT 

processes have been intensively studied in gas phase or in solution where various parameters can be 

controlled to tune the CT rate such as the nature of the solvent or the presence of functionalized 

substituents8. In this context, several experimental techniques offer the ability to probe the CT rate, ranging 

from adsorption/emission spectroscopy9 to more sophisticated optical pump-probe experiments10. 

However, difficulties arise because these techniques mainly report on an average of various spatial 

configurations restraining the capacity to simultaneously control morphology, energetics and energy 

dissipation pathways. On the molecular modeling side, CT processes involve electronic states possessing 

drastically different spatial shape from the electronic ground state. This leads to commonplace theories such 

as the time-dependent density functional theory (DFT) to falter11. The combination of such complications 

have somehow hampered progresses in the fundamental understanding of CT in molecular assemblies12,13. 

In order to bring new insights in the investigation of CT processes, it is necessary to modify the 

currently adopted paradigms. One enticing alternative is to study CT at the nanoscale in a well-defined and 

controlled environment. Self-assembled molecules on metallic surfaces14, vertical electronic transport with 

STM15 or planar broken junctions16 are systems and techniques offering interesting and rich physics in this 

context but do not warrant electronic decoupling of the molecule with the surface and are recognized to 

often provide ill-defined conformational environments of the entire studied system. Low temperature STM 

can tackle these deficiencies because it offers the ability to control the environment down to the Angstrom-

level and can be employed as an initiator of CT by generating local ions on targeted regions of a single 

molecules17,4,18,19. Specifically, when molecules are adsorbed on a surface, the influence of symmetry 
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breaking resulting of the formation of nonstationary localized charge states can be characterized with 

specific molecular reactions (movement, switch, charge storage, luminescence)20, 21.  

Recent investigations dealing with individual heterodimers located on an metal/insulating surface 

have been performed to investigate energy transfer processes when probed via harvesting of the 

electronically induced luminescence signal22,23. Expectedly, the described energy transfer process is shown 

to be insensitive to the tip localization over the donor molecule since couplings for energy transfer are of 

longer range than for CT processes and follows very different pathways as they are influenced by specific 

factors24,25. So far, controlled CT processes have never been investigated in molecular dyads at the 

nanoscale when the initial nonstationary state of CT is prepared precisely at specific locations inside one 

of the molecular fragments26.  

In this work, we focus our study on a molecular dyad made of two unbonded iron-5,10,15,20-

tertaphenyl-21H,23H-porphyrin (Fe-TPP) molecules that plays the role of donor-acceptor homodimer when 

physisorbed on a thin insulating layer (Fig. 1a). Porphyrins and in particular metalated porphyrins represent 

a particularly important class of CT systems as they are involved in a large number of biological or physical 

processes27,28,29,30. While tunnel electrons from STM are traditionally used to image surfaces and adsorbates, 

they also allow the formation of very local vibrational excitation or transient ions via electronic activation 

to investigate various physical or chemical phenomena such as molecular dissociation31, switching32 or 

luminescence emission33. In this work, we study electron and hole transfer in the dyad with a low 

temperature STM (9 K) by triggering the CT through the creation of an ionic state in the donor molecule 

leading to a charge transfer to the acceptor34.  The lateral movement of the acceptor along the surface is 

witnessed and correlated to the exchange of charge between monomers. Here, the robustness of a very well 

documented excitation process to control molecular manipulation21,17,19,20,38,39,41,42 represents a corner stone 

to develop a complete novel approach to study charge transfer process at the nanoscale. Our investigations 

show that the transfer of holes is favored in the molecular dyad compared to the transfer of electrons. We 

also report that the hole transfer rate depends on the location where the ionized state (i.e. the initial state) is 

generated in the donor monomer. Thus, we have concentrated our investigation on the spatial dependence 
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of the CT event, an elusive aspect of CT35, especially in systems where the environment is unable to polarize 

and stabilize the initial and final states involved in a CT process24,25. By investigating the influence of the 

CT process on the excitation location in the donor fragment, we show that the ensuing CT process arises 

from a coherent tunneling effect where possible surface mediated channels appears to be negligible. This 

new method of investigating CT at the nanoscale can be employed to specifically study bridge-mediated 

CT (e.g., heterodimers featuring various molecular bridges involving covalent or non-covalent bonding), 

opening a new door to studying CT at the nanoscale in extremely well-defined and controlled environments.   

 

Results and discussion: 

In the gas phase, Fe-TPP exhibits D4h symmetry having a well characterized structure and a ground 

electronic state that is summarized in Fig. 1b36. In this work, several Fe-TPP molecules are gently adsorbed 

on the cooled insulating CaF2 stripes on Si(100) as described previously18. The large scale STM picture 

(Fig. 1c) depicts Fe-TPP molecules adsorbed on top of the insulating stripes which arrange into two main 

adsorption configurations named CL and CR (see smaller scale STM pictures shown in Figs. 1d and 1e)37. 

The CL configuration (Fig. 1d) shows an anticlockwise rotation of its skeleton of 23° from the insulating 

stripe direction. This implies that the upper right and lower left phenyl groups are rotated to be almost 

coplanar to the porphyrin macrocycle (see white arrows in the right panel of Fig. 1d). The other two opposite 

phenyls are less impacted by the morphology of the insulating stripes because they are located on top of the 

groove that separate two insulating stripes. This gives them more freedom to adjust the dihedral angle  

between the phenyl and the porphyrin. The CR configuration (Fig. 1e) corresponds to the mirror symmetry 

of the CL conformation with a clockwise rotation (same angle as CL) of the molecule compared to the 

stripe  leading to a similar rotation of the upper left and lower right phenyl groups (see white arrows in the 

right panel of Fig 1e). For sake of clarity, we report the optimized molecular geometries superimposed to 

the STM images in the right panels in Figs. 1d and 1e. The size of the bright protrusion considered as a Fe-

TPP molecule is coherent with the one of the gas phase molecule (Fig. 1b) as shown in the apparent height 

profile provided in the Supplementary Fig. S1. Owing to the relatively large surface energy gap of the 
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insulating layer, the presented STM topographies involve deeper occupied molecular orbitals, as in this 

case, the frontier HOMO and LUMO orbitals are not reachable via STM imaging.      

