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Laurent David,4,7 Danny Chan,2 and Anne Camus1,10,*
SUMMARY

Understanding the emergence of human notochordal cells (NC) is essential for the development of regener-
ative approaches. We present a comprehensive investigation into the specification and generation of bona
fide NC using a straightforward pluripotent stem cell (PSC)-based system benchmarked with human fetal
notochord. By integrating in vitro and in vivo transcriptomic data at single-cell resolution, we establish an
extended molecular signature and overcome the limitations associated with studying human notochordal
lineage at early developmental stages. We show that TGF-b inhibition enhances the yield and homogeneity
of notochordal lineage commitment in vitro. Furthermore, this study characterizes regulators of cell-fate de-
cision and matrisome enriched in the notochordal niche. Importantly, we identify specific cell-surface
markersopeningavenues fordifferentiation refinement,NCpurification, and functional studies.Altogether,
this study provides a human notochord transcriptomic reference that will serve as a resource for notochord
identification in human systems, diseased-tissues modeling, and facilitating future biomedical research.

INTRODUCTION

Notochordal cells (NC) are a rare cell type present in all vertebrates, arising at gastrulation from the specialized organizer region and contrib-

uting to axial elongation.1–3 Once shaped into a rod-like structure at the midline of the body plan, the notochord ensures signaling function

essential to the differentiation of surrounding tissues such as the neuroectoderm and paraxial mesoderm-derived somites.4 These early in-

teractions mediated by SONIC HEDGEHOG (SHH) morphogen have long been shown to be necessary for the correct regionalization of the

central nervous system and for axial skeleton formation.5–10 Ultimately NC contribute to the formation of the intervertebral disc (IVD), where-

after they reside within the center to progressively disappear during childhood.11–13 NC have been demonstrated to be a crucial regulator in

disc homeostasis maintenance.14 NC hold great potential for cell-based therapies which would be advanced with the resolution of the pre-

vailing knowledge gaps. The specification of NC fate and co-emerging lineages in human remains poorly understood.15 Additionally, NC are

rarely detected in systems modeling early steps of human embryonic development, e.g., gastruloids or embryoids16–19 leaving most of our

knowledge relying on data generated from in vivo or in vitro studies in the mousemodel.20–24 Moreover, the disparity of the in vitro strategies

to guide pluripotent stem cells (PSC) differentiation results in limited production of notochordal-like cells (NLC) on average 5% and to a

diverse range of co-emerging cells. The lack of a precise NCmolecular signature complicates the interpretation of these heterogeneous pop-

ulations mostly studied by bulk transcriptome and FACS analyses.25–28 Here, we propose an improved PSC-based system for the generation

of NLC and establish a benchmark for the transcriptome of human fetal notochord. We then combined both in vitro NLC differentiation and

fetal human notochord transcriptomic profiles to identify gene regulatory networks and the signaling ligands that define the human noto-

chord. Finally, we assemble a comprehensive molecular signature as reference for this tissue that plays many important functions.
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Figure 1. Characterization of hiPSC differentiation toward mesendoderm progenitors and notochordal-like cells

(A) Schematic of the NLC differentiation method. Human iPSC are differentiated into NLC in a three-steps process: Step 1 (hiPSC amplification from day 2 to

day 0) comprises the seeding and amplification of the hiPSC; step 2 (MEPC commitment from day 0 to day 2) consists in the activation of the Wnt/b-catenin

pathway by CHIR99021 stimulation to obtain mesendoderm progenitors (MEPC); step 3 (axial mesoderm and notochord specification from day 2 to day 7)

involves the transfection of the synthetic mRNA encoding NOTO transcription factor and culture in medium supplemented with CHIR99021 and NOGGIN

(Bmp pathway inhibition). During this last step samples were treated with or without SB431542 (Tgf-b pathway inhibition). Bottom panel: brightfield images

illustrate the main morphological changes at each step. Lineage specification and cell identity were monitored by RT-qPCR, immunofluorescence; DigiWest

protein quantification and single-cell RNA-sequencing. Scale bars = 50mm.

(B) RT-qPCR assessment of MEPC and NLC differentiation. Relative expression of Wnt and Nodal pathways activation (LEF1, NODAL, LEFTY1), notochord

(endogenous mRNA for NOTO, TBXT, SHH, NOGGIN, SOX9, FOXA2), endoderm (SOX17) and paraxial mesoderm (TBX6) markers for MEPC and NLC. Mean

expression levels are presented as fold changes relative to unstimulated hiPSC and standard error is indicated, for n = 20 biological replicates using

hiPSCa,b,c,d,e. Dotted line represents the unstimulated hiPSC expression level.

(C) Representative co-immunostaining of TBXT/FOXA2 and TBXT/SOX9 assessing differentiation efficiency for MEPC (day 2) and iPS-NLC (day 7). Double-

positive cells are indicated in %. Scale bars = 50mm.

(D) Quantification of TBXT/FOXA2, TBXT/SOX9 and FOXA2/SOX17 immunopositivity of the differentiated cells. Mean values for day 2 (MEPC), day 7 not

transfected (d7 NT) and day 7 NOTO transfected (d7 NOTO) cells are represented in %, for n = 9 to 15 biological replicates and n = 3 technical replicates,

using hiPSCa,b,c,d. Gitlink for detailed quantifications.

(E) Protein content evaluation at key steps of the NLC differentiation using DigiWest bead-based microarray. The expression levels of the indicated proteins are

displayed as a heatmap from lowest (blue) to highest (yellow). Clustering was delineated according to treatment and day of differentiation for hiPSCd,e: amplified

hiPSC onmatrigel (undif), day 2 single-hiPSC seeded on laminin without CHIR stimulation (not stim), CHIR stimulated (MEPC), day 7 not transfected (d7NT), day 7

NOTO transfected (d7 NOTO). Abbreviations Fig1: d2 MEPC: mesendoderm progenitors at day 2; d7 NOTO: iPS-NLC differentiation at day 7 following NOTO

mRNA transfection; d7 NT: differentiation at day 7 without transfection; iPS-NLC: notochordal-like cells.
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RESULTS

Characterization of human induced pluripotent stem cells differentiation toward mesendoderm progenitors and

notochordal-like cells

To delineate themolecular events that characterize the notochord lineage, we set out to replicate, in vitro, the early developmental events lead-

ing to the induction of bipotentmesendodermprogenitors cells (MEPC)29–35 and their subsequent commitment toward axialmesoderm to finally

become NLC. Building up on knowledge gained from previous reports,25,27 we defined the fine balance of canonical Wnt/b-catenin, Nodal/

Smad2/3 and Bmp signaling necessary to enhance the differentiation of human induced PSC (hiPSC) into NLC (Figure 1A). Efficiency (20% of

NLC on average) and robustness were achieved by (1) replacing matrigel by laminin coating, a major constituent of the notochord basement

membrane,36–39 also in the pursuit of designing a GMP-compliant protocol (data not shown); (2) using modified synthetic mRNA40 to enhance

transfection efficiency on day 2 allowing transient expression of the key notochordal transcription factor NOTO (Figure S1A); (3) medium sup-

plementation with a selective inhibitor of Tgf-b pathway (SB43154241) to limit the emergence of endodermal fate42,43; and (4) medium supple-

mentation with the Bmp signaling inhibitor NOGGIN (data not shown) to limit intermediate mesoderm induction.25,44–46

Lineagemonitoring was performed by RT-qPCR, immunofluorescence and bead based western microarray to assess for MEPC andNLC dif-

ferentiation. High levels of LEF1 (key mediator of the Wnt/b-catenin signaling) and NODAL transcription were associated with high TBXT and

FOXA2 expression in MEPC at day 2. Following NOTO mRNA transfection, the upregulation of notochord-related genes, NOTO, TBXT,
2 iScience 27, 109018, February 16, 2024
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Figure 2. Transcriptomic analyses at single-cell resolution of hiPSC differentiation into notochordal-like cells

(A) Unsupervised clustering of iPS-NLC single-cell dataset revealing 9 lineage-associated clusters. Clusters of primitive-streak (PS), neuromesodermal

progenitors (NMP), lateral/paraxial mesoderm progenitors (L/PXM Prog.), axial progenitors (Axial Prog.), cardiac mesoderm (Cardiac Mes.), notochord,

endoderm, neuroectoderm (Neuroect.) are projected on UMAP embedding. Values indicate the number of cells per cluster.

