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Human Torque Estimation for an LMI-based Convex Control
Rehabilitation Strategy using Assistive Robots

Jorge Ibarra 1, Kaouther Moussa 1,2, Jimmy Lauber 1,2

Abstract— The number of people affected by motor impair-
ment has increased considerably in recent years, raising, in
consequence, the interest in the use of assistive robotic devices
for additional motricity and rehabilitation purposes. The main
challenge for this kind of devices is dealing with the interaction
between the human and the robot for a cooperative movement,
especially in active rehabilitation schemes, where patients are
incited to participate in the movement tasks, in order to increase
efficiency of the rehabilitation protocol. A question that arises
in this specific context is how to estimate human contribution in
order to personalize the rehabilitation tasks. Current solutions
being based on cumbersome measurement devices, this paper
suggest an observer-based solution, allowing to estimate the
human torque based on few dynamical measurements, in
addition to an LMI-based computed-torque controller. This
suggested scheme has been tested and validated using OpenSim
software, which is widely used for biomechanical modeling,
simulation and analysis.

I. INTRODUCTION

Recent studies by the World Stroke Organization [1], show
that there is an increase in the number of people with motor
impairment. An approach to aid patients affected by this con-
sist in robot-assisted rehabilitation, which has shown long-
lasting effects and can be more efficient than conventional
therapy [2]. However, the interaction between human and
assistive robots comes with its own set of challenges, such
as providing patients with personalized assistance to reduce
the intervention of robotic actuation and, therefore, improve
their condition [3], [4].

In order to customize an exoskeleton aid for patients, some
studies adopt an ”Assist-as-needed” control strategy which
aims to adapt the actuation given by the robot to increase or
decrease difficulty for a patient trying to follow a certain
trajectory. Most of these works require either measuring
torques or forces, such as in [5], using expensive sensors or
estimating the torque via electromyography (EMG), for ex-
ample in [6]. However, EMG is known to have a low signal-
to-noise ratio, providing an inaccurate torque estimation, in
addition to be cumbersome for the patients. Availability of
the contribution of the patient allows to design an adaptive
control of the robotic assistance.
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In the context of robot manipulators, computed torque
control (CTC) is a well-known strategy for trajectory track-
ing, which makes use of a nonlinear dynamic model of the
system obtained from Euler-Lagrange equations for feedback
linearization [7]. This technique has a wide range of appli-
cations, such as serial [8] and parallel [9] manipulators, and
has also been used for exoskeleton control problems [10]. In
the field of assistive rehabilitation where a trajectory should
be followed, this methodology seems particularly suitable.

Furthermore, classical CTC is usually associated with
linear controllers, such as PD controller, and is based on
eliminating non-linear terms by means of feedback lin-
earization. In this paper, a variation of the computed-torque
approach with a nonlinear controller is introduced, based on
convex control using linear matrix inequalities (LMIs). This
approach is known for being a systematic procedure allowing
to deal with a large class of non-linearities. Originally devel-
oped for linear parameter varying (LPV) systems and Takagi-
Sugeno (TS) models, it consist in a convex rewriting of a
nonlinear system [11] and a control law constructed from a
convex sum of gains called parallel distributed compensation
(PDC). These gains can be obtained via LMI conditions by
means of the direct Lyapunov method for asymptotic stability
of the origin.

The main originality of this work is the estimation of
the human contribution in terms of torque using only few
measurements, namely the joint angle and velocity, allow-
ing to overcome the need of expensive and cumbersome
measurement devices. The estimated human torque is used
to guarantee the stability of the whole closed loop system,
ensured by the separation principle.

Moreover, the availability of open-source software for
musculoskeletal models simulation, such as OpenSim [12],
makes the testing and validation of estimation and control
schemes more tractable under realistic conditions. This al-
lowed us to test the proposed scheme on a realistic arm model
and to validate the estimation and the control performances.

First, a brief explanation of the classical LMI-based
convex control procedure is presented, followed by some
information about mechanical modeling of human-robot in-
teractions. As for main results, a methodology for stabilizing
dynamics of tracking error by means of nonlinear computed
torque and convex optimization techniques; then a procedure
to design an observer to obtain a human torque estimation
is addressed, validated by the widely known separation
principle.



II. PRELIMINARIES

In this section, some essential knowledge will be pre-
sented: first, the classical procedure for convex rewriting
and LMI-based convex control; second, the modeling of
human-robot dynamics based on Euler-Lagrange equations
of motion is shown.