To investigate CT in molecular homodimers, it is necessary to characterize the electronic induced 

motion of a single molecule as it will be used as a probe of the CT process in the dyad. The study of a single 

Fe-TPP molecule movement is performed by exciting electronically each of the two CL and CR 

conformations at eight different points as indicated in Figs. 2a and 2c. Specifically, points 1 to 4 correspond 

to excitation positions where the STM tip is on top of the phenyl groups of the molecule whereas points 5 

to 8 designate excitations located on the pyrrole groups of the porphyrin macrocycle. Due to mirror 

symmetry between the CR and CL molecular conformations, the excitation positions are numbered in a 

way that allow a direct point-to-point motion yield comparison. The excitation is carried out with two 

different biases, probing unoccupied orbitals (positive bias + 2.5 V) or occupied orbitals (negative bias - 

2.5 V). The excitation procedure is as follows: (i) The STM tip apex is placed at one of the excitation 

location defined above. (ii) The feedback loop of the STM is switched off and the bias is adjusted to a value 

of - 2.5 V or + 2.5 V. (iii) during the excitation time, the tunnel current intensity is recorded and a variation 

of tunnel current is detected when the molecule has moved38,39. Subsequently to this excitation process, the 

feedback loop is turned on again and the STM recovers its previous scanning parameters. (iv) the molecule 

is subsequently imaged to observe any conformational changes for which a molecule having a CL (or CR) 

conformation can switch to a CR (or CL) configuration after the electronic excitation time leading to two 

possible cases. The first corresponds to a CL  CRup (CR  CLup) transition. The second case is when the 

molecule slides and rotates upward along the insulating stripe via a CL  CRdown (CR  CLdown) movement 

(i.e., when the molecule slips and rotates upwards (downward) along the same stripe). The insulating stripe 

serves then as a track on which the molecule can move as previously reported18. Occasionally, when the 

excited molecule hops and lands on a neighboring stripes (different from the initial one) or when the 

molecule moves several steps upward or downward, the results of the manipulations are disregarded from 

the presented statistical analysis. To check that the excitation-induced conformational change is similar 

from one molecule to the other, we have also performed sets of measurements on various different 
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molecules of each configuration located at various places on the surface as well as on different terraces. For 

each excitation points, the efficiency to induce the molecular motion is inferred from these measurements 

and expressed as a quantum yield Y = (e/Iexc. x Texc) where e is the electron charge, Iexc. the tunnel current 

intensity during the excitation and Texc., the time needed to induce the conformation change39,40,41. This 

method is further explained in the Supplementary Fig. S2. 

  The measured yield of the CL  CR movement when a single Fe-TPP molecule is initially excited 

in a CL conformation (Fig. 2a) is presented in Fig. 2b. The figure shows that both biases (-2.5 V and +2.5 

V) are efficient for moving the molecule upward or downward when the excitation is applied locally at 

points 1-4 (i.e., at the phenyl groups). The yield strongly decreases when the excitations are applied in 

points 5-8 (i.e., at the pyrroles groups) of the molecule. A careful look in Fig. 2b unveils interesting trends. 

The upward movement is favored for both biases when the excitation is located at points 2 and 4 while the 

downward movement is more efficient when the excitation is placed at points 1 or 3 (see the insert in Fig. 

2b). We also note that excitation at negative bias leads to slightly higher yields than positive bias.  

The excitation of a Fe-TPP initially in a CR conformation (Fig. 2c) can be switched through a CLup 

or CLdown movement independently of the excitation bias (Fig. 2d). However, in order to move upward the 

corresponding Fe-TPP molecule (i.e., in the CLup conformation), it is required to apply the excitation at 

points 1 or 3.  The downward movement (CLdown) is instead favored with an excitation at the locations 2 or 

4. We stress here that the excitation positions located at point 5 to 8 do not result in significant molecular 

motions yields for both CL and CR conformations. The apparently random yields measured at these 

positions may arise from spurious electronic excitations in the neighborhood of the considered positions. 

The STM-induced molecular movement of the single Fe-TPP molecule on the surface is a one-

electron process that forms a transient cation (-2.5 V) or anion (2.5 V)39,42. During the transient lifetime of 

the ionic fragment (for example a cation), the equilibrium geometry of the ionized molecule differs from 

the neutral species because of the image charge in the substrate as generally described in Antoniewicz 

processes43. This effect leads generally to an excess of kinetic energy once the molecule is neutralized43. 

When the bias changes (i.e., from -2.5 V to +2.5 V), the molecular picture is qualitatively the same, although 
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the molecular ion spends some time in an anionic state. During the lifetime of the ionic state (and thus 

during its quantum evolution) the molecular motion is initially triggered via a repulsive electrostatic effect 

due the electronic charge of the STM tip being of the same sign of the ion42. The molecular movement then 

continues via the gained kinetic energy after the molecule becomes neutral as further detailed in the 

Supplementary Fig. S3.  

Our experimental data indicate a major effect – i.e., the motion occurs preferentially when the 

excitation is initially applied on one of the phenyl groups of the Fe-TPP molecule. When the phenyl groups 

are excited, the motion of the molecule is favored because of their various degrees of freedom compared to 

the porphyrin macrocycle. Hence, the localization of the excitation allows us to select a specific region of 

the potential energy surface (PES) of the molecule in which the transient local ion is formed, involving a 

superposition of non-stationary excited states in the molecule. Because of possible favorable symmetries 

of the involved wavefunctions, the electronic interaction between the phenyl rings and the porphyrin 

macrocycle will significantly depends on the dihedral angle between these molecular groups17,44,45. Taking 

this electronic interconnection into account, it is possible to exploit the described molecular motion induced 

by a transient ionic state as a probe of the CT process in a molecular homodimer.  

The following task is to assemble two Fe-TPP molecules in a specific conformation to form a dyad. 

