
HAL Id: hal-04517210
https://hal.science/hal-04517210

Submitted on 22 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Through-The-Wall Radar Imaging With Wall Clutter
Removal Via Riemannian Optimization On The

Fixed-Rank Manifold
Hugo Brehier, Arnaud Breloy, Chengfang Ren, Guillaume Ginolhac

To cite this version:
Hugo Brehier, Arnaud Breloy, Chengfang Ren, Guillaume Ginolhac. Through-The-Wall Radar Imag-
ing With Wall Clutter Removal Via Riemannian Optimization On The Fixed-Rank Manifold. ICASSP
2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Apr 2024,
Seoul, South Korea. pp.8596-8600, �10.1109/ICASSP48485.2024.10445908�. �hal-04517210�

https://hal.science/hal-04517210
https://hal.archives-ouvertes.fr


THROUGH-THE-WALL RADAR IMAGING WITH WALL CLUTTER REMOVAL VIA
RIEMANNIAN OPTIMIZATION ON THE FIXED-RANK MANIFOLD

Hugo Brehier1 , Arnaud Breloy2, Chengfang Ren1, Guillaume Ginolhac3
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ABSTRACT

We introduce a new method for Through-the-Wall Radar
Imaging (TWRI) that detects the location of stationary targets
hidden by a wall. A crucial step is the mitigation of wall
returns which obscure the scene and which are character-
ized by their low-rankedness given the radar measurement
setup. Whereas existing methods make use of nuclear norm
minimization or Truncated Singular Value Decomposition
(TSVD), we propose to leverage Riemannian optimization
over the manifold of fixed-rank matrices in order to use ro-
bust estimation while keeping the original rank constraint
without relaxation. A detection step via sparse recovery is
then performed and the overall method is compared with ex-
isting methods over simulated scenes. The results show that
the proposed method achieves a better performance.

Index Terms— Through-the-Wall Radar Imaging, Low
rank approximation, Riemannian optimization, Robust esti-
mation

1. INTRODUCTION

Through-the-Wall Radar Imaging (TWRI) [1] is a field of
study whose main objective is to image a enclosed scene
from its outside by using electromagnetic (EM) radiations
in the radio-frequencies. The latter have the ability to par-
tially penetrate common building materials while obtaining
some reflections from the scene behind. There are difficulties
arising from the interaction with the wall which imply some
treatments in order to extract information about the scene
enclosed.

Indeed, wall returns are overwhelming and have to be mit-
igated so as to image the scene behind. Moreover, the wall
structure (e.g. rails on drywall) may create heterogeneous
noise returns [2]. In this paper, we study the detection of sta-
tionary targets in a way that is robust to heterogeneous wall
clutter. This topic of robustness has been studied for Ground
Penetrating Radar [3,4] and TWRI [5] which added onto non-
robust methods [6, 7]. In a setting of measures obtained par-
allel to the wall, front wall interferences form a low rank ma-
trix. To migitate them, we propose to work on the Riemannian

manifold of fixed-rank matrices. Our study on simulated data
show the detection performance is enhanced by this method.

In the rest of this paper, Section 2 presents the signal
model and existing work. Section 3 introduces the method
proposed in this paper while Section 4 contains results and
comparisons of this method with existing works.

2. SIGNAL MODEL AND EXISTING WORK

2.1. Signal model

We first describe a generic model for 2D TWRI [7,8]. A radar
makes several measures sequentially over an axis parallel to
the wall to penetrate with targets supposed to be few and small
w.r.t. the scene dimensions as well as stationary. The returned
signal for the mth frequency and nth position is written:

y(m,n) =

K∑
k=1

σ(k)
w exp (−jωmτ (k)w )

+

R∑
i=1

P∑
p=1

σ(i)
p exp(−jωmτ (i)p,n)

(1)

with P the number of targets, K the number of reverberations
in the wall and R the number of multipaths (e.g. via reflec-
tion on a side wall, see [9]). Additionally, σ(k)

w and τ
(k)
w are

the complex overall attenuation coefficient and round-trip de-
lay for the wall returns associated with the kth reverberation
while σ

(i)
p and τ

(i)
p,n are those associated with the pth target,

ith multipath and nth radar position.
We discretize those returns over a grid of dimension

(Nx, Nz) covering the scene via a dictionary Ψ. For the
ith multipath scheme and the nth transceiver position, its
(nx, nz)

th column describes the return from a point target at
the (nx, nz)

th pixel which can be solved approximately via
geometrical optic considerations [6]. The overall model is
then written compactly as [5, Eq. 5]:

Y = L+Ψ (IN ⊗ r) (2)

where Y ∈ CM×N is the data matrix, L ∈ CM×N is the
matrix of front wall returns which is low-rank, as wall returns



are invariant along the displacement axis, and r ∈ CNxNzR

the vector containing the scene returns amplitude (associated
to the dictionary Ψ) which is sparse as few targets are present.