A. LMI-based Convex Control

Consider a nonlinear system that can be written in a quasi-
LPV form

ẋ(t) = A(x(t))x(t) +B(x(t))u(t), (1)

for sake of simplicity, dependence on time t will be omitted
in the sequel. Variables x ∈ Rn and u ∈ Rr are the
state vector and input vector, respectively. Provided that the
system (1) has non-constant terms in A(x) and B(x) that
are bounded for any x ∈ Ω, 0 ∈ Ω, namely, zi(x) ∈ [z0i , z

1
i ],

i ∈ {1, 2, . . . , p}, then convex functions:

wi
0(z) =

z1i − zi(x)

z1i − z0i
, wi

1(z) = 1− wi
0(z), i ∈ {1, 2, . . . , p}

(2)
can be defined, which allows rewriting of any non-constant
term in A(x) and B(x) as

zi(x)=wi
0(z)z

0
i +wi

1(z)z
1
i =

1∑
j=0

wi
j(z)z

j
i , i∈{1, 2, . . . , p}.

(3)
This meaning that nonlinear system (1) can be rewritten

as:

ẋ =
∑
i∈Bp

wi(z) (Aix+Biu) , (4)

where convexity of functions (2) is employed to guaran-
tee wi(z) ∈ [0, 1], ∀x ∈ Ω and

∑
i∈Bpwi(z) = 1,

∀x ∈ Rn; B = {0, 1}, i = (i1, i2, . . . , ip), wi(z) =
w1

i1
(z)w2

i2
(z) · · ·wp

ip
(z), such that the linear TS dynamical

model is a convex combination of local linear models in
the region of interest, this is Ai = A(z)|wi(z)=1 and Bi =
B(z)|wi(z)=1 [13].

Based on the convex structure (4), a parallel distributed
compensation (PDC) control law can be applied:

u =
∑
k∈Bp

wk(z)Fkx, (5)

where Fk, with k ∈ Bp, are gains to be found by LMI
computation:

X = XT > 0, (6)

AiX +BiMk +XAT
i +MT

k BT
i < 0, (7)

as Fk = MkX
−1. Thus, any trajectory within the outermost

Lyapunov level {x : xTX−1x ≤ c} ⊂ Ω goes asymptotically
to 0 [13]. Grouping similar terms that share the same factor
in convex product wi(z)wk(z) can lead to less conservative

LMI conditions, as can be seen in [14], as well by applying
Tanaka’s relaxation [15]:

X = XT > 0,

GT
iiP + PGii < 0,(
Gik +Gki

2

)T

P + P

(
Gik +Gki

2

)
≤ 0,

where Gik = Ai −BiFk.

B. Modeling Human-Robot Dynamics

There are many works in literature where the human body
is described as a series of rigid bodies, for example, [16] and
[17]. This consideration allows to simplify the study and
analysis of human motion. Therefore, a dynamical model of
its motions can be obtained by expressing the accelerations
in terms of forces and inertia by Euler-Lagrange formulation:

τ = M(q)q̈ + C(q, q̇)q̇ +G(q), (8)

where q ∈ Rn is the position vector of the joints, q̇ and q̈ are
the velocity and acceleration vectors, τ ∈ Rn is the vector
of torques applied on each individual joint, M(q) ∈ Rn×n

is an inertia matrix, C(q, q̇) ∈ Rn×n the Coriolis matrix and
G(q) ∈ Rn represents gravitational forces. At joint level, τ
is the sum of torque provided by the exoskeleton τr and the
one applied by the human τh. Considering that τr is used
for control, system (8) can be rewritten as follows:

τr = M(q)q̈ +N(q, q̇)− τh, (9)

where N(q, q̇) = C(q, q̇)q̇+G(q) will be used for simplicity.
Note that the physical parameters of the body are needed for
the Euler-Lagrange equations, in addition to the position, the
velocity and the torque applied by the human. In this work,
only the position and the velocity will be required to design
a nonlinear observer.

III. PROPOSED METHODOLOGY

A. LMI-based Computed-Torque Control

Since the control objective is to follow a trajectory, we
consider a variation of the computed-torque law, similar to
[18]:

τr = M(q)(q̈d −M−1(q)u) +N(qd, q̇d)− τ̂h, (10)

where qd ∈ Rn is the vector of desired positions, u ∈ Rm

τ̂h is an estimation of the human torque. By equivalence of
(9) and (10), the following can be written:

M(q)(q̈d−M−1(q)u)+N(qd, q̇d)−τ̂h=M(q)q̈+N(q, q̇)−τh,

which leads to:

u = M(q)(q̈d − q̈) +N(qd, q̇d)−N(q, q̇) + τh − τ̂h.

By including τ̂h in the computed torque law (10) the esti-
mation error of human torque will appear in the dynamics
of the tracking error, which will provide a better insight of
what, as will be presented afterward.