For simplicity, we consider hereafter only homodimers made of two CL molecules due to mirror symmetry 

with the CR-CR dyad. In the dyad, the upper molecule acts as the donor and the lower molecule as the 

acceptor (Fig. 3a). This arrangement allows us to use the STM tip-induced ionization to study CT from 

donor to acceptor. The overall process exploits the created ion to trigger either a hole or an electron transfer 

to the neighbor molecule. The neutralization of the second molecule induces its movement along the stripe 

and constitutes a signature of the CT process that occurs in the homodimer. 

To gain a comprehensive picture of the CT process, we position the STM tip at four different 

locations (1 to 4) of the acceptor molecule, each corresponding to a pyrrole groups (Fig. 3a). We point out 

that we do not excite the phenyl groups of the donor to avoid probable motion of the excited molecule and 

hence favor the CT process to the acceptor molecule. Therefore, from the initial CL-CL dyad configuration, 
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only the CL  CRdown molecular conformation change is considered (right panel in Fig. 3a) as a probe of 

the CT process. For each of the four selected excitation positions and biases, a probability to trigger the CT 

process in the dyad is deduced and the lower molecule of the dimer is replaced with the STM tip to reform 

the initial CL-CL dyad conformation. The measured quantitative quantum yield as a signature of the CT 

process is then extracted from this probability (see the method section). The ensuing measured CT yields 

are presented in Fig. 3b for the two considered biases -2.5 V and 2.5 V.  

Our results show that when the excitation is applied at positive voltage, the yield to trigger the CT 

process in the homodimer is very low. However, for negative bias (-2.5 V), the CT quantum yield is 

significantly improved for the four selected positions and is found to strongly depend on the chosen 

excitation location. This first observation indicates that the hole transfer is favored over electron transfer. 

To provide a better understanding of these observations, we plot the variation of the CT efficiency as a 

function of the distance that separates the excitation location to the center of the neighbor molecule (Fig. 

3c). Each excitation position is thus defined with a distance d1 to d4  and the resulting curve for both biases 

are presented in Fig. 3d. Since the two molecular fragments of the homodimer are not chemically bonded 

to each other, it is interesting to investigate which type of CT process occur in the dyad. Generally, CT 

involving tunneling processes are favored in unbounded systems compared to resonant CT which typically 

requires specific spatial distribution of density of states11. The trends in Fig. 3d for hole transfer (-2.5 V) 

show that the CT process triggered in the Fe-TPP homodimer does not only depend on the chosen excitation 

location but also on the distances between the excitation positions and the acceptor molecule. Our results 

reveal that the location at which the CT process is initiated strongly influence the CT rate and hence the 

lifetime of the excited ionic state. In other words, there is a significant dependence of the hole transfer 

yields on the preparation of the initial state of the CT that is not observed for the excitation at positive bias, 

i.e. for electron transfer (Fig. 3d).  

Further characterization of the CT processes is provided by simulations based on the density-

functional theory (DFT) which aim at corroborating the following observations: (1) the CT is observed to 

be more efficient for holes than for electrons; (2) the CT efficiency depends on the position at which the 
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hole is generated in the donor molecule. That is, there is a clear and noticeable dependence of the CT rate 

on the preparation of the initial nonstationary charged-localized state. 

Our first investigation has the goal to define the relevant geometrical configuration of the Fe-TTP 

molecules in the dyad on the insulating surface stripes. From the experimental observation, upon adsorption, 

the molecule is rotated by an angle of  = 23 ° around the axis that crosses perpendicularly the central metal 

atom of the molecule. Additionally, due to steric hindrance with the surface, two phenyl groups are rotated 

of an angle , placing them in a plane almost similar to the one of the porphyrin macrocycle (Fig. 4a). 

Taking  as an important parameter for the CT rate, we computed the electronic coupling Vij of the CT (see 

method) from donor to acceptor for three different values of : 10°, 45° and 90°. The dyad is made with 

one molecule as in the gas phase while the second one sees its structure modified according to the values 

of as explained in Fig. 4a. The value = 90° corresponds to a dihedral angle where the phenyl plane is 

perpendicular to that of the porphyrin macrocycle. Our calculations show that for  ~ 20°, the electronic 

coupling is optimal when  = 10° which is consistent with our experimental observations. By plotting the 

spatial distribution of the frontier orbitals HOMO and LUMO (Fig. 4b) one can see that a large overlap of 

the HOMO orbitals over the porphyrin, unlike LUMO, can clearly enhance the values of Vij. Further 

delocalization of the HOMO is driven when the phenyl group’s rotation angle θ is such that it brings the 

HOMO orbital to hybridize over the rotated phenyl groups (Fig. 4b)46,47. A detailed description of these 

simulations is given in the Supplementary Fig. S4.  

Our DFT simulations can also quantitatively examine the CT rate dependence on the position of 

the initial charged-localized state as well as the difference between hole and electron transfer processes.  To 

reproduce the experimental excitation locations, we have defined four atomic groups, i.e., the atoms 

constituting the pyrrole moieties of the donor molecule (Fig. 5a).  The CT rate Γ(E) is evaluated by the 

Fermi Golden Rule expression. Our model addresses the rate of neutralization of the donor molecule after 

it has been ionized and is given by: 
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𝛤(𝐸) =  
2𝜋

ℏ
∑ 𝑃𝐼(𝜀𝑖)𝑓𝐼(𝜀𝑖 − 𝜇𝐼)𝛿(𝐸 − 𝜀𝑖) ∑ 𝜃𝑖𝑗𝑓𝐹(𝜀𝑗 − 𝜇𝐹)

𝑗∈final

|𝑉𝑖𝑗|
2

𝑖∈initial

, (1) 

 

with:  

𝛩𝑖𝑗 = {
                   Θ(𝜀𝑗 − 𝜀𝑖)  ⟶ for hole transfer, 

Θ(𝜀𝑗 − 𝜀𝑖)Θ(𝜀𝑗 − 𝜀𝐿𝑈𝑀𝑂) ⟶ for electron transfer. 
                                  (2) 

 

 

Here, E is the tunneling energy of the electron or hole leaving the molecule, PI is the partial density of states 

(PDOS) of the upper (donor) excited molecule calculated at each pyrrole. The fI/F are Fermi-Dirac functions 

pertaining the initial/final states and Θ(ε) is the Heaviside step function at the energy  that ensures 

thermodynamic irreversibility. Vij is the electronic coupling (defined in the methods section) connecting the 

electronic states of donor and acceptor, μI/F are the chemical potential of each fragment (Fermi Energy, 

EF), and εi/j are the values of the energy levels and δ(ε) is the Dirac delta function at the energy ε. 