2.2. Previous work

A previously proposed method for robust and one-step wall
mitigation and target detection for TWRI in [5] is through a
robust data fitting in a decoupled convex relaxation:

min
L,R,M,S

∥M∥∗ + λ∥S∥2,1

+
µ

2

∑
i,j

Hc([Y − L−Ψ(IN ⊗ vec(R))]ij)

s.t. M = L, S = R

(3)

where ∥·∥∗ is the nuclear norm (the sum of singular values),
known to be the convex envelope of the rank [10]. Further-
more, ∥·∥2,1 is the ℓ2,1 mixed-norm (the sum of Euclidean
norm of the rows) as the ℓ1-norm is the convex envelope of
the ℓ0 ’norm’. It induces row-wise sparsity, which is across
multipaths in our case, as they represent the same underlying
physical scene and should activate together [7]. Moreover,
Hc is the so-called Huber function [11] with threshold c:

Hc(x) =

{
1
2 |x|

2 if |x| ≤ c

c(|x| − 1
2c) if |x| > c

(4)

We can use the Alternating Directions Method of Multipli-
ers (ADMM) framework [12] to solve it (see [5] for the de-
tails). This has the advantage of having closed-form updates
for L,M,S via proximal operators [13]. For R, we can tailor
a Majorization-Minimization [14] scheme which removes the
need for a gradient descent and a step-size to tune.

However, this may slightly degrade performance due to
the convex relaxation and the decoupling of variables. We can
bypass the need for those elements by considering directly the
non-convex optimisation of the rank constraint.

3. NEW ROBUST TWRI METHOD VIA
RIEMANNIAN OPTIMIZATION

The overall, not convexly relaxed, optimization problem is:

min
L,R

∑
ij

Hc([Y − L−Ψ(I⊗ vec(R))]ij)

s.t. rk(L) = k , ∥R∥2,0 ≤ l

(5)

which can be tackled via a Block Coordinate Descent (BCD)
over L and R. We first study the optimization over L in a
non-convex manner.

3.1. Wall mitigation : riemannian estimation of L

3.1.1. Problem statement

The problem we are interested in, over L, is then:

min
L∈CM×N

k

f(L) =
∑
i,j

Hc([Y−Ψ(IN ⊗vec(R))−L]ij) (6)

where CM×N
k = {X ∈ CM×N : rk (X) = k}. Notice that

we went from a non-fixed low rank optimization to a fixed-
rank constraint. A way to directly tackle the fixed-rank con-
straint is via Riemannian optimization [15]. Such geometrical
consideration allows for elegant algorithmic solutions, as the
space CM×N

k forms a Riemannian manifold. Moreover, we
have a good a priori of the true rank of the low-rank matrix
L from the knowledge of the physical setup. This will not
require a convex relaxation of the rank nor a decoupling vari-
able.

3.1.2. Algorithmic resolution

Via the truncated SVD of rank k ≤ n, we can parameterize a
fixed-rank matrix as:

L
TSVD
= U(ΣW)H = UVH (7)

The most commonly used and practical algorithm for Rie-
mannian optimization is Riemannian Gradient Descent (RGD)
whose jth iteration is:

(U,V)j+1 = R(U,V)j (−αjP
h
(U,V)j (P

t
(U,V)j (∇f((U,V)j))))

(8)
with ∇f denoting the Euclidean gradient of f and αk a step
size found by line-search. P t

(U,V)j
(·) is the projection from

ambient space to tangent space while Ph
(U,V)(·) is the pro-

jection from the tangent space to the horizontal space and
R(U,V)(·) denotes the retraction of a horizontal vector to the
manifold (notions we expand on in the next section) at the
point (U,V).

Note that the method has local convergence [15] and that
we used a refined initialization to the rank-k truncated SVD
of the data matrix. We thus need to compute the Euclidean
gradient of f from which will follow the Riemannian gradi-
ent.

Proposition 1. The Euclidean gradient is found via Wirtinger
calculus [16] as ∇f = ( ∂f

∂U∗ ,
∂f
∂V∗ ) with:

∂f

∂U∗ =
∑
ij

H ′
c([UVH − Ỹ]ij)([J

mnVT ]ij)mn (9)

∂f

∂V∗ =
∑
ij

H ′
c([UVH − Ỹ]∗ij)([J

mnUT ]ji)mn (10)

where Ỹ = Y−Ψ(I⊗ r) and Jmn is the single-entry matrix
which has 1 at the (m,n)th entry and 0 elsewhere. More-
over [A]ij extracts the (i, j)th entry of A whereas (A)mn

constructs a matrix entry by entry.