In [19], expressions with a convergent Taylor series can
be found to be written as f(qd) − f(q) = F (qd, q)e with
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e = qd−q being the tracking error. By utilizing this method,
it is possible to write

ë =M−1(q)(u−N(qd, q̇d) +N(q, q̇)− τh + τ̂h)

=M−1(q)(u−N1(x)e−N2(x)ė− τh + τ̂h)

where x = [qTd q̇Td qT q̇T ]T and N(qd, q̇d) − N(q, q̇) =
N1(x)e+N2(x)ė. This allows obtaining a dynamic system
of the tracking error:

˙̄e=E(q)

([
0 I

−N1(x) −N2(x)

]
ē+

[
0
I

]
u+

[
0
I

]
(τh−τ̂h)

)
,

with E(q) = diag{(I,M−1(q))} and ē = [eT ėT ]T . Notice
that previous system is in the form

˙̄e = A(x)e+B(x)(u+ τh − τ̂h), (11)

where

A(x) =

[
0 I

−M−1(q)N1(x) −M−1(q)N2(x)

]
,

B(x) =

[
0

M−1(q)

]
.

To achieve correct tracking of a desired trajectory, it is
necessary to stabilize system (11). This can be done by
rewriting it as a convex model by following steps described
in section II-A, defining non-constant terms z(x) ∈ [z0, z1]
to construct convex functions wi(z), which results in1:

˙̄e =
∑
i∈Bp

wi(z) (Aiē+Bi(u+ τh − τ̂h)) , (12)

where convex functions wi(z) ∈ [0, 1], ∀x ∈ Ω and∑
i∈Bpwi(z) = 1, ∀x ∈ R4n; B = {0, 1}, i =

(i1, i2, . . . , ip), wi(z) = w1
i1
(z)w2

i2
(z) · · ·wp

ip
(z).

Thus, by applying a PDC control law

u =
∑
k∈Bp

wk(z)Fkē,

1Notice that since M(q) is positive-definite, as it is an inertia matrix,
which implies that E(q) > 0; this allows to extract said matrix from (11)
in order for less non-constant terms zi(t) to appear on the convex model
(12), as necessary conditions only require stability for E(q)−1 ˙̄e(t).

with k = (k1, k2, . . . , kp) and Fk gains to be obtained by
computing LMI conditions (6)-(7). Leading to a closed-loop
system:

˙̄e =
∑

i,k∈Bp

wi(z) ((Ai +BiFk)ē+Bi(τh − τ̂h)) . (13)

Note that it is needed that the torque estimation error
converges to zero, that is limt→∞ τh − τ̂h = 0, in order to
ensure the stability of (12). However, since it is practically
challenging to have an accurate torque measurement, in the
following section a nonlinear observer is proposed inorder
to estimate the human torque.

B. Human Torque Observer

In order to estimate the human torque, consider that
τh = lhfh, where fh ∈ Rn are linear forces applied by
the muscles and lh ∈ Rn×n correspond to their moment
arms for each joint, which are considered constant due to
the small distance between the muscle and the joint of
interest. Thus, its derivative τ̇h = lhḟh and double derivative
τ̈h = lhf̈h are taken into consideration to propose the
assumption ...

τ h = 0. This statement would imply that τ̈h is
constant, while still considering the rate of change of torque
τh to be variable. With this assumption and by obtaining the
acceleration dynamics of the joints from (9):

q̈ = M−1(q)(τr + τh −N(q, q̇)), (14)

which can be written, along with the assumption ...
τ h = 0,

as

d

dt


q
q̇
τh
τ̇h
τ̈h

=


0 I 0 0 0
−M−1(q)Nq(q, q̇) −M−1(q)Nq̇(q, q̇) I 0 0

0 0 0 I 0
0 0 0 0 I
0 0 0 0 0




q
q̇
τh
τ̇h
τ̈h



+


0

M−1(q)
0
0
0

 τr, (15)

y =
[
I 0 0 0 0
0 I 0 0 0

]
q
q̇
τh
τ̇h
τ̈h

 , (16)



where N(q, q̇) = Nq(q, q̇)q + Nq̇(q, q̇)q̇. Since the model
(15)-(16) is in the form

ẋ =Ao(y)xo +Bo(y)u

y =Coxo

with xo = [qT q̇T τTh τ̇Th τ̈Th ]T ; similarly to the tracking
error (12), it can be rewritten by defining p non-constant
terms, that depend uniquely on the output, zi(y) in Ao(y)
and Bo(y), as in (3), to construct convex functions wi(z), as
in (2), and get a convex model of the form:

ẋo =
∑
i∈Bp

wi(z) (Aoixo +Boiu) ,

y =Coxo,

where wi(z) ∈ [0, 1], ∀y ∈ Ω and
∑

i∈Bpwi(z) = 1,
∀xo ∈ R5n; B = {0, 1}, i = (i1, i2, . . . , ip), wi(z) =
w1

i1
(z)w2

i2
(z) · · ·wp

ip
(z), Aoi = Ao(y)|wi(z)=1, Boi =

Bo(y)|wi(z)=1 and Coi = Co. Premise variables zi(y)
depend on measurable states, both position of the joint q
and its velocity q̇. A nonlinear observer in a convex form
can be applied:

˙̂xo =
∑
i∈Bp

wi(z) (Aoix̂o +Boiu+ Li(y − ŷ)) , (17)

ŷ =Cox̂o, (18)

where x̂o and ŷ represent estimations of states and output,
respectively, while Li are gains to be obtained via LMI
conditions:

PAoi −NiCo +AT
oiP − CT

o N
T
i < 0, (19)

with Li = P−1Ni, guaranteeing that the observation error
eo = xo − x̂o goes asymptotically to eo = 0 [13]. These
conditions come from dynamics of observation error eo,
which can be written as

ėo =
∑
i∈Bp

wi(z) (Aoixo +Boi −Aoix̂o −Boi − Li(y − ŷ))

(20)

=
∑
i∈Bp

wi(z) (Aoi − LiCo) eo, (21)

which is the source of LMI conditions (19) and will be used
to determine stability of the controller-observer system in the
next section.

C. Controller-observer stability
Since the goal is stabilizing the whole system, which is:

˙̄e =
∑

i,k∈Bp

wi(z) ((Ai +BiFk)ē+Bi(τh − τ̂h))

ėo =
∑
i∈Bp

wi(z) (Aoi − LiCo) eo,

provided that the third derivative of the human torque is equal
to zero ( ...

τ h = 0) , the extended system can be written in
the following form:[

˙̄e
ėo

]
=

∑
i,k∈Bp

wi(z)

[
Ai +BiFk BiQ

0 Aoi − LiCo

] [
ē
eo

]
(22)

θ

Fig. 2. OpenSim arm26 model

where Q = diag{02n, In, 02n} is a matrix used to extract
the observation error of human torque τh − τ̂h. Note that
assumption on the human torque, ...

τ h = 0, is not restrictive
and can be easily satisfied, as what has been discussed in
section III-B. Since the extended system (22) is in a trian-
gular form, the separation principle holds, [20]2. A control
diagram of the system with the controller and observer can
be seen in Fig. 1.

IV. SIMULATION

Tests were carried out using the model “arm26” [21] pro-
vided by OpenSim®, to which was added a torque actuator
on the elbow, representing the assistance of an exoskeleton or
an orthosis. The controller and observer were implemented is
the MATLAB®/Simulink® environment, and a co-simulation
framework has been established in order to communicate
with OpenSim and to recover the dynamics as well as the
real human torque. The parameters of the “arm26” model
are presented in [21]. In this section, we will consider the
rehabilitation of an elbow, so there is an assumption that the
upper arm will not be moving for experimentation, which
leads to a situation as shown in Fig. 2. By Euler-Lagrange
formulation, it is possible to write

τr = ml2θ̈ +mgl sin(θ)− τh, (23)

where τr ∈ R refers to torque applied by the robot, τh ∈ R to
the one applied by the human, θ ∈ R represents the elevation
angle of the elbow, m, l, g ∈ R correspond to the mass of the
arm, its length and force of gravity, respectively. Note that
system (23) is in the same form as (9). In order to implement
a computed-torque controller, the physical parameters m, l
need to be known or identified using movement data. By
applying a computed-torque law of the form (10):

τr = ml2θ̈d − u+mgl sin(θd)− τ̂h, (24)

which depends on desired trajectory θd ∈ R and the human
torque estimation τ̂h ∈ R. By equating (23) and (24):

ml2θ̈ +mgl sin(θ)− τh = ml2θ̈d +mgl sin(θd)− τ̂h

ml2(θ̈d − θ̈) = −mgl sin(θd) +mgl sin(θ) + τ̂h − τh

ë =
1

ml2
(−mgl sin(θd) +mgl sin(θ) + τ̂h − τh),

2Note that for the proposed controller, estimation error of human torque
appears similarly to an external disturbance. It is only necessary to ensure
stability of the observer and design the controller by considering τh− τ̂h =
0, but it is also possible to reduce its effect on the controller by disturbance
attenuation techniques, such as H∞.
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where e = θd − θ. Then, it is possible to write:[
ė
ë