Equation (1) shows that the calculated CT rate probes the reachable CT pathways between the two 

molecules in the dyad when one of them (donor) is initially ionized (with a loss of an electron) at the state 

with energy 𝜀𝑖 . Subsequently, the charge (hole) is transferred to the states of the acceptor molecule lying in 

the energy window 𝜀𝑗 − 𝜀𝑖. The localized STM induced excited ionic state is simulated by weighing the 

transfer rate by the partial density of electronic states PDOS (indicated by 𝑃𝐼 in equation (1)) at a chosen 

pyrrole group. Similarly, the contribution of the final state is given by 
2𝜋

ℎ
|𝑉𝑖𝑗|

2
 which is the Fermi golden 

rule rate for the 𝑖 → 𝑗 transition. Therefore, the CT rate 𝛤(𝐸) depends on the excitation position in relation 

to the symmetry of the molecule and its ensuing spatial DOS distribution at each considered orbital. In our 

simulations we assume that the spatial distribution of the involved orbitals does not change drastically 

between the neutral and the ionic states. The error introduced by this approximation on the calculated 

couplings in porphyrin systems was previously assessed to be below 20 % and therefore acceptable for 

qualitative comparison with experimental findings48. Additional information about the rate described in Eq. 

(1) can be found in the methods section.   
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The values of 𝛤(𝐸) are calculated for a fixed distance (16 Å) between the donor and acceptor Fe-

TPP molecules (Fig. 5a). The molecules are rotated by an angle of 23° to the left to mimic the CL-CL 

conformation as observed experimentally.  The influence of the surface on the Fe-TPP morphology is taken 

into account by locking a set of two given dihedral angles between the two previously defined phenyl groups 

and the porphyrin (Fig. 4a) and then monitoring their effect on the CT rate. We have considered the 

computation of two particular cases for which the upper (donor) molecule is fixed either with θ = 45° or θ 

= 10°. In both cases, the bottom (acceptor) molecule is kept in the same configuration with θ = 10° 

accordingly to the experimental observation. The variations of 𝛤(𝐸) as a function of the energy 𝐸 − 𝐸𝐹 are 

presented in Figs. 5b and 5c for the electron transfer and in Figs. 5d and 5e for hole transfer for the two 

particular values of θ described above. For electron transfer (Figs. 5b, 5c), we notice a significant CT rate 

peak centered at 2.3 eV with a maximum value of 𝛤(𝐸) in the range 0.3-0.4 x 106 s-1. We also observe that 

the variation of 𝛤(𝐸) intensity for electron transfer does not strongly vary for both value of θ as a function 

of the excitation position. For hole transfer (Figs. 5d, 5e), the major 𝛤(𝐸) peaks are mainly centered at -1.8 

eV. The intensity of the 𝛤(𝐸) peaks for hole transfer in Figs. 5d and 5e are more than two orders of 

magnitude higher than for the electron transfer (i.e. 0.1 – 0.45 x 108 s-1). A careful look at the maximum 

intensity of these peaks at -1.8 eV in Figs. 5d, 5e clarifies how the adsorption conformation of the Fe-TPP 

molecule strongly influences the hole CT rate as 𝛤(𝐸) is more than twice larger for  θ = 10° than for θ = 

45°. Plotting the maximum of the peak intensities of 𝛤(𝐸) at -1.8 eV and 2.5 eV as a function of the distance 

of the excitation point to the acceptor (d1 to d4) reveals a set of curves with a parabolic-like shape for the 

hole transfer whereas 𝛤(𝐸) remains rather flat as a function of the distance for the electron transfer. These 

data can be compared with the experimental curves shown in Fig. 3d. Comparing electron and hole transfer 

rates allows us to conclusively determine that the hole transfer occurs with higher rates than electron 

transfer. If we concentrated now on the calculated hole transfer rate (Fig. 5f), we can see that for the three 

shorter distances (d2, d3, d4), the calculated variation of 𝛤(𝐸) for θ = 10° reproduces the trends of the 

variations of the experimentally measured CT yields (Fig. 3d). However, the calculated hole CT rate for 
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the larger distance d1 increases whereas it stays relatively steady for the experimental values. This difference 

suggests that the hole CT rate depends not only on the excitation position but also on the distance between 

the initial excited state and the acceptor molecule.  

Inspection of the involved molecular electronic states reveals that different orbital symmetries can 

affect the CT rates. Hence, to understand the role of the molecular conformation in relation to its ensuing 

symmetry on the variations of the calculated CT rate, it is important to draw a detailed picture of the DOS 

spatial distribution for each molecular orbitals. Such distribution is presented in Fig. 6 for the first five 

LUMOs and the fourteen HOMOs. For biases spreading in the range 0 to 2.5 V, the number of probed 

LUMOs orbitals is weak and their DOS are mainly spanning within the iron atom and the porphyrin 

macrocycle. In the range 0 to -2.5V, a much larger number of orbitals are involved. In particular, there are 

clear asymmetric distributions of DOS in the HOMO-11 and HOMO-12 where one of the pyrroles groups 

shows almost no density of state (red arrows in the lower part of Fig. 6). Other similar asymmetric DOS 

distributions at the pyrroles groups are also observed (i.e., HOMO-5 and HOMO-6) for which the DOS is 

spreading through the porphyrin macrocycle and on the rotated phenyl groups at θ = 10° (HOMO-5). A 

comparison with the DOS distribution of a single Fe-TPP molecule without surface perturbation (i.e., no 

rotation along ) indicates that the asymmetric distribution of DOS in the molecular orbitals mainly arise 

from the angle variation between the rotated pairs of phenyl groups in the Fe-TPP (see supplementary Fig. 

S5).     