(B) Distribution of cells co-expressing TBXT, SHH, NOG, CHRD, SOX9, FOXA2 notochord-related markers on UMAP embedding. Expression scores, displayed

from lowest (gray) to highest (red), were calculated using the AddModuleScore function.

(C) Distribution of day 7 differentiated cells related to their treatment on UMAP embedding. Treatments day 7 not transfected (d7 NT), day 7 NOTO transfected

(d7 NOTO) and day 7 NOTO treated with SB (d7 NOTO SB) are plotted with a distinct color code for iPS-NLC dataset. Note that although the two clusters of

primitive-streak have similar transcriptomic profile they are distinct in their composition ‘‘NT’’/‘‘NOTO’’.

(D) Cell type differentiation profile related to treatment for two representative hiPSC lines. Normalized values using total number of cells analyzed per treatment

in iPS-NLC dataset are shown in %, for day 7 not transfected (d7 NT), day 7 NOTO transfected (d7 NOTO) and day 7 NOTO treated with SB (d7 NOTO SB), for

hiPSCa and hiPSCb.

(E) Inhibition of Tgf-b signaling pathway significantly enhances NLC markers expression and reduces off-target differentiation at day 7.

Relative expression of notochord (endogenous mRNA for NOTO and TBXT), cardiac (HAND1, PRRX1) and endoderm (GATA4, SOX17) markers by RT-qPCR.

Mean expression levels are presented as fold changes relative to unstimulated hiPSC and standard error is indicated, for n = 14 biological replicates using

hiPSCa,b,c,d,e. Dotted line represents the unstimulated hiPSC expression level. Statistical significance was measured by a student test for each gene marker.

**p < 0.001, ***p < 0.0001.

(F) Dynamic velocities projected into UMAP-embedding revealing differentiation trajectories. The spliced and unspliced mRNA dynamics were inferred using

scVelo, projected into low dimension space with veloAE and visualized here by arrows. Cells are colored based on cluster assignation.

(G) Identification of major WGCNA modules of co-expressed genes distinguishing cell clusters. Each row represents a WGCNA module, and each column

comprises all cells from the annotated clusters. The height of rows indicates the number of genes in the module and the expression level is shown colored

from lowest (blue) to highest (red). Three selected lineage-associated genes co-expressed within modules are indicated ordered by intra-connectivity.

(H) Violin plots of selected genes differentially expressed in NO cluster and their corresponding tissue specificities in various species described in the literature.

Genes are ordered by Log2FC. Star indicates their belonging to the NO specific WGCNA module. Table on the left recapitulates genes links to lineage,

developmental or post-natal time frame and species information curated from the literature. mouse (M), human (H), bovine (B), dog (D), xenopus (X), chick

(C), zebrafish (Z). Abbreviations Fig2: AXP: axial progenitors; CM: cardiac mesoderm; END: endoderm; L/PXP: lateral/paraxial mesoderm progenitors; MEPC:

mesendoderm progenitors; NE: neuroectoderm; NLC: notochordal-like cells; NMP: neuromesodermal progenitors; NO: notochord; PS: primitive-streak.
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SHH,NOGGIN, SOX9, andFOXA2 corroborated the differentiation toward the notochordal lineage at day 7. The expression ofSOX17 and TBX6

evidenced the co-emergence of alternative cell fates such as endoderm and paraxial mesoderm, respectively (Figure 1B). The robustness of the

protocol was demonstrated by similar trends of transcriptional expression regardless of inter-cell-line variability (five hiPSC and one hESC lines;

Figure S1B). At day 2, over 50%ofMEPCco-expressed transcription factors of relevance, i.e., TBXT+/FOXA2+.Onday 7,NLCwere characterized

and quantified by TBXT+/FOXA2+ immunopositivity (7.9% compared to 0.1% in untransfected control, ‘‘NT’’) and TBXT+/SOX9+ immunopo-

sitivity (16.2% compared to 0.3% in ‘‘NT’’), taking into account the possibility that some double-positive cells may express the three factors (Fig-

ure 1C). Heterogeneity in cell-types was also featured by the detection of endodermal cells co expressing FOXA2+/SOX17+ (Figure 1D). Finally,

protein quantification showed high expression levels of TBXT, FOXA2, SOX17, TBX6, CDX2 in the MEPC while the effect of NOTO transfection

correlated, at day 7, with higher levels of TBXT, SOX9, and SHH the key signaling protein secreted by the notochord (Figure 1E). Based on this

initial characterization, it appears that our differentiation protocol effectively captures the lineage segregation for notochordal fate along with

other neighboring lineages and is consistent with the current view of notochord formation during mouse embryonic development.1,47–50
Transcriptomic analysis at single-cell resolution of hiPSC differentiation

We subsequently performed single-cell RNA-seq at day 7 to delineate cellular heterogeneity in two distinct iPSC lines for the following three

conditions: ‘‘NT’’, NOTO transfected (‘‘NOTO’’) alone or supplemented with SB431542 from day 2 (‘‘NOTO SB’’). Unsupervised clustering

revealed 9 discrete subpopulations that we annotated according to expression of lineage-associated genesets (Figure 2A; Gitlink), including

two clusters of primitive-streak with similar transcriptomic profile (PS; DEG: FST, FOXH1, HOXA1, ZIC2), neuromesodermal progenitors (NMP;

DEG: HOXB9, PAX6, SOX2, SOX3), axial progenitors (AXP; DEG: CDX2, FGF8, HOXA7, SLIT2), lateral and paraxial mesoderm progenitors

(L/PXP; DEG: FOXC1, FOXC2,MEOX1, TWIST1) and notochord (NO). Cells found in theNOcluster expressed all themarker genes commonly

used to define notochordal identity (Figure 2B). The NO cluster comprised 23.8% of cells co-expressing TBXT, FOXA2 and SOX9. In addition,

non-axial cell fates emerging in the culturewere evidencedwith the presence of cardiacmesoderm cluster (CM;DEG:GATA6,HAND1,MSX1,

MYL7)51,52 as well as 2 clusters related to distinct primary germ layers identified as endoderm (END; DEG: CLDN3, EPCAM, SOX17, FOXA2)

and neuroectoderm (NE; DEG: NEUROD4, NEUROG2, POU3F2, TUBB3). The absence of neural crest cell differentiation was evidenced by

the lack of cell cluster expressingDLX5, SOX10 and TFAP2C specificmarkers. Overall, the observed diversity in cellular outcomes alignedwith

expected cell fates that are established in vivo concomitantly to the process of notochord formation.
Inhibition of Tgf-b signaling pathway significantly enhances NLCmarkers expression and reduces off-target differentiation

At day 7, UMAP visualization of the spatial relationship of ‘‘NT’’ andNOTO transfected (‘‘NOTO’’) cells alone or supplemented with SB431542

from day 2 (‘‘NOTO SB’’) highlighted the central role of the transcription factor NOTO for the acquisition of the notochordal identity (Fig-

ure 2C). Consistently, ‘‘NT’’ cells were over-represented in PS and NMP cluster but absent in the NO cluster. PS and NMP clusters were

also composed of ‘‘NOTO’’ cells emphasizing transitory cell states with a lesser degree of maturity within the population at day 7. Addition
4 iScience 27, 109018, February 16, 2024
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of SB431542 reduced endoderm commitment and abolished cardiac derivatives as indicated by a complete lack of ‘‘NOTO SB’’ cells in the

CM cluster. In contrast, ‘‘NOTO SB’’ reinforced the other mesodermal subpopulations (AXP, L/PXP, NO). Analysis of cell-type proportions

distinguishing the three treatments in the two differentiated hiPSC lines provided evidence that selective inhibition of the Tgf-b/Activin/Nodal

pathway substantially reduced heterogeneity, i.e., the diminution of a cell type proportion and the absence of additional cell-type or deriv-

atives (Figure 2D). Indeed, SB431542 treatment reduced off-target differentiation such as cardiac derivatives (highly significant downregula-

tion of key cardiacmarkersHAND1 and PRRX1) as well as endoderm derivatives (significant downregulation ofGATA4 and a trend to a down-

regulation of SOX17 expression) and in contrast promoted NLC differentiation as demonstrated by the significant increase expression of

NOTO and TBXTmarkers (Figure 2E). Results also revealed onemajor divergence in the transcriptional profiles of the two differentiated lines

with dominant PS or NMP clusters for hiPSCa and hiPSCb, respectively (Figure 2D). Yet, despite intrinsic differences in lineage potency, NOTO

and SB treatment guaranteed the emergence of NLC.