]
=

[
0 I

− g
l
sin (e−θd)

e−θd
0

][
e
ė

]
+

[
0
1

ml2

]
(τr + τh−τ̂h),

where non-constant term z1(θ, θd) = sin (e−θd)
e−θd

∈
[−0.217, 1] is selected to construct the convex function:

w1
0(θ, θd)=

z11 − z1(θ, θd)

z11 − z01
, w1

1(θ, θd)=1− w1
0(θ, θd),

which allows writing[
ė
ë

]
=
∑
i∈B

wi(θ, θd)
([

0 1
− g

l
zi1(θ, θd) 0

][
e
ė

]
+
[

0
1

ml2

]
(τr+τh−τ̂h)

)
,

which can be submitted to a PDC control law (5), leading
to a closed-loop system of the form:[

ė
ë

]
=
∑
i∈B

wi(θ, θd)

(([
0 1

− g
l z

i
1(θ, θd) 0

]
+

[
0
1

ml2

]
Fi

)[
e
ė

]
+

[
0
1

ml2

]
(τh−τ̂h)

)
,

which gains Fi are computed by means of LMI conditions
(6)-(7) via the LMI Toolbox in MATLAB®. A solution is
obtained with the following gains:

F0 = [−358.19 − 13.40],

F1 = [−399.66 − 13.87].

The next step is to design a human torque observer. For
this, consider the following system

θ̈ =
1

ml2
(τr + τh −mgl sin(θ)),

and by assuming ...
τ h = 0, it is possible to write:

d

dt


θ

θ̇
τh
τ̇h
τ̈h

=


0 1 0 0 0

− g
l
sin(θ)

θ
0 1

ml2
0 0

0 0 0 1 0
0 0 0 0 1
0 0 0 0 0




θ

θ̇
τh
τ̇h
τ̈h

+


0
1

ml2

0
0
0

 τr,

y =
[
1 0 0 0 0
0 1 0 0 0

]
θ

θ̇
τh
τ̇h
τ̈h

 .
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Fig. 4. Human movement simulation (without robot assistance)

By repeating the convex modeling procedure, non-constant
term z1(θ) = sin(θ)

θ ∈ [−0.217 1] is selected to construct
a required convex function for a nonlinear observer of the
form (17)-(18).

d

dt


θ̂
˙̂
θ
τ̂h
˙̂τh
¨̂τh

=∑
i∈B

wi(θ)




0 1 0 0 0
− g

l
zi1(θ) 0 g

l
0 0

0 0 0 1 0
0 0 0 0 1
0 0 0 0 0




θ̂
˙̂
θ
τ̂h
˙̂τh
¨̂τh

+


0
1

ml2

0
0
0

τr
+Li(y − ŷ))

ŷ =
[
1 0 0 0 0
0 1 0 0 0

]
θ̂
˙̂
θ
τ̂h
˙̂τh
¨̂τh

 ,

which gains Li are computed by means of LMI conditions
(19) with a decay rate α = 15, resulting in:

L0 =


15.50 14.52
−23.89 175.71
−165.98 942.79
−4540.56 25778.87
−41922.10 237940.50

 L1 =


15.49 −64.53
117.67 175.71
804.13 942.79

21997.70 25778.87
203100.27 237940.50


The simulations were carried out using the following

parameters: m = 1.53 kg, g = 9.81 N/m and l = 0.21 m.
The movement done only by the human is in Fig. 4 with
the muscle excitation in Fig. 3, showing that the human
is not capable of following the desired trajectory θd =
1.57 sin(t+1.5π)+1.5 (in radians). Fig. 5 shows that when
robot assistance is added, the elbow angle follows the desired
trajectory. Furthermore, Fig. 6 shows that the relative error
for the torque estimation with respect to the real torque,
eor = τh−τ̂h

τh
× 100%, is less than 4% after the settling time,

which is acceptable for this application.

V. CONCLUSIONS

In this paper, a nonlinear observer for human torque
estimation was proposed, providing an alternative to the use
of torque measurement or estimation using expensive or cum-
bersome sensors. The proposed variation of the computed
torque control presents an improvement with respect to the
classical one in terms of robustness considerations. A future
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Fig. 6. Relative error of human torque observer

improvement could be making use of an LMI-based convex
control approach in order to deal with uncertainties, distur-
bance rejection or to consider performance specifications.
Future work may also consider Assist-as-Needed approaches,
allowing to modify the rehabilitation trajectories based on the
patient capacities. Furthermore, a possible improvement for
the observer would be to consider only a knowledge of the
position, instead of both the position and the velocity.
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