 

Discussion 

Considering the Antoniewicz-like process that describes the molecular motion of a single Fe-TPP 

molecule (Fig. S3), we coherently use the same model to depict the CT mechanism occurring in the Fe-

TPP dyad in relation to our experimental and theoretical observations. When the STM tip creates a hole at 

one of the selected pyrrole group of the donor molecule (Fe-TPP1 in Fig. 7a), the resulting PES of the 

pyrrole group (Pyr+) reaches a higher energy curve that matches the energy of a specific orbital of the 

acceptor molecule (e.g. Porph + ArylN at Fe-TPP2 in Fig. 7a). For a given excited pyrrole, the ensuing 
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quantum state of the local excited ionic PES varies in relation to the initial local DOS distribution 

differences between pyrroles at a given energy. Therefore, while the local ionization potential can be 

considered as identical at each pyrroles, the electronic coupling between each fragments combined with the 

Frank-Condon factors in the dyad can thus lead to a specific hole transfer dynamics from the donor to the 

acceptor molecules during the life time of the excited ionic state17. The second step (Fig. 7b) of the CT 

process describes the evolution of the excited ionic state of the acceptor fragment (Porph + Aryl+) following 

the loss of one electron. Here we illustrate the most favorable case ( = 10°) for which the porphyrin 

macrocycle and the aryl groups involved in the final molecular motion of the acceptor fragment are coupled 

(see the double well potential PES in Fig. 7a and 7b). Simultaneously, the electron incoming from the 

acceptor fragment that neutralizes the donor moiety provides additional kinetic energy (ke) which is lost 

within the donor molecule/substrate interactions without inducing any molecular motion. Subsequently, as 

a third and final step, the neutralization of the acceptor fragment (Fe-TPP2 in Fig. 7c) allows the molecule 

to gain a kinetic energy ke’ that leads to the excitation of vibrational modes smearing over the molecule 

and in particular at the aryl groups of the second fragment, which rules its motion along the insulating 

stripe.   

Indeed, as observed experimentally, the movement of the Fe-TTP molecule is enhanced when the 

electronic excitation of the molecule is applied on one of the aryl group of the porphyrin. Therefore, the 

movement of the second fragment is optimized if the majority of the gained kinetic energy, ke, is coupled 

to the rotational and vibrational population of the phenyl groups located at position 1 or 3 on the CL 

conformation (Fig. 2b). A careful look in Fig. 6 show that there are a few particular molecular orbitals that 

can answer these criteria and thus favor the ensuing CT process: they lie at higher energy than the excited 

orbital of the donor fragment and their amplitude spreads both on the porphyrin cycle and on one or two of 

the considered aryl groups. This is particularly the case for the HOMO-5 orbital for which the rotated 

phenyls at position 2 and 3 allow to spread the DOS over the active part of the molecule. A similar structure 

can also be observed at the HOMO orbital where the excitation of the phenyl at position 3 can induce the 

observed molecular motion (see red arrow in Fig. 6).  



14 
 

At this point of our investigation, it is possible to address the question of whether the CT process 

occurs in the molecular dyad as a tunneling process or a sequential hopping CT process that may involve 

several hole transfer steps. More precisely, it would be interesting to learn from our investigations if the 

hole created at one precise location at the pyrrole PES of the Fe-TPP is rapidly transferred to the HOMO-5 

orbital of the acceptor fragment or if the CT process occurs following an entire delocalization of the hole 

through the porphyrin macrocycle PES of the donor fragment following the excitation.  In the latter case, 

the measured yield is expected to show weak reliance upon the considered distances and would involve a 

rapid relaxation to the frontier occupied orbital HOMO of the donor. In this configuration analogous to the 

Kasha rule49, the measured CT yield would not show variations when the excitation energy of the tunnel 

electron varies.  This process is related to the charge transfer time. CT occurring through frontier orbitals 

of the dyad can be estimated to take place in the picosecond time scale50. However, another relevant 

information relies on the comparison of the life time  of the CT process when it involves each possible 

occupied orbital in the donor fragment, with a CT process life time HOMO that will only occur from the 

frontier (HOMO) orbital of the donor. The inset in Fig. 6 shows the variations of the ratio  /HOMO as a 

function of the relative energy E-EF
Tip and indicates that the CT in the dyad is three order of magnitude 

faster if it occurs from deeper occupied orbitals of energy ranging from -2.5 to -1.8 eV whereas the CT 

process slows down if higher-energy orbitals (i.e. -1.7 to HOMO) are involved. This implies femtosecond 

timescale for hole transfer from orbitals deeper than the HOMOs. Another analogous CT time estimation 

arising from the measured CT yields is provided in the supplementary Note N5.       

To further highlight the CT dynamics, we have fitted the experimental data presented in Fig. 3d for 

the hole transfer yield with an exponential decay function of the form  𝛤(𝑑) = 𝛾0 + 𝛾1exp(−𝑑/𝛽), where 

𝛾0 and 𝛾1 are proportionality and offset factors, respectively, and 𝛽 is a falloff parameter as described in 

the McConnell relation that describes CT processes involving tunnel electrons51. A satisfactory set of 

parameters allow us to plot the resulting fitting function in Fig. 3d (red dashed curve) with a value of 𝛽 = 

2.2 ± 0.5 Å-1. Our results reveal that the hole CT process observed in the dyad rather arises from a coherent 



15 
 

tunneling effect initiated at each of the pyrrole groups of the excited porphyrin since the value of 𝛽 is 

relatively large compared to what can be observed in other biosystems with stronger donor-acceptor 

electronic communication52. Hence, for the observed CT process in the FeTPP dyad, a relatively short life 

time of the excited ionic state is expected, preventing that the created hole at deeper orbitals (i.e. HOMO-

11) relax rapidly over the entire donor molecule to a frontier orbital. Although this relaxation channel cannot 

be completely excluded as a competing relaxation pathway, it is not a determining factor in the observed 

CT process. The excess of energy that is provided by the electronic excitation at a slightly higher energy of 

the ionization threshold of the molecule allows to prepare a transient cationic state in an excited specific 

roto-vibrational state that matches the ones of the acceptor molecule. Such a resonance condition favors a 

CT process due to high Franck-Condon factors,7,17, hence displaying anti kasha behavior. This is not 

surprising as anti-Kasha process is generally favored in systems with a low number of collisions and where 

the on-site energy dissipation is slow49. The trend of our findings is also consistent with our experimental 

conditions performed at low temperature (9 K) and thus rather exclude the possibility of a purely thermally-

activated processes.  