Differentiation trajectories and molecular network supporting notochordal lineage

VeloAE analysis to infer cellular transitions from RNA velocity,53 provided insights into the dynamics and heterogeneity of cellular states

in vitro. Two notable differentiation trajectories were distinguished (Figure 2F). One predominant path started fromPS or NMP cells progress-

ing through the AXP- to NO- cluster that could be attributed to cells, displaying distinct differentiation paths or slower pace of cellular

specification, gradually transitioning toward NO cellular identity. A second path revealed transient cellular progression from the L/PXP-to

NO- cluster that may indicate off-target differentiation rescued through the forced expression of NOTO transcription factor. Trajectories

are supported by specific expression patterns of candidate genes associated with these cellular dynamics (Figures S2A and S2B, Gitlink).

To investigate the molecular network supporting the emergence of the notochordal lineage in this human stem-cell-based in vitromodel,

we performed weighted gene correlation network analysis (WGCNA).54 This revealed seven major modules of co-expressed genes that were

biologically relevant and related to END, NO, L/PXP, NE, PS, AXP, and CM clusters. A specific module of 185 co-regulated genes was highly

associated with notochord development (Figures 2G and Gitlink). WGCNA and DEG analysis allowed us to identify and compile a compre-

hensive molecular signature that represents the molecular landscape of in vitro generated NLC. It encompasses a wide range of transcription

factors, plasma membrane proteins, ECM regulators and secreted proteins. Violin plots depicted the expression distribution of representa-

tive selection of these genes (Figure 2H). Interestingly, some have been previously implicated in the regulation of notochord formation in

various animal models (mouse, zebrafish, Xenopus, chicken) or the maintenance of IVD homeostasis in humans, dogs or bovine.15,25,55–82

From this analysis, no lysosome-related organelles, nor vacuole markers were found except for CAV1 (manually curated gene list from the

following ref. 72,83,84 is available on the Gitlink). This in vitro model generates embryonic NLC in an immature state (i.e., embryonic state)

and does not support vacuole appearance within 7 days of differentiation.76

In vitro derived NLC shares gene signature with human fetal notochord

Although hiPSC and hESC share key properties, there are fundamental molecular characteristics that distinguish them, including possible

‘‘epigenetic memory’’ for the former that influence differentiation potential.85,86 Thus, we characterized notochordal differentiation of human

H1-ESC line by scRNA-seq and found comparable cellular heterogeneity and lineage gene expression, except that the differentiation propensity

toward definitive endoderm was lower for H1-ESC (Figures S1B and S2C). Comparable efficacy to differentiate toward notochordal lineage was

demonstrated for the twopluripotent cell-types followingdata integration (Int_iPS/ESC-NLCdataset; Figure S2D).Moreover, correlationplots to

visualize iPS-NLC and ESC-NLC datasets confirmed a high degree of overlap in their respective notochordal molecular signatures (Figure S2E).

Next, we conducted scRNA-seq gene expression profiling on human fetal notochord to serve as a refence for comparing with NLC gener-

ated in vitro. UMAP visualization of notochordmicrodissected at 8 weeks gestational age (GA; NC_Week8 dataset) revealed 5 populations of

cells inferred based on cluster-specific expression of establishedmarkers (Figures 3A and 3B). These clusters comprised a discrete notochord

cluster (NC) of 9 TBXT+ cells, along with other clusters of sclerotome, somitic mesoderm, axial skeleton system and lateral and paraxial meso-

derm (L/PXM) (Figure 3C). To gather additional in vivo transcriptomic data, we took advantage of the recently published scRNA-seq onmicro-

dissected human fetal axial skeleton for a comparative analysis.61 Taking into account embryonic stage, global molecular profile, and specific

expression of TBXT transcription factor as consensusmarker to discriminate notochordal identity, two out of the four fetal specimens retrieved

from week 7, comprising 8 and 9 TBXT+ cells respectively, were retained from Zhou et al. study (Noto week 7 samples #3 and #4 dataset re-

named here Axial skeleton_Week7). Statistical analysis based on hypergeometric distribution87 was applied to differentially expressed genes

of the iPS/ESC-NLC dataset and both human datasets. Enrichmentmap analysis of the top100 genes revealed significant overlap of genesets

between notochordal clusters of in vitro cell differentiation and in vivo tissues as well for L/PXM clusters (Figure 4A). Despite the limited num-

ber of putative notochord/TBXT+ cells obtained from the three fetal samples, this comparative analysis and convergent data from two inde-

pendent studies bring confidence to these respective transcriptional profiles.

Description of an extended gene signature of NLC based on comparison with human fetal notochordal cells

In addition, by characterizing a geneset specific to NC in both in vitro and in vivo systems, we were able to identify surfacemarkers associated

with this cell population, i.e., ALCAM (CD166), CD109 and CAV1 (a structural component of the caveolae at the cell membrane); (Figures 2H

and S3 for Top100 DEG all notochord clusters). Immunostaining of mouse tissues during development (E11.5-E17.5) and postnatal day 4

stages substantiated their specific distribution at the plasma membrane of the notochord and the nucleus pulposus cells in the forming

disc, thereby confirming their potential for cell sorting and enrichment (Figure 4B). We then focused on the extracellular matrix (ECM) which
iScience 27, 109018, February 16, 2024 5
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Figure 3. Transcriptomic analyses at single-cell resolution of microdissected human fetal notochord from week 8 gestational age embryo

(A) Schematic workflow of notochord isolation from 8 weeks GA embryo. Notochord was isolated from microdissected axial skeleton and digested prior single-

cell processing. Scale bars = 1 mm.

(B) Unsupervised clustering of microdissected human fetal notochord (8 weeks GA) revealing 5 lineage-associated clusters. Clusters of sclerotome, somitic

mesoderm (Somitic mes.), lateral/paraxial mesoderm (L/PXM), axial skeleton system development (Axial skeleton syst.) and notochord are projected on

UMAP embedding. Values indicate the number of cells per cluster.

(C) Heatmap of top 10 differentially expressed genes corresponding to cell clusters of Notochord_week8 dataset. Expression level is shown colored from lowest

(magenta) to highest (yellow). Gitlink for full gene lists. The 5 clusters are sclerotome, somitic mes., axial skeleton system development (AxSKEL), lateral/paraxial

mesoderm (L/PXM) and notochord (NC).Abbreviations Fig3: AxSKEL: axial skeleton system development; DEG: differentially expressed genes; GA: gestational

age; L/PXM: lateral/paraxial mesoderm; NC: notochordal cells; somitic mes: somitic mesoderm.
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in native NC contributes to the environmental factors that support cellular state, IVD development and homeostasis.14,88,89 Heatmap

comparing matrisome-related genes specific to the human embryonic notochord revealed a high degree of similarity with the NO cluster

of in vitro differentiated cells, very distinct from the END cluster (Figure 4C). This analysis led to the identification of a comprehensive matri-

some composition for NC (core matrisome and matrisome-associated proteins). NC was enriched for matrisome proteins already described

in the IVD context in human or other animal models such as COL2A1, COL11A2, ACAN, HAPLN3, PRELP, SPP1, FN1, SLIT2, SHH, BMP3,

LGALS3, SEMA3C, CD109, TIMP3.25,56,61,63,66–69,72,90–94 Interestingly, the analysis highlighted SEMA3C, SULF2, HSPG2 and P4HA1 proteins,

not yet described in this developmental context. They have been involved in mediating Hedgehog signaling or in post-translational ECM

proteins modifications.95–97 They may contribute to the establishment of NC cellular niche possibly facilitating cell organization, cell-matrix

interaction and cell–cell communication andproviding structural and biochemical supports toNCdifferentiation and tissue development.We

also analyzed the iPS-NLC dasaset using CellChat, a tool that quantitatively infers and analyzes cell-cell communication.98 COLLAGEN, SPP1

(OSTEOPONTIN), SEMA3 and SHH ligands were found being predominantly secreted by NLC and involved in signaling interactions with

other cell-types (Figure S4). Finally, we showed that a subset of matrisome-related markers identified in the native tissue and the archetypical

notochordalmarkers were associatedwith highest co-expression scores in the corresponding in vivo or in vitro notochord clusters (Figure 4D).