Proof. Let the problem be:

min
U,V

f(U,V) =
∑
ij

Hc([UVH − Ỹ]ij) (11)

Denote z = [UVH − Ỹ]ij . Then via Wirtinger calculus
and its chain rule, we find the steepest ascent direction:

∂f

∂U∗ =
∑
ij

(
∂Hc(z, z

∗)

∂z

∂z

∂U∗ +
∂Hc(z, z

∗)

∂z∗
∂z∗

∂U∗

)
(12)

∂Hc(z,z
∗)

∂z∗ is equivalent to H ′
c(z), the derivative of the real

Huber function, while ∂Hc(z,z
∗)

∂z is equivalent to H ′
c(z

∗).

Note that ∂z
∂U∗ =

∂[UVH−Ỹ]ij
∂U∗ = 0. Moreover ∂z∗

∂[U∗]mn
=

∂[U∗VT−Ỹ]ij
∂[U∗]mn

= [JmnVT ]ij We can then construct the whole

matrix ∂z∗

∂U∗ elementwise. Thus:

∂f

∂U∗ =
∑
ij

H ′
c([UVH − Ỹ]ij)([J

mnVT ]ij)mn (13)

And similarly:

∂f

∂V∗ =
∑
ij

H ′
c([UVH − Ỹ]∗ij)([J

mnUT ]ji)mn (14)

3.1.3. Manifold parametrization

Note that (7) leads to the subspace projection parameteriza-
tion of the fixed-rank matrix manifold, described in [17, 18]
whereas another possibility is the embedded one [15, 19].

M

TθM Vθ

Hθ

•
θ

π−1(π(θ))

P H
θ (ξ)

ξ

π

M•
θ = π(θ)

• • •

Fig. 1. A generic quotient manifold M embedded in its to-
tal space M̄ and the decomposition of the tangent space at a
point θ̄ in the direction ξ̄

.

We briefly review it. Since (7) is invariant under an or-
thogonal factor, it gives rise to the quotient space (cf. Figure
1):

St(m, k)× Cn×k
∗ /O(k) (15)

with the Stiefel manifold St(m, k) = {X ∈ Cm×k : XHX =
Ik}, the manifold of full rank matrices Cn×k

∗ = {C ∈ Cn×k :
rk(C) = k} and the orthogonal group O(k) = {X ∈ Ck×k :
XHX = Ik}. Its tangent space can be decomposed into:

T(U,V)(St(m, k)× Cn×k
∗ ) = TU St(m, k)× Cn×k (16)

with the tangent space of the Stiefel manifold TU St(m, k) =
{UΩ + U⊥W : Ω ∈ A(k),W ∈ C(m−k)×k} and the tan-
gent space of the manifold of full rank matrices TU Cn×k

∗ =
Cn×k where A(k) = {X ∈ Ck×k : XH = −X} is the set of
skew-symmetric matrices of size k × k which is the orthogo-
nal complement of O(k).

Projection onto the tangent space is then:

P t
(U,V)(U̇, V̇) = (U̇−U sym(UHU̇), V̇) (17)

where sym(A) = 1
2 (A

H +A).
A fiber of this quotient manifold is {(UO,VO) : O ∈

O(k)} and the vertical space V(U,V) is the space tangent
to the fiber: V(U,V) = {(UΩ,VΩ) : Ω ∈ A(k)}. This
parametrization may be endowed with the metric:

ḡ(U,V)((U̇, V̇), (Ũ, Ṽ)) = tr(U̇HŨ)+tr((VHV)−1V̇HṼ)
(18)

where the first term is the standard euclidean metric and the
second term the natural metric on full rank matrices which
renders it invariant to a change of basis. The horizontal space
H(U,V) which we want to work in, is then the orthogonal
complement to V(U,V) w.r.t. the metric, which gives:

H(U,V) = {(U̇, V̇) ∈ Cm×k × Cn×k :

UHU̇ ∈ A(k),UHU̇+VHV̇ ∈ O(k)}
(19)

Note that we can write the projection onto the horizontal
space and along the vertical space, for some Ω ∈ A(k) as :

Ph
(U,V)(U̇, V̇) = (U̇−UΩ, V̇ −VΩ) (20)

