Monte Carlo Tree Search with Adaptive Simulation: A Case Study on Weighted Vertex Coloring - Archive ouverte HAL
Communication Dans Un Congrès Année : 2023

Monte Carlo Tree Search with Adaptive Simulation: A Case Study on Weighted Vertex Coloring

Résumé

This work presents a hyper-heuristic approach to online learning, which combines Monte Carlo Tree Search with multiple local search operators selected on the fly during the search. The impacts of different operator policies, including proportional bias, one-armed bandit, and neural network, are investigated. Experiments on well-known benchmarks of the Weighted Vertex Coloring Problem are conducted to highlight the advantages and limitations of each dynamic selection strategy.
Fichier non déposé

Dates et versions

hal-04517499 , version 1 (22-03-2024)

Identifiants

Citer

Cyril Grelier, Olivier Goudet, Jin-Kao Hao. Monte Carlo Tree Search with Adaptive Simulation: A Case Study on Weighted Vertex Coloring. Evolutionary Computation in Combinatorial Optimization, Apr 2023, Brno (Rép. Tchèque), Czech Republic. pp.98-113, ⟨10.1007/978-3-031-30035-6_7⟩. ⟨hal-04517499⟩

Collections

UNIV-ANGERS LERIA
8 Consultations
0 Téléchargements

Altmetric

Partager

More