This underscored the strength of the in vitro differentiation protocol in establishing bona fide notochordal identity.

Identification of specific regulons activators of NLC differentiation

To assess the gene regulatory networks that would drive the notochordal fate during the differentiation, single-cell regulatory network inference

andclustering (SCENIC) analysis99wasappliedonWGCNA-associatedgenemodules (Figure2G). Four regulonswereparticularly associatedwith

theNOcluster:CREB3L2,FOSand JUNBandSOX9 (Figures 5AandS5).SOX9gene isdescribedas anessential regulatorofNC identity andECM

deposition.100–103Of particular interest, 11ofSOX9 known targets are showing specific correlatedexpressionsexclusively in theNOcluster of iPS-

NLC dataset (Figures 5B, S5 and 2H) and have known functions in survival or in metabolism and ECM regulation (Figure 5C). Ultimately, we

analyzed the profile of correlated-genes assigned to notochord (WGCNA) in both the in vitro and in vivo datasets (Figure S6). Lastly, gene lists
6 iScience 27, 109018, February 16, 2024
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Figure 4. Description of an extended transcriptomic signature of NLC based on comparison with human fetal notochordal cells

(A) Enrichment map showing the connections between the different cell clusters from in vivo samples and in vitro differentiated cells. The top100 DEG were

retrieved for each dataset: Axial skeleton_week7,56 Notochord_week8 (this study), iPS/ESC-NLC and hypergeometric testing was applied to identify degree

of similarities. Only similarities with p value <0.00001 are represented to reveal the significant association between all three datasets. Thicker gray lines

represent a higher level of correlation with the numbers indicating the strength of the association as log10(p value). The degree of similarity between hNC

and NO does not pass our pre-set stringent significance threshold with a borderline p = 0.14. Nonetheless, the degree of overlap has a reasonable odds

ratio of 2. Complete statistical analysis is available on the Gitlink.

(B) Immunostaining of CD166/ALCAM, CD109 and CAV1 showing plasmamembrane localization in notochord and nucleus pulposus cells onmouse embryo and

postnatal day 4 spine sections. AF = annulus fibrosus; CEP = cartilage endplate; NP = nucleus pulposus; NTC = notochord; pAF = prospective annulus fibrosus;

pVB = prospective vertebral body. Nuclei are stained with Hoechst. Scale bars = 25mm.
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Figure 4. Continued

(C) Heatmap of matrisome differentially expressed genes in human fetal notochord and their expression in somitic mes. Genes are ordered by Log2FC and

categorized into core matrisome and matrisome-associated genes. Matrisome of in vivo and in vitro notochord are remarkably similar, while distinct to that of

somitic mes. or endoderm. Expression level is shown colored from lowest (magenta) to highest (yellow). Dataset of origin is indicated by color code.

(D) Co-expression scores of matrisome and archetypical notochord genes in NC_week8 and iPS/ESC-NLC datasets. The scores were calculated using the

AddModuleScore function for SPP1, COL2A1, HAPLN1, HAPLN3, SHH, SEMA3C, ANXA2 and CD109 (matrisome geneset); and TBXT, SHH, CHRD, SOX9

and FOXA2 (NC identity geneset). The size of the dots indicates the percentage of cells expressing the gene set for each cluster, and the color indicates the

level of expression from lowest (gray) to highest (purple).Abbreviations Fig4: AxSKEL: axial skeleton system development; DEG: differentially expressed

genes; END: endoderm; GA: gestational age; hChon: human chondrocytes; hCT: human connective tissue; hNC: human notochordal cells; L/PXM: lateral/

paraxial mesoderm; L/PXP: lateral/paraxial mesoderm progenitors; NC: notochordal cells; NO: notochord; somitic mes: somitic mesoderm.
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were curated for positive differentially expressed genes to examine in vitroNLC gene signature with human notochord gene signature as well as

with node/notochord related gene sets yet published in themousemodel63,104–106 (Figure 6).While emphasizing commonalities in gene expres-

sion profiles, our findings contribute to the construction of an extended molecular signature for human notochordal identity.

DISCUSSION

Investigations into the human notochord development, specifically between 3 and 8 weeks post-conception, are ethically con-

strained.15,107,108 In this particular context, combining stem cell models with limited fetal material was critical in confidently characterizing hu-

manNC. Here, we describe an extendedmolecular signature for the notochord and specific lineagemarkers established from the in vitro and

in vivo transcriptome at single-cell resolution. By integrating transcriptomic profiling from in vitro and in vivo approaches, this study also val-

idates the improved PSC-based platform allowing for human notochordal fate specification.

Our results show that inhibition of TGF-b signaling after bipotentMEPC specification enhances the yield and homogeneity of notochordal

lineage commitment in vitro. The conclusion that sustained WNT signaling activation and transient burst of Nodal signaling are essential to

promote notochordal fate in vitro aligns with other findings recently publicly deposited.94,109

This study sets important milestones. It identifies the dynamic transcriptome profiles orchestrating notochordal fate.110,111 NOTO and SOX9

transcription factors appear to be central regulators of these specification events. While the other regulons CREB3L2, FOS and JUNB have

already been associated with the notochord formation and function,112–114 further investigation is needed to comprehend their pivotal roles

as potential co-regulators of various signaling pathways in the cellular context of NLCdifferentiation. Interestingly, SOX9 has pivotal role in chon-

drogenesis and cartilage formation aswell as being an essential regulator ofNC identity. Further investigations are needed tounravel the specific
Figure 5. Identification of specific regulons activators of NLC differentiation

(A) Heatmap showing the level of target genes expression of NO regulons identified in iPS-NLC dataset. SCENIC analysis was performed on the NO-specific

WGCNA module. Each row represents a regulon, each line indicates a gene, and each column comprises all cells from the annotated clusters. Expression

level is shown colored from lowest (blue) to highest (red).

(B) SOX9 positive regulon associated withNLCdifferentiation. VlnPlot of SOX9 expression and its targets in iPS-NLCdataset. Of the full list of SOX9 targets shown

in Figure 5A, PGM1, MGLL, COL9A1, ITGB8, ARID3B, LINC00511, ITM2A are plotted here and the remaining targets (SERPINE2, NEDD9, PRELP and HOPX) are

already presented in Figure 2H.

(C) Schematic of SOX9 targets categorized according to their function and their expression in different datasets. SOX9 target genes related to apoptosis control,

hypoxia and ECM regulation are expressed in theNO-specificWGCNAmodule identified in iPS-NLCdataset. Color code indicates in which dataset these targets

are expressed: orange for Axial skeleton_week8, blue for iPS/ESC-NLC and pink for Notochord_week8.
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Figure 6. Extended notochordal gene signature based on the comparison of in vitro NLC, in vivo human and mouse notochord datasets

Mouse gene lists were retrieved from previously published datasets. All gene lists were curated for positive differentially expressed genes. Each inset on the Venn

Diagram illustrates the overlapping expressing genes. The full gene list shared between in vitro NLC and in vivo human notochord is available on the Gitlink.
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downstream targets andmechanistic regulations that drive the emergence of these twodistinct cell lineages during the early development of the

axial skeleton.115 Note that in the course of the differentiation, our results showed that SOX9 mRNA increased in differentiating MEPC but a

decrease of SOX9 immunopositive cells level was observed at day 7 (from 70% at day 2–30% at day 7). Time course scRNA-seq analysis may

provide explanation for these observations and a better understanding of SOX9 expression pattern related to NC identity.

