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Abstract

Reconstructions of Lagrangian drift, for example for objects lost at
sea, are often uncertain due to unresolved physical phenomena within
the data. Uncertainty is usually overcome by introducing stochas-
ticity into the drift, but this approach requires specific assumptions
for modelling uncertainty. We remove this constraint by presenting a
purely data-driven framework for modelling probabilistic drift in flexi-
ble environments. We train a CNN to predict the temporal evolution
of probability density maps of particle locations from t to t + 1
given an input velocity field. We generate groundtruth density maps
on the basis of ocean circulation model simulations by simulating
uncertainty in the initial position of particle trajectories. Several loss
functions for regressing the predicted density maps are tested. Through
evaluating our model on unseen velocities from a different year, we
find its outputs to be in good agreement with numerical simulations,
suggesting satisfactory generalisation to different dynamical situations.

Keywords: Uncertainty representations, Pixel-wise regression, Flow
modelling, Physical science
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1 Introduction

We present a data-driven framework for learning Lagrangian drift over a given
timestep (e.g. one day in our experiments) in the presence of uncertainty.
Uncertainty arises when dynamical systems cannot be perfectly described due
to imperfect modelling of either the dynamics or the system state. Modelling
capabilities are constrained by availability of compute, knowledge of the under-
lying physical phenomena (particularly at small scales), and sensor resolution.
Meanwhile, chaotic systems result in minor state variations to have signifi-
cant and unpredictable influences in the observed behaviour. Thus, modelling
drift with uncertainty is critical for many applications whose dynamics are
chaotic or whose inputs (e.g. velocity field) do not sufficiently resolve the nec-
essary dynamics. This includes applications such as ocean and atmospheric
dynamics [1].

Uncertainty is usually modelled through stochastic differential equations
(SDEs) to account for uncaptured physical phenomena at small scales [2]. If
the phenomena can be captured such that the main source of uncertainty
comes from the effects of chaos, accounting for uncertainty may be simplified
through deterministic sampling of particle drifts with random variations in
the initial conditions e.g. [3]. However, in practice, forecasting applications are
constrained by low resolution models that fail to capture the necessary physical
phenomena and as such must be accounted for e.g. through SDEs.

We follow a different approach to account for uncertainty in the drift which
does not rely on resolving physics equations. We use a deep neural network
(DNN) for modelling the drift (Section 4.2), and we propose a probabilistic
representation of particle location for representing uncertainty (Section 4.1).
Through using this representation, our DNN inherently includes the concept
of uncertainty in its internal modelling. While we demonstrate our approach
using simulated drifts where uncertainty is produced by sampling with respect
to the initial position of particles as in [3], our framework is more general
and may be trained with non-simulated drifts or different ways to produce
uncertainty in the future.

Our simulations are performed on realistic, high-resolution oceanic sur-
face currents representative of real-world past ocean states in the north-west
Mediterranean sea. Thus, we demonstrate our framework by learning a drift
model of floating objects at sea. As our framework is completely data-driven,
it supports a great deal of flexibility in what it can take in as input. Any infor-
mation representative of surface currents such as velocity fields or sea surface
height (SSH) measures may be used. Even if this information does not cap-
ture some of the physical phenomena, a data-driven model may be able to
infer the missing phenomena provided they are captured within the training
examples. We believe these to be considerable advantages compared to tradi-
tional physics equations–based modelling approaches that lack the flexibility
to extract information from different physical quantities and resolutions.

Our contributions may be summarised as: 1) We propose a new approach
to modelling Lagrangian drift with uncertainty based on deep learning. Our
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framework is applicable to observations representative of any source (simulated
or not) or measure of uncertainty. 2) This approach is supported by a new
statistical representation of particle location for modelling uncertain drift. To
the best of our knowledge, no previous framework used a probabilistic location
in the modelling of Lagrangian drift. 3) We demonstrate our method on a
new dataset of simulated drifts of floating objects at sea characterised by
uncertainty in the objects’ initial positions, which will be released together
with this paper.

The rest of this article is organised as follows. Section 2 reviews previous
works on uncertain drift and trajectory modelling. Section 3 introduces our
dataset and Section 4 presents our method. Experimental results are discussed
in Section 5. Section 6 concludes the paper.

2 Previous works

Uncertainty in Lagrangian drift is usually modelled using stochastic trajec-
tories through SDEs. Stochasticity may be used to parameterise unresolved
physics at subgrid scales, either by formulating the SDE as a Fokker-Planck
equation [4] or by fitting an SDE to simulated stochastic trajectories [5]. For
the application of sea surface currents, examples of unresolved physics are the
motions of eddies, waves, or small-scale turbulence. For a review on how to
use SDEs to account for oceanic phenomena, see [2]. Stochastic trajectories
may be simulated by the means of randomly varying a particle’s displacement,
velocity, or its acceleration. Contrary to a pure data-driven approach, SDEs
may not be able to describe arbitrary sources of uncertainty. Furthermore,
they are limited in their reliance on specific physical quantities such as velocity
information.

Previous works utilising machine learning to predict Lagrangian drift aim
to model drift deterministically rather than probabilistically. [6, 7] train their
prediction models on individual instances of artificial simulated flows, and as
such they do not consider generalisation to different flows (e.g. real spatio-
temporal conditions). Instead of using simulations, [8, 9] learn from past
observations of drifters at sea. [8] used a neural network to predict drifter
displacement from wind and flow velocity, while [9] solve physics equations
with a neural network implementing an additional term to learn the unknown
physical phenomena. In doing so, [9] demonstrated an ability to model drift
behaviour that was not described by a baseline physics model. However, such
modelling capabilities diminished as the spatio-temporal conditions deviated
from the training set, indicating a lack of generalisation to different flows.
Due to the limited availability of past observations combined with the passive
nature of their drift in real-world environments, the resulting coverage of con-
ditions is typically insufficient to meaningfully represent the true distribution.
[10] considers the case of learning to model drift of a scalar field as opposed to
individual particles. However, their methodology is tightly integrated with the
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Fig. 1 Overview of data. Left) Example velocity field (downgraded resolution for visu-
alisation). Right) Overlay of 3 probability density snapshots (shown as filled probability
contours). Example trajectories used to estimate the probability density snapshots are shown
in black.

equation for advecting concentration fields, which is fundamentally different
to advecting particles with uncertainty.

3 Data

We introduce a new dataset comprised of 1) velocity fields of sea surface cur-
rents (Figure 1 left and Section 3.1) and 2) 2D probabilistic snapshots of
drifting particle positions (Figure 1 right and Section 3.2). Our snapshots are
produced from Lagrangian drift simulations on our velocity fields, which in
turn are produced from realistic high resolution numerical models validated
by real observations.

In this study, we model drift over a one-day timestep, so we prepare our
velocity fields and snapshots to have a timestep of one day. This timestep
is motivated by the spatial resolution of our velocity fields and the dynam-
ics of the region considered in our study. We observe a notable but small
enough amount of drift between timesteps, which is important for providing a
meaningful learning criteria.

3.1 Velocity fields of surface currents

We use surface currents from the GLAZUR64 [11] ocean general circulation
model (OGCM) which is based on the NEMO [12