At this stage, we found it essential to study a possible influence of the electrostatic field variations 

at the acceptor molecule when the donor molecule is excited at the positions 1-4 with the STM tip. The 

estimation given in the supplementary Fig. S6 shows that the maximum variation of the electrostatic field 

reaches ~3% in the worst case (tip radius = 10 nm and micro-tip radius = 1 nm, between p1 and p4). Such a 

small variation cannot explain our experimental findings for which the measured CT yields and the 

calculated rates (E) differences worth ~30% between the two nearest positions p3 and p4. Additionally, it 

is important to notice that the absolute electrostatic field variations is the same when the STM tip shifts 

from position p1 to p4 while the bias is changed from -2.5V to +2.5 V. Yet, the measured CT yield exhibit 

sharp differences of almost one order of magnitude between these two biases (Fig. 5f). Therefore, it is 

conclusive to say that our investigation of the CT process in a FeTPP dyad is not perturbed by the 

electrostatic field variations in the STM junction. Others interactions induced by the electrostatic field 

present in the STM junction on the molecular dyad are related to the energy shifts of the molecular orbitals 
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levels. In a double junction, this shift can reach ~ 0.5 eV42. This effect will not impede the describe CT 

process but may rather results in picking an orbital near the calculated (E) resonance (~1.8 eV)  below the 

Fermi energy of the surface.      

We can also discuss the role of the surface and in particular if the CT process in the dyad is related 

to a surface mediated process. This can be explored via the dI/dV curves acquired on the molecule and on 

the CaF2 insulating layer. The dI/dV curves traduce the presence of DOS at a given energy and shows that 

near the excitation bias (-2.5 V), a peak of density of states located at a slightly lower energy (-2.75 eV) in 

the silicon surface could be involved in a surface mediated process (see supplementary Fig. S7 ). Here, the 

DOS band spreading from -1 to -2 V in the dI/dV curve (Fig. S7) arises from the presence of a group of 

deeper molecular orbitals as calculated in Fig. 6 (i.e. HOMO-5 to HOMO-14). To distinguish between a 

(coherent) tunneling CT process in the dyad and one involving a surface mediated effect, we have 

performed electronic excitation directly on the insulating surface at two different distances as being one or 

two times the distance d that separate the two molecular fragments in the dyad. The ensuing results indicate 

that the yield to move the Fe-TPP at a given distance (d or 2d) is more than three order of magnitude lower 

than when the excitation is applied directly on the molecule. Surprisingly, electronic excitation applied on 

the surface at -2.5 V are almost one order of magnitude lower than the one applied at 2.5 V. These results 

rule out the possibility of having a CT process in the dyad involving surface state of the insulating layer 

(see supplementary figure S7). Interestingly, the fact that the molecule can be perturbed via the direct 

excitation of the insulating layer may involve a completely different process and in particular excitation via 

the propagation of exciton or a guided light within the insulating layer. This will probably conduct to very 

fascinating future studies with similar molecular devices at the nanoscale.       

 

Conclusion                 

  Our work show that it is possible to manipulate, generate and investigate few-molecule assemblies 

as model structures for studying charge transfer processes at the nanoscale on surfaces. By using the tunnel 

electrons of the STM tip, it is possible to create local transient ions that trigger various CT processes via 
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hole or electron transfer. Here, we choose a homomolecular dyad formed by two Fe-TPP molecules 

adsorbed on a thin insulating surface of monolayer CaF2/Si(100) resulting in a typical donor-acceptor 

system. The very high spatial precision of the STM allows us to select specific initial PES as transient ionic 

states of the donor molecule. Our results show that this method can optimize the CT rate when it is initiated 

at various positions in the donor molecule. It also demonstrates that the precise molecular conformations 

of the donor and acceptor molecules as well as their relative position have significant influences on the CT 

rate. Furthermore, our investigations run at low temperature (9K) reveal that the ensuing CT process arises 

mainly from a tunneling effect whose dynamics appears to have negligible interactions with the surface and 

through electrostatic field variations in the STM junction. This excludes a major influence of surface 

mediated or hopping CT processes. Thus, our method for investigating CT at the nanoscale is versatile and 

can be extended to study the influence of various molecular conformation of covalent or noncovalent 

molecular assemblies including bridged complexes. Combined with other techniques (such as the 

luminescence analysis emitted in the dyad) our approach opens the door to a large variety of new 

investigations in relation to biological systems, the improvement of solar cells and the understanding of 

light emitting and charge storage devices for which the interface interactions between the active molecular 

media with different types of electrodes still lack a deep understanding and control. In addition, we have 

also showed that it is possible to generate and handle local ionic states which display typical characteristics 

of charge separated states. Thus, our work shows that CT events can be inspected in real time at the atomic 

and molecular length scales. 

 

Acknowledgments:  

 

This material is based upon work supported by the National Science Foundation under Grant No. OISE-

1404739, and by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under 

Award Number DE-SC0018343. DR acknowledges CNRS for financial support through the programme 

international de collaboration scientifique (PICS) THEBES, contract No. PICS07244 and the LUMAT 

federation for their financial supports.    



18 
 

 

Methods: 

Experimental methods: 

 

The experiments are performed with a low temperature (9K) scanning tunneling microscope (STM) 

working in ultra-high vacuum (UHV). The surfaces are prepared from highly doped (n-type, As doped,  

= 5 m.cm) Si(100) samples. The bare silicon surface is reconstructed in a c(4x2) structure as explained in 

several previous works via multiple annealing cycles. To minimize surface defects, the base pressure in the 

UHV is kept under 4 x 10-11 torr during this process. A thin CaF2 layer is then grown while keeping the 

silicon surface at ~ 1050 K. The evaporation of the CaF2 molecules is performed via a second effusion cell 

heated at ~ 1350 K with an exposure of 1.3 monolayer. The obtained epitaxial surface is then cooled down. 