Another important contribution is the identification of stringent lineage-specific cell-surface markers, ALCAM (CD166), CD109 and CAV1,

as potential tools to allow purification of NLC for further functional study. Thesemarkers have been described in juvenile and adult humandisc

cells.56,60,72,116 In this study, they characterize theNLCpopulation and chart the corresponding domain of gene expression in rodent embryos.

Their specific role in embryogenesis has yet to be explored.

The components of the NLC matrisome in vitro were shown to be enriched in the notochordal niche in vivo. These insights will be instru-

mental in guiding the switch from 2D to 3D culture to facilitate further maturation of the NC essential in the process of IVD formation. More-

over, a robust 3Dmodel to investigate the regenerative properties of NC, is yet to be established to advanceNC-based therapeutic strategies

for disc degeneration, a prominent cause of chronic low back pain.117 This study also provides fundamental knowledge that can aid in both

comprehending and modeling various notochord-related disorders in neural or spine defects.8,118–120
Limitations of the study

The roadmap to human notochord development remains to be completed. We present here the initial step by providing an extended mo-

lecular signature for embryonic NC and a robust system to investigate related essential developmental processes in vitro. It will be necessary

to conduct further transcriptome analysis to gain a comprehensive understanding of NLC maturation toward vacuolated NC phenotype and

to the ultimate acquisition of their characteristics found in the healthy disc. This work provided insights into the dynamics and heterogeneity of

cellular states in an in vitro differentiation system whereNOTO expression is forced. We cannot exclude the possibility that the in vivo noto-

chord cell fate trajectorymay be distinct. Based on our data, we cannot provide the ultimate proof of the lineage emergence and validation of

surface markers. Further investigations involving fluorescence-activated cell sorting analysis on human NC or spatial transcriptomic would be

relevant. Addressing these matters prove to be a genuine challenge given the ethical and technical constraints within the human model and

the scarcity of notochord cell population.
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Antibodies

Goat polyclonal anti-TBXT R&D Systems Cat# AF2085, RRID: AB_2200235

Rabbit polyclonal anti-FOXA2 Cell Signaling Technology Cat# 8186, RRID: AB_10891055

Rabbit polyclonal anti-SOX9 Millipore Cat# AB5535, RRID: AB_2239761

Goat polyclonal anti-SOX17 R&D Systems Cat# AF1924, RRID: AB_355060

Rabbit polyclonal anti-CD109 Abcam Cat# ab203588, RRID: AB_2936927

Rabbit monoclonal anti-CD166 Abcam Cat# ab109215, RRID: AB_2936926

Rabbit polyclonal anti-Caveolin 1 GeneTex Cat# GTX100205, RRID: AB_1240559

Rabbit monoclonal anti-CDX2 Cell Signaling Technology Cat# #12306, RRID: AB_2797879

Mouse monoclonal anti-Cytokeratin 8 Santa Cruz Biotechnology Cat# sc-52324, RRID: AB_629847

Mouse monoclonal anti-Cytokeratin Pan (C11) Cell Signaling Technology Cat# 4545, RRID: AB_490860

Rabbit monoclonal anti-Fibronectin Abcam Cat# ab45688, RRID: AB_732380

Rabbit monoclonal anti-GATA4 Cell Signaling Technology Cat# 36966, RRID: AB_2799108

Rabbit monoclonal anti-Nanog Cell Signaling Technology Cat# 4903, RRID: AB_10559205

Rabbit polyclonal anti-NOTO Thermo Fisher Scientific Cat# PA5-69748, RRID: AB_2690559

Rabbit monoclonal anti-Sox2 Cell Signaling Technology Cat# 3579, RRID: AB_2195767

Rabbit monoclonal anti-Sox9 Abcam Cat# ab185230, RRID: AB_2715497

Goat polyclonal anti-TBX6 R&D Systems Cat# AF4744, RRID: AB_2200834

Donkey Anti-Goat IgG (H+L) Antibody,

Alexa Fluor 488 Conjugated

Molecular Probes Cat# A-11055, RRID: AB_2534102

Donkey Anti-Rabbit IgG (H+L) Antibody,

Alexa Fluor 568 Conjugated

Molecular Probes Cat# A10042, RRID: AB_2534017

R-Phycoerythrin AffiniPure F(ab’)₂ Fragment

Goat Anti-Mouse IgG (H+L)

Jackson Immuno-Research Labs Cat# 115-116-146, RRID: AB_2338629

R-Phycoerythrin AffiniPure F(ab’)₂ Fragment

Donkey Anti-Rabbit IgG (H+L)

Jackson Immuno-Research Labs Cat# 711-116-152, RRID: AB_2340599

Biological samples

Human fetal notochord Gleneagles, Hospital, Hong Kong F013NCC

Chemicals, peptides, and recombinant proteins

ESC-qualified Matrigel Corning Cat# 354277

Geltrex� LDEV-Free, hESC-Qualified, Reduced

Growth Factor Basement Membrane Matrix

Thermo Fisher Scientific Cat# A1413302

mTeSR1 Stemcell Technologies Cat# 85850

mTeSR Plus Stemcell Technologies Cat# 100-0276

SB431542 Axon Medchem Cat# 1661

Lipofectamine RNAiMAX Transfection Reagent Life Technologies Cat# 13778075

Opti-MEM� I Reduced Media Life Technologies Cat# 31985062

TrypLE Life Technologies Cat# 12604021

DPBS without Ca2+/Mg2+ Life Technologies Cat# 14190-094

Hanks Balanced Salt Solution Gibco Cat# 14175-079

DMEM F-12 Life Technologies Cat# 11330

MEM non-ess AA Life Technologies Cat# 11140

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Glutamax Life Technologies Cat# 35050

XF passaging solution Miltenyi Cat# 130-104-688

ReLeSr Stemcell Technologies Cat# 05872

Dispase Worthington Cat# LS02109

Collagenase P Roche Cat# 11213865001

Collagenase type II Worthington Cat# LS004174

Beta-mercaptoethanol Life Technologies Cat# 31350

Dulbecco’s modified eagles medium Gibco Cat# 21331-020

N2 supplement Life Technologies Cat# 17502048

B27 supplement Life Technologies Cat# 17504044

KnockOut� Serum Replacement Life Technologies Cat# 10828

Albumin bovine Sigma Cat# A1595

Bovine Albumin Fraction V Thermo Fisher Scientific Cat# 15260037

PBS Ca2+/Mg2+ Sigma Cat# D8662

Hybri-Max� DMSO Sigma Cat# D2650

Rock Inhibitor Y-27632 Dihydrochloride Peprotech Cat# 1293823

Recombinant Human Noggin Miltenyi Cat# 130-103-456

CHIR99021 Axon Medchem Cat# 1386

Laminin 521 Corning Cat# 354223

Antifadent Mountant Solution Cliniscience Cat# AF1

Hoechst 33342 Life technologies Cat# H3569

Critical commercial assays

Nucleospin II RNA Kit Macherey Nagel Cat# 740955

TruSeq ChIP Sample Prep Kit Illumina IP-202-1012

Chromium Single Cell 3’ GEM kit v3 10X Genomics PN-1000075

Chromium Single Cell 3’ GEM kit v3.1 10X Genomics PN-1000121

Deposited data

Original raw data for fetal notochord This paper Deposited on GEO GSE237542

Original raw data for H1-CFS differentiated NLCs This paper Deposited on GEO GSE237546

Original raw data for iPS-NLC This paper Deposited on GEO GSE237538

Full code and post-processed single cell data This paper https://github.com/linxy29/NCL_differentiation