Using the property that Ph
(U,V)(U̇, V̇) ∈ H(U,V) it follows

after some rearrangement that we may obtain Ω by solving a
nested symmetric Lyapunov equation:

(VHV)Ω̃+ Ω̃(VHV) = 2 skew((VHV)(U̇HU)(VHV))

− 2 skew((V̇HV)(VHV))

(21a)

Ω̃ = (VHV)Ω+Ω(VHV) (21b)

where skew(A) = 1
2 (A

H − A). Finally, we introduce a re-
traction of horizontal vectors onto the manifold. In our case, it
can be decomposed in terms of the retractions of the compo-
nents St(m, k) and Cn×k

∗ which can be found in [20, section
4.1.2]. For (Ū, V̄) ∈ H(U,V), it is:

R(U,V)(Ū, V̄) = (uf(U+ Ū),V + V̄) (22)

where uf extracts the unitary factor (of the polar decomposi-
tion) of a full column rank matrix.



3.2. Target detection : Sparse r-step via PGD

The target detection is achieved in a standard row-wise sparse
reconstruction step. No sparse Riemannian manifold exist,
we therefore cannot use such methods for this step. We
may use a row-wise hard-thresholding [21, Definition 2] but
it showed to underperform while other non-convex meth-
ods [22] use a least squares data fitting. We thus resort to the
classical convex relaxation over the ℓ2,1-norm, as described
in Section 2.2. It is then possible to use proximal gradient
descent (PGD) for the minimization over this variable. We
will denote this method as HBCD for Huber-BCD.

The minimization problem over R in regularized form is:

min
R

∑
pi∈P

Hc(∥[Y − L−Ψ(IN ⊗ vec(R))]pi
∥F )+λ∥R∥2,1

(23)
We consider the vectorized variable r = vec(R) in order to
compute the gradient which we then unvectorize in order to
apply the proximal step. At iteration t+ 1, we have :

Rt+1 = Tλs

(
vec−1 (rt − sgt)

)
(24)

where T is the proximal of the ℓ2,1-norm, s is a step-size that
can be found by line-search (which does not vary over itera-
tions in practice so that it can be fixed) and g is the needed
gradient of the robust fitting term.

Proposition 2. The steepest ascent direction g is:

g = −
∑
pi∈P

H ′
c(∥[E]pi

∥F )
∥[E]pi

∥F

 ∑
(j,k)∈pi

[E]j,k(Ψk)
H
j,:

 (25)

where E = Y−L−Ψ(IN ⊗ r) and (Ψk)j,: denotes the jth

line of Ψk.

Proof. The derivation can be found in [5].

4. SIMULATIONS

We test the method on Finite-Difference Time-Domain [23]
(FDTD) simulated data obtained via GprMax [24] while the
Riemannian optimization is carried out with Pymanopt [25]
which we completed by transposing the real manifolds to the
complex case.

We compare SRCS [6] as well as KRPCA [7] and HKR-
PCA (as seen in Section 2.2) to the method of this paper,
HBCD, with rank fixed to either 1 or 2 (as denoted by the
suffixes rk1 or rk2). We generate heterogeneous noise follow-
ing a student-t distribution with 2.1 degrees of freedom (d.f.)
which is a renowned distribution having heavier tails [2] than
the normal distribution (for finite d.f.). We consider a point-
wise structure of the noise, whereas column-wise (by radar
position) may be alternatively considered.

Sample detection maps are displayed in Figure 2 which
show promising results: it appears that the method HBCD
proposed in this paper better handles the heterogeneous noise
(which follows here a student-t distribution with 2.1 degrees
of freedom (d.f.) which is a renowned distribution having
heavier tails than the normal distribution for finite d.f.). We

Fig. 2. Detection maps with student-t noise with 2.1 d.f. and
SNR of 10 dB (top-left: SRCS, top-right: KRPCA, bottom-
left: HKRPCA, bottom-right: HBCD)

perform a quantitative study by constructing the Receiver Op-
erator Characteristic (ROC) of the different methods. Each
point on the curve is the results of a Monte-Carlo average over
60 draws of noise. At a specific Signal to Noise Ratio (SNR)
we observe the better performance of the method proposed
here.

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

T
P
R

ROC curve

SRCS

KRPCA

HKRPCA

HBCD_pt-rk1

HBCD_pt-rk2

Fig. 3. ROC with student-t noise with 2.1 d.f. and 60 Monte-
Carlo samples and SNR = 10 dB

5. CONCLUSION

We developed a new robust method for TWRI which lever-
ages the performance of Riemannian optimization over fixed-
rank matrices. Detection results achieved in a standard de-
tection step show its advantage in a context of heterogeneous
noise.
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