Sequentially, the Fe-TPP molecules are evaporated on the silicon surface by heating a Knudsen cell at ~550 

K (i.e. below their dissociation temperature ~ 673 K). Through this process, the surface is kept at low 

temperature (12 K) via a liquid helium cooling of the sample holder to warrant a soft landing on the substrate 

and reduce irreversible surface-molecule interactions. In addition, a low evaporation rate is chosen to reduce 

the formation of molecule clusters on the surface. These parameters are adjusted with a quartz balance to 

obtain an homogenous molecular coverage > 0.1 ML. The Fe-TPP molecule is chosen as a model molecule 

for its relatively low ionization potential and its interest in the transport of apical ligands in Heme. The 

formation of the noncovalent dyad is performed in-situ by molecular manipulation. Due to the use of a low 

temperature STM (9 K), the reduced lateral drift during the excitation process or the dI/dV measurements 

is very low (~ 0.02 Å) and thus warrant the precision and repeatability of our measurements. The excitation 

method of the molecular dyad is slightly different to the one used to study the single Fe-TPP movement, 

since, in the dyad the molecule that moves due to a CT process is not underneath the STM tip and thus can 

hardly be recorded in the tunnel current trace. Hence, for the dyad, we use a pre-defined excitation duration 

Texc. estimated to provide a probability to induce the CT lower than 1 (i.e. the mean activation time t0 is 

lower than Texc.). The tunnel current (i.e. the tip height) during the excitation procedure is then slightly 

adjusted with this criteria and to check that the process involve only one electron53. Because the ensuing 
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probability can change with the tunnel current intensity, it is more accurate to express the molecular change 

probability via a quantum yield. Hence, for a measured probability of success ps to induce the CT in the 

dyad (which is the ratio between the number of successful excitation and the total number of excitation) at 

an excitation current Iexc., a quantitative estimation of the yield of the CT process (per tunnel electron) is 

traduced by the value Y = e/(Iexc. x t0), where Iexc. is the excitation current, e the charge of the electron and 

where t0 = - Texc./ln(1-ps) is extracted from a binomial law39,40. 

The dI/dV measurements have been performed with a double lock-in amplifier that modulate the voltage 

bias at a frequency f = 847 Hz with an amplitude of ~10 mV. The dI/dV measurements are repeated several 

times at the same positions at different tip heights and averaged over the data acquired on the molecule or 

the surface. The ensuing normalized presented curves represents the repeatable (dI/dV)/(I/V) spectrum we 

obtained.    

 

Theoretical methods: 

Charge transfer parameters and rate constant:  

 

 

The basis of our model rests on Fermi’s golden rule (FGR), which states54, 

Pj←i =
2π

ℏ
|Vij|

2
δ(εi − εj) (3) 

where εi/j are the energies of the quantum states involved, and it clearly shows that the integral of the 

probability (a rate) is nonzero only when εi and εj are degenerate. In other words, the Dirac delta involved 

in the FGR expression is the function that ensures that when an initial and a final state are degenerate, the 

transfer probability is largest. In Eq. (1), we slightly relax this condition and we assume that as long as the 

transfer occurs downhill in energy, it is allowed. That is, we assume that vibrations will be very efficient in 

dissipating excess energy in both hole and electron transfer process. Hence, the peculiar definition of the 

Θij in Eq.(2). To realize this model, alongside a sum over all the possible final states, in Eq. (1) of the main 

text there is also a sum over the initial states. This is simply a mathematical construction (together with the 

use of another Dirac delta function in the first summation) to find a molecular state in the acceptor molecule 
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that is in resonance with the prepared ionic species at energy E, which is, in a first approximation, the STM 

tip Fermi energy. We introduced PI(εi) as a weighting function for a given initial state energy. This mimics 

the role of the STM tip excitation process. An equivalent partial DOS is not considered for the acceptor 

molecule because the model assumes that all regions of the acceptor are open to accept a charge modulated 

by the coupling term |Vij|
2
. The Fermi-Dirac functions, fI and fF, are also introduced to make sure that only 

filled electronic states for hole transfer and empty states for electron transfer are considered while still 

employing unconstrained quantum state’s summations. 

The Hamiltonian and overlap matrix elements are obtained by the following single-particle transfer 

integrals (also known as Fragment Orbital Method55) involving HOMO and LUMO orbitals (𝜙𝐻/𝐿): 

 

𝐻𝑖𝑗 = ⟨𝛹𝑖|𝐻̂𝑒𝑙|𝛹𝑗⟩ ≅ ⟨𝜙𝑖
𝐻/𝐿

|ℎ̂𝐾𝑆|𝜙𝑗
𝐻/𝐿

⟩ (4) 

 

𝑆𝑖𝑗 = ⟨𝛹𝑖|𝛹𝑗⟩ ≅ ⟨𝜙𝑖
𝐻/𝐿

|𝜙𝑗
𝐻/𝐿

⟩ (5) 

 

Where ℎ̂𝐾𝑆 is the single-particle Kohn-Sham Hamiltonian and 𝜙𝑖
𝐻/𝐿

 are either the HOMO (hole) or LUMO  

(electron) orbitals for either donor (i) or acceptor (j) fragments. The electronic coupling, 𝑉𝑖𝑗, is generally 

represented as the Hamiltonian coupling between Löwdin orthogonalized states, taking the form: 

 

𝑉𝑖𝑗 = ⟨𝛹𝑖|𝐻̂𝑒𝑙|𝛹𝑗⟩ =
1

1 − 𝑆𝑖𝑗
2 (𝐻𝑖𝑗 − 𝑆𝑖𝑗

(𝐻𝑖𝑖 + 𝐻𝑗𝑗 )

2
) (6) 

 

 

Above, 𝐻𝑖𝑖 and 𝐻𝑗𝑗 are either the HOMO (hole) or LUMO (electron) site energies of donor and acceptor, 

respectively. 