Experimental models: Cell lines

hiPSC a Life Technologies Cat# A18944, Lot Number: 1938075

hiPSC b This paper hPSCreg Name: REGUi016-D 4F_PBMC_Sv190

hiPSC c Life Technologies Cat# A18944, Lot Number: 2228383

hiPSC d Faye et al., 2020121 hPSCreg Name: LIMFRi001-A

hiPSC e Kilens et al., 2018122 N/A

H1-ESC Prof. Andras Nagy, Lunenfeld-Tanenbaum

Research Institute at Mount Sinai Hospital in

Toronto, Ontario

HA01

Experimental models: Organisms/strains

CD1-Swiss mice Charles River Laboratory N/A

Oligonucleotides

Synthetic NOTO mRNA Trilink N/A

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

TaqMan probe TBXT Life Technologies Hs00610080-m1

TaqMan probe FOXA2 Life Technologies Hs00232764_m1

TaqMan probe GAPDH Life Technologies Hs99999905_m1

TaqMan probe LEF1 Life Technologies Hs01547250-m1

TaqMan probe LEFTY1 Life Technologies Hs00764128_s1

TaqMan probe NODAL Life Technologies Hs00415443_m1

TaqMan probe NOGGIN Life Technologies Hs00271352_s1

TaqMan probe NOTO Life Technologies Hs01377437_m1

TaqMan probe SHH Life Technologies Hs00179843_m1

TaqMan probe SOX17 Life Technologies Hs00751752_s1

TaqMan probe TBX6 Life Technologies Hs00365539_m

TaqMan probe NANOG Life Technologies Hs04260366_g1

TaqMan probe POU5F1 Life Technologies Hs00999632_g1

TaqMan probe GATA4 Life Technologies Hs00171403_m1

TaqMan probe HAND1 Life Technologies Hs02330376_s1

TaqMan probe PRRX1 Life Technologies Hs00246567_m1

TBXT primers SYBR green – IDT (Integrated

DNA Technologies)

F (5’/3’) CTATTCTGACAACTCACCTGCAT

R (5’/3’)

ACAGGCTGGGGTACTGACT

FOXA2 primers SYBR green – IDT (Integrated

DNA Technologies)

F (5’/3’) GGAGCAGCTACTATGCAGAGC

R (5’/3’)

CGTGTTCATGCCGTTCATCC

RPLP0 primers SYBR green – IDT (Integrated

DNA Technologies)

F (5’/3’) TGGCAGCATCTACAACCCTGAAGT

R (5’/3’)

ACACTGGCAACATTGCGGACA

LEF1 primers SYBR green – IDT (Integrated

DNA Technologies)

F (5’/3’) TGCCAAATATGAATAACGACCCA

R (5’/3’)

GAGAAAAGTGCTCGTCACTGT

LEFTY1 primers SYBR green – IDT (Integrated

DNA Technologies)

F (5’/3’) CTGTGACCCTGAAGCACCAA

R (5’/3’)

CATCCCCTGCAGGTCAATGT

NODAL primers SYBR green – IDT (Integrated

DNA Technologies)

F (5’/3’) CTGCTTAGAGCGGTTTCAGATG

R (5’/3’)

CGAGAGGTTGGAGTAGAGCATAA

NOGGIN primers SYBR green – IDT (Integrated

DNA Technologies)

F (5’/3’) CCATGCCGAGCGAGATCAAA

R (5’/3’)

TCGGAAATGATGGGGTACTGG

NOTO primers SYBR green – IDT (Integrated

DNA Technologies)

F (5’/3’) CTGAGGGCAGCAGTTACAT

R (5’/3’)

CTTCTGGTTGAGGAGGCTTT

SHH primers SYBR green – IDT (Integrated

DNA Technologies)

F (5’/3’) CCAAGGCACATATCCACTGCT

R (5’/3’)

GTCTCGATCACGTAGAAGACCT

SOX17 primers SYBR green – IDT (Integrated

DNA Technologies)

F (5’/3’) GTGGACCGCACGGAATTTG

R (5’/3’)

GGAGATTCACACCGGAGTCA

TBX6 primers SYBR green – IDT (Integrated

DNA Technologies)

F (5’/3’) TACATTCACCCCGACTCTCC

R (5’/3’)

TGTATGCGGGGTTGGTACTT

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

NANOG primers SYBR green – IDT (Integrated

DNA Technologies)

F (5’/3’) AAGGTCCCGGTCAAGAAACAG

R (5’/3’)

CTTCTGCGTCACACCATTGC

POU5F1 primers SYBR green – IDT (Integrated

DNA Technologies)

F (5’/3’) CAAAGCAGAAACCCTCGTGC

R (5’/3’)

TCTCACTCGGTTCTCGATACTG

Software and algorithms

ImageJ NIH Schneider et al., 2012123 https://imagej.nih.gov/ij/

Volocity� software Quorum Technologies Inc. Version 6.0.0.

Cell Ranger 10x Genomics Version 6.0.2 and 6.1.2

R Bioconductor Version 4.1.0

CellChat Jin et al. 202198 Version 1.6.0

SCENIC Aibar et al. 201799 Version 1.2.4

WGCNA Meistermann et al. 2021124 https://gitlab.univ-nantes.fr/E114424Z/WGCNA

scCustomize Marsh SE, 2021125 Version 1.1.1

Seurat Hao et al., 2021126 Version 4.3.0

ggVennDiagram Gao et al., 2021127 Version 1.2.2

VeloAE Qiao et al., 202153 Version 0.2.0

scVelo Bergen et al., 2020128 Version 0.2.4
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by, Dr. Anne Camus at anne.camus@univ-nantes.fr.
Materials availability

There are restrictions on the availability of the H1-derived cloaked FailSafeTM embryonic stem cell line due to a material transfer agreement.

This study did not generate new unique reagents.
Data and code availability

� Single-cell RNA-seqdata have been deposited at GEOand are publicly accessible as of the date of publication. Accession numbers are

listed in the key resources table.
� The custom scripts for processing and analysing the data were housed at https://github.com/linxy29/NCL_differentiation.

� Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Cell lines generation and characterization

hiPSCa and hiPSCc line derives from different batch (Lot Number: 2228383 and Lot Number: 1938075 repectively) of The Gibco� Episomal

hiPSC line which is generated using cord blood-derived CD34+ progenitors and seven factors that are expressed episomally (Oct4, Sox2, Klf4,

Myc, Nanog, Lin28, and SV40 T).129 The hiPSC line was initially cultured on mouse feeder cells and later adapted to a culture condition that is

both feeder-free and serum-free. All quality controls are done by the supplier LifeTechnologies.

hiPSCb line is generated from peripheral bloodmononuclear cells (PBMC) using Virus CytoTune-iPS 2.0 Sendai Reprogramming Kit stem-

gent StemRNA 3rd Gen Reprogramming Kit (Stemgen).

hiPSCd, generated from dermal fibroblast cells, were maintained and reprogrammed according to a previously published protocol.121

Briefly hiPSC were generated following the iStem (INSERM/UEVE UMR861, AFM, Genopole, Evry, France) protocol with three plasmids

(Plasmid #6 pCXLE-hOCT3/4 shp53-F Addgene, Plasmid #7 pCXLE-hSK Addgene, Plasmid #8 pCXLE-hUL Addgene) using the Nucleofector

II device (Amaxa, Lonza, Basel Switzer-land).

hiPSCe is generated by overexpression ofOCT4, KLF4,MYC and SOX2 in human fibroblasts from 3 healthy donors, using a non-integrative

Sendai virus as describe in Kilens et al.122
18 iScience 27, 109018, February 16, 2024

mailto:anne.camus@univ-nantes.fr
https://github.com/linxy29/NCL_differentiation
https://imagej.nih.gov/ij/
https://gitlab.univ-nantes.fr/E114424Z/WGCNA


ll
OPEN ACCESS

iScience
Article
H1-ESC derived cloaked/fail-safe (CFS) embryonic stem cell line was developed in the laboratory of Andras Nagy, of which the cells orig-

inated from the H1 embryonic stem cell line HA01 (Wi Cell, USA).

HiPSC maintenance

Stem cell culture was achieved in line with the ISSCR guidelines (https://www.isscr.org/standards-document). HiPSC lines used in this study

weremaintained on ESC-qualifiedMatrigel (Corning), coated plates with mTeSR1media (Stem cell technology). All cell lines were cultured at

37�C, under normoxic conditions (20% O2, 5% CO2) and culture media was daily replaced. HiPSC were passaged every 4 days at a 1:6 split

ratio using passaging solution XF (Miltenyi) for 2 min, at room temperature for dissociation into cell clusters. Cells were grown for 10 passages

maximum. A new vial of the cell bank was used when cell reach P30. The MycoAlert kit (LONZA) was employed to confirm the absence of

mycoplasma in all cell lines.

The H1-ESC line was developed in the laboratory of Andras Nagy, of which the cells originated from the H1 embryonic stem cell line HA01

(Wi Cell, USA). The CFS were cultured in 6-well culture plates coated with Geltrex� LDEV-Free, hESC-Qualified, Reduced Growth Factor

BasementMembraneMatrix (Thermofisher Scientific). Cells weremaintained inmTeSR� Plus (Stemcell Technologies) that was refreshed daily

(1.5mL) and passaged every 4-5 days using ReLeSr (Stemcell Technologies) as per manufacturers’ instructions.

Clinical specimens

Clinical specimens were obtained with approval by the Institutional Review Board (reference UW13-577) and with informed consent in accor-

dance with the Helsinki Declaration of 1975 (revision 1983). Fetal tissue of unknown gender was obtained from patients undergoing legally

induced abortion at the Gleneagles Hospital, Hong Kong. Primary PBMC cells for hiPSC line b generation were obtained with approval of the

Ethical Committee of Bern (reference 2019-00097).

Mice

Experiments on mice were conducted according to the French and European regulations on care and protection of laboratory animals (EC

Directive 86/609, French Law n�2013-118 issued on February 1st 2013). Embryos and spines for CD166, CD109 and CAV1 protein immuno-

staining analyses were collected from pregnant mice and newborns from the CD1-Swiss background.

METHOD DETAILS

Differentiation of pluripotent stem cells into NLC

Differentiation protocol follows three-steps: (1) experiment starts with the seeding of single PSC at 20.000 cells/cm2 on Laminin 521 (Corning)-

coated plates inmTseR1medium supplementedwith rock inhibitor for 24 hours; (2) cells are then cultured in specificmedia for mesendoderm

progenitor specification [DMEM/F12 supplemented with 1% N2 (Gibco), 1% B27 (Gibco), 1% non-essential amino acids, 1% GlutaMAX

(Gibco), 0.1 mM 2-mercaptoethanol (Sigma), 50 mg/ml BSA and 3mM CHIR99021 (Axon Medchem)]; (3) at day 2, mesendoderm progenitor

cells are dissociated and transfected with Lipofectamin RNAimax (5:1) in a single cell suspension with 1500 ng of human NOTO synthetic

mRNA (vector and co-transcriptional capping technology Trilink) and seeded at 160 000 cells/cm2. From day 2 up to day 7, cells are main-

tained in same media supplemented with 100ng recombinant human Noggin (Miltenyi) allowing the emergence of embryonic NLC popula-

tion. For inhibition of TGF-b1 pathway, medium was supplemented with 5mM SB431542 (Axon Medchem) from day 2 to day 7. The iPS- and

ESC- line used for each experiment in each figure panel is summarized in Table S1.

RNA Extraction and RT-qPCR

Total RNA was extracted with the Nucleospin II RNA Kit (Macherey Nagel, 740955) and one microgram was reverse transcribed using Super-

script III First Strand synthesis kit (Life technologies, 11752). Quantitative RT-qPCR experiments were performed using TaqMan or SYBR tech-

nologies with GAPDH as housekeeping gene and fold change represented using a base 2 logarithm determined by the Livak Method (Rela-

tive quantification RQ = 2�DDCq).130

Immunostaining

Cells were fixed at room temperature using 4% paraformaldehyde for 10 min. Samples were then saturated and permeabilized for 1 hour at

room temperature with a phosphate-buffered saline (PBS) containing, 0.1% Triton, 3% bovine serum albumin (BSA). Cells were incubated with

primary antibodies overnight at 4 �C in a PBS solution containing 1% BSA. The following antibodies were used anti-TBXT (1:400, R&D), anti-

FOXA2 (1:400, Cell Signaling), anti-SOX9 (1:1000, Milipore), anti-SOX17 (1:200, R&D). After washing primary antibodies with PBS, incubation

with secondary antibodies was performed using donkey anti-goat IgG (H+L) antibody, Alexa Fluor 488 conjugated (1/1000,Molecular Probes)

or donkey anti-rabbit IgG (H+L) antibody, Alexa Fluor 594 conjugated (1/1000, Molecular Probes) for 1 hour at room temperature in PBS con-

taining 1% BSA. After washing secondary antibodies with PBS, cells were counterstained with Hoechst (Life technologies) to visualize nuclei

and stored in CitiFluor� AF1 (Electron Microscopy Sciences, #1179 70-25) at 4�C. Confocal immunofluorescence images were acquired with

LFOV FLIM Nikon� confocal microscope.

Embryos and mice spines were embedded in Super Cryoembedding Medium (SCEM) (Section Lab, Hiroshima, Japan) and frozen in iso-

pentane/dry ice, without decalcification. Samples were cut along coronal plane and 7mm sections were mounted on slides (CryoStar NX70,
iScience 27, 109018, February 16, 2024 19
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Thermo Fisher Scientific, Waltham, Massachusetts, USA) and post-fixed in 2% PFA (2 min) for anti-CD166 and anti-CAV1 staining, and in 4%

PFA (2min) for anti-CD109 staining. Sections were then permeabilized in 0.2% Triton X-100 in PBS for 20 min and blocked in the blocking so-

lution (10% Foetal Bovine Serum; 4% BSA; 0.1% Triton X-100 in PBS) for 1 h. Next, sections were incubated overnight at 4�C with primary an-

tibodies against CAV1 (1:100, Clinisciences, GTX-100205), CD166 (1:600 or 1:800 depending on the embryonic stage, Abcam), CD109 (1:200,

Abcam) followed by a 1h incubation in secondary antibody (either Alexa Fluor-488 or Alexa Fluor-568, 1:1000, Molecular Probes). After

washing secondary antibodies with PBS, samples were counterstained with Hoechst (Life technologies) to visualize nuclei and sections

were mounted with ProLong� (Thermofisher, P36934). Confocal immunofluorescence images were acquired with LFOV FLIM Nikon�
confocal microscope.
DigiWest

The cells were lysed in radioimmunoprecipitation assay buffer (RIPA) containing proteinase inhibitor cocktails. The lysates were then clar-

ified through centrifugation at 18,000 g for 15 minutes at 4�C. The clarified lysates were boiled in a sample buffer at 95�C for 5 minutes and

resolved by SDS-PAGE. DigiWest assays were performed using 15 mg of cellular protein loaded onto a sodium dodecyl sulfate-polyacryl-

amide gel, followed by size separation via electrophoresis. The size-separated proteins were transferred onto a polyvinylidene fluoride

membrane and biotinylated using 50 mM NHS-PEG12-Biotin in phosphate-buffered saline (PBS) supplemented with Tween-20 for 1

hour. After drying of the membrane, the sample lanes were cut into 96 strips, each corresponding to a specific molecular weight fraction.

Each strip was placed in a well of a 96-well plate, and 10 ml elution buffer (8 M urea, 1% Triton-X100 in 100 mM Tris-HCl pH 9.5) was added

to extract the proteins. The eluted proteins were then diluted with 90ml dilution buffer (5% BSA in PBS, 0.02% sodium azide, 0.05% Tween-

20) and incubated with a distinct magnetic color-coded bead population coated with neutravidin. The biotinylated proteins bound to the

neutravidin beads, with each bead color representing proteins of a specific molecular weight fraction. The 96 protein-loaded bead pop-

ulations were mixed to reconstitute the original lane, providing a bead mix for approximately 100 individual antibody incubations.

Aliquots of the DigiWest bead-mixes were added to 96-well plates containing an assay buffer supplemented with antibodies. After over-

night incubation at 15�C, the bead-mixes were washed, and phycoerythrin-labelled secondary antibodies were added and incubated for 1

hour at 23�C. The beads were washed again prior to readout using a Luminex FlexMAP 3D instrument. For quantification of antibody-spe-

cific signals, an Excel-based analysis tool was used to identify peaks corresponding to proteins of appropriate molecular weight and

calculate the peak area. The signal intensity was then normalized to the total amount of protein loaded into one lane.131 Hierarchical clus-

tering was performed with complete linkage method and Pearson correlation for validated gene versus two hiPSC lines from different time

point.
Single-cell isolation of fetal notochord and in vitro differentiated pluripotent stem cells

Single cell encapsulation and cDNA libraries of fetal notochord and differentiated ESC were prepared at the Centre for PanorOmic Sciences

(CPOS) at The University of Hong Kong. Single cell encapsulation and cDNA libraries of differentiated iPSCwere prepared at theGenoA plat-

form at Nantes University.

Under the guidance of a stereomicroscope, the fetal tissue was rinsed with Hanks balanced salt solution (HBSS, Gibco) to reveal an intact

fetal notochord embedded within the developing vertebral column. The fetal notochord (NC) was dissected out, cut into�1mm pieces, and

digested with 10mL pre-warmed digestion buffer containing 0.5% dispase (5mg/mL), 0.5% collagenase type II (5mg/mL), 0.25mg/ml collage-

nase P in FBS-free DMEM for 1hr at 37�C on a rocking platform. The digest was gently triturated every 30 min to further aid in the release of

cells from the tissue. After digestion, the cells were collected, filtered through a 40mm sieve, and resuspended in 0.04% BSA in phosphate

buffered saline (PBS). 20,000 cells in suspension were prepared and loaded into individual wells of 10X Chromium Single Cell chip. Single

cells were then encapsulated into Gel Beads-in-emulsion (GEM) by 10X Chromium Single Cell Controller. The Single Cell 3’ Reagent Kit

v3 was used to perform downstream steps.

Differentiated iPSC at day 7 were dissociated with TryplE for 7 minutes at 37�C, then 1.5x106 cells from each sample were labelled with a

specific lipid-coupled oligonucleotide sequence (CG000388, 10XMultiplexing). After labelling, cells were washed and resuspended at a con-

centration of 1,200 cells/mL in PBS containing 0.1% BSA. A total of 40,000 cells were loaded into a Chromium Controller (10X Genomics), con-

taining 5,000 not-transfected cells, 10,000 cells NOTO transfected, 5,000 cells NOTO transfected with 5mM SB431542 condition added at

day 2, and for the hiPSC lines a and b.

Differentiated ESC at day 7 were processed using the samemethod as for the notochord, but using the ChromiumNext GEMSingle Cell 3ʹ
Reagent Kit v3.1, Chromium Next GEM Chip G Single Cell Kit and Single Cell 3’ Reagent Kit v3.1.

In brief, single cells were encapsulated into Gel Beads-in-emulsion (GEM) by 10X Chromium Single Cell Controller. Single Cell 3’ Reagent

Kit was used to perform reverse transcription, cDNA cleanup and amplification. The double-stranded cDNA underwent enzymatic fragmen-

tation, adapter ligation, index PCR and SPRIselect size selection as per manufacturer’s protocol. The library size and concentration were

determined by Qubit (1X dsDNA HS Assay Kit) and Bioanalyser assays.

All libraries were sequenced using paired-end sequencing using the Illumina NovaSeq 6000 (#1000000019358v11 Material #20023471)

following manufacturer’s instructions. Raw sequencing data were processed with Cell Ranger 6.0.2, or 6.1.2 depending on the dataset.
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Processing of the scRNAseq data

Primary analysis

Raw sequencing data were processed with Cell Ranger 6.0.2 for iPS-NLC dataset and with Cell Ranger 6.1.2 for ESC-NLC and fetal notochord

dataset. CellRanger mkfastq function was used to generate FASTQ files, and FASTQ alignment to the human reference genome (CRCh38-

2020-A), filtering, barcode and UMI counting were performed with CellRanger multi. Resulting UMI count tables were further analysed using

Seurat v4.126 For the fetal notochord sample, cells with more than 200 but less than 5000 genes, as well as less than 10% mitochondrial reads

were analysed. For the ESC-NLC, those with more than 200 but less than 7500 genes, as well as less than 10% mitochondrial reads were an-

alysed. For the iPS-NLC cells with more than 1000 but less than 8000 genes, with less than 10%mitochondrial reads were analysed. Cell Cycle

regression was applied for foetal notochord dataset. The SCTransform method was applied for normalization, variance stabilization and

feature selection of the gene expression matrix.132

Secondary analysis

Dimensionality reduction on the data was then performed by computing the significant principal components on highly variable genes. We

then performed unsupervised clustering by using the FindClusters function in Seurat and clusters were then visualized in a UMAP plot. Differ-

entially expressed genes (DEG) among each cell cluster were determined using the FindAllMarkers function in Seurat, and defined as the

positive genes expressed in at least 10% of the cells within the cluster and with a fold change of more than 0.25. Each dataset was annotated

based on differential gene expression for markers related to cell lineage. The percentage of cells per clusters was calculated by normalizing

the number of cells per cluster per condition to the cells numbers that were included in the analyses.

veloAE was used in each sample separately.53 We used the parameter ‘palette’ to specify the colors of each cell type so that the colors are

the same as the UMAP we generated using Seurat. The velocity genes are calculated by the function ‘rank_velocity_genes’ in the scVelo128 as

these values are calculated from scVelo and do not change in veloAE. Except for the parameters we discussed before, all the rest parameters

are set as default.

WGCNA was performed on normalized iPS-NLC dataset using a soft threshold of 8 with signed Pearson correlation.54,124 Resulting mod-

ules weremanually curated to choose a set of 15modules that werewell represented in data and that have distinct behaviors. The genematrix

expression for each module was used as an input for single-cell regulatory network inference and clustering (SCENIC) analyses. The gene co-

expression network was identified using GENIE3. Regulons were identified via RcisTarget. The activity of each regulon for each single cell was

determined via the AUC scores using the AUCell R package.99

ESC-NLC and iPS-NLC datasets were integrated using the SelectIntegrationFeatures (3000 variable genes) and FindIntegrationAnchors

functions using SCT normalization method. The integration object subsequently: runPCA, UMAP, neighbours, and clustered.

FindAllMarkers by default was used to retrieve all the markers differentially expressed in each cluster.

Raw data from a previously published study61 were obtained from Zhou and colleagues and processed (QC, Threshold for DEG and Clus-

tering). This primary analysis allowed the retrieval of two out of four 7 weeks human fetal notochord specimens (samples 3 and 4 notedNOTO,

Zhou study) that we filtered based on TBXT expressing cells a consensus marker for notochordal identity. Enrichment map was built on hy-

pergeometric testing using the top100 DEG of each dataset to test the similarities between the three datasets of each of their cell type clus-

ters.87 We used a stringent p-value cut off at 0.00001 in order to reveal the significant associations between all three datasets.

CellChat was used to analyze the expression abundance of ligand-receptor interactions between two cell types on the basis of the expres-

sion of a ligand by one cell type and a receptor by another cell type. The communication probability was computed using trimean method.

Chord diagram visualization were used to show specific outgoing signaling from the notochord to the other cell clusters.98 Common gene

signature were defined using published gene lists for node and notochord in mouse from Tamplin et al., 2008,104 Tamplin et al., 2011,105

Peck et al., 2017,63Wymeerch et al., 2019106 and compared to the gene lists from this work for the notochord cluster. Overlap and visualization

was performed using ggVennDiagram package.127

ComplexHeatmap was used to compare the gene signatures between human fetal and in vitro datasets.133
QUANTIFICATION AND STATISTICAL ANALYSIS

Confocal microscopy image analysis

For each sample, 3 pictures 3X3 were taken randomly within the well, using the X20 objective. These images are then analysed using the

volocity� software (Quorum technologies), which allows us to determine the positive cells for each marker. The data represent an average

of the percentage obtained for 10 independent experiments and derived from 4 hiPSC lines.
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