 

 

Density Functional Theory: All calculations are performed employing the Amsterdam Density Functional 

(ADF) program56. The Hybrid exchange-correlation functional B3LYP57, which contains approximately 

20% of exact exchange, is used along with the TZP basis set of Slater-Type Orbitals. Relativistic effects 
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should play a minor role for first-row transition metal elements (such as Fe), however, it is accounted for 

employing the scalar ZORA approximation58. The procedure to obtain the electronic coupling using the 

Transfer Integrals (TI) method59 starts with the evaluation of the molecular orbitals and corresponding 

energies for each fragment involved in the transfer. The monomers are computed in the neutral ground 

state, and the dimer is described by simple direct sum of the monomer's density matrices. The energy levels 

are computed by a single point calculation of the isolated molecule and the PDOS are calculated 

individually for each pyrrole site by utilizing the DOS program available in the ADF suite of programs. 

 

 

 

 

 

Figures captions: 

 

Figure 1: (a) sketch of the charge transfer principle in a homo-molecular dyad. (b) ball and stick 

representation of the Fe-TPP molecule. The white, light gray, blue and dark gray ball represents the 

hydrogen, carbon, nitrogen and iron atoms, respectively. (c) (110 x 110 Å²) STM topography (Vs = -2.3 V, 

I = 1.5 pA) of the insulating layer of CaF2 stripes following the adsorption of the Fe-TPP molecules. (d) 

and (e) (27.5 x 27.5 Å²) STM topographies (Vs = -2.3 V, I = 1.5 pA) of the Fe-TPP molecule (left) and the 

same with a superimposed wireframe of the molecule (right) for the CL and CR conformations, 

respectively.  

  

Figure 2: (a) (27.5 x 27.5 Å²) STM topographies (Vs = -2.3 V, I = 1.5 pA) of a Fe-TPP in the CL 

configuration with the eight studied excitation locations. (b) Variation of the measured quantum yield for 

the CL  CR movement for the eight defined positions and for the two excitation biases -2.5 and 2.5 volts. 

(c) (27.5 x 27.5 Å²) STM topographies (Vs = -2.2 V, I = 1.5 pA) of a Fe-TPP in the CR configuration with 

the eight studied excitation locations. (d) Variation of the measured quantum yield for the CR  CL 

movement for the eight defined positions and for the two excitation biases -2.5 and 2.5 volts.  
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Figure 3: (a) (27.5 x 55 Å²) STM topographies (Vs = -2.3 V, I = 1.0 pA) of a Fe-TPP dyad in the CL-CL 

(left) and CL – CR (right) configurations, i.e. before and after a CT. In the left topography, are indicated 

the four excitation positions (red dots) chosen to study the CT process in the dyad. (b) Variation of the 

quantum yield of the CT process induced in the dyad for the four defined locations in (a). (c) Detailed (27.5 

x 45.5 Å²) STM topography (Vs = -2.2 V, I = 1.0 pA) of the Fe-TPP dyad where the various distances d1 to 

d4 are indicated. (d) Variations of the CT yield as a function of the four considered distances d1 to d4 as 

defined in (c) for the two considered biases -2.5 V and 2.5 V. The red dashed curve is the fitting curve of 

the data for holes (-2.5 V) by the expression 𝛤(𝑑) = 𝛾0 + 𝛾1exp(−𝑑/𝛽).    

 

 

Figure 4: (a) Ball and stick sketch of the FeTPP molecule after two types of rotation along  or   with the 

white, gray, purple and light blue atoms representing the hydrogen, carbon, nitrogen and iron, respectively. 

(b) Table of the calculated spatial distribution of the frontier HOMO and LUMO orbitals for three values 

of .  

 

Figure 5: (a) Ball and stick representation of the FeTPP dyad used to compute the variation of 𝛤(𝐸) for 

the two values of . The white, gray, purple and light blue atoms represent the hydrogen, carbon, nitrogen 

and iron, respectively. The red, blue, green and black circles indicate the atoms of the pyrroles groups 

considered to compute the partial density of state PI. (b) and (c) computed variations of 𝛤(𝐸)  for the 

electron transfer as a function of the energy E-Ef for the four location p1 to p4 and for  = 45° and  = 10 °. 

(d) and (e) computed variation of 𝛤(𝐸)  for the hole transfer as a function of the energy E-Ef for the four 

location p1 to p4 and for the two values of  = 45° and 10 ° (f). Log scale variation of computed 𝛤(𝐸) as a 

function of the distances d1 to d4 as described in Fig. 3c.  

 

Figure 6: Energetic diagram of twenty computed orbitals of the FeTPP molecule with  = 10° compared 

with the band diagram structure of the surface. The electrostatic potential e is located in the middle of the 
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molecular gap HOMO-LUMO, which is itself centered at the Fermi level of the (n-type doped) silicon 

surface. Relevant energies/biases (-1.8V, -2.5 V) are recalled for clarity. The insert is the variation of the 

Log(/HOMO) as a function of the energy E-e (see text).   

 

Figure 7: (a) Energetic diagram of the first step (step 1) of the CT process occurring in the molecular dyad 

associated with a 2D sketch of the STM tip, the molecular dyad and the surface as positioned during the  

excitation process in (lower part). Step 1 describes the ionization of the excited pyrrole group (PyrN) in the 

donor molecule that leads to an excited cation PES Pyr+. At the energy of Pyr+, the acceptor fragment of 

the dyad exhibit a double well PES Porph+ArylN in the neutral state that can accept the hole of the donor 

fragment.  (b) Step 2 of the CT describing the neutralization of the excited pyrrole getting an excess of 

kinetic energy ke while the acceptor fragment is ionized and thus reaches a PES at higher energy 

Porph+Aryl+. The ensuing sketch below this panel indicates that the STM tip is still exciting the donor 

molecule during this very short time while the charge image of the cation is displaced underneath the 

acceptor molecule. (c) Step 3 of the CT process in the Fe-TPP dyad involving the neutralization of the 

second fragment of the dimer (acceptor) leading to the vibrational excitation of the second fragment via 

ke’. The vibrational population spread over the molecule to involve one aryl group which is responsible of 

the final acceptor movement (see sketch below panel (c)). The neutralization occurs via surface mediated 

charge transfer. The life times of each process arise from experimental and theoretical estimations (see 

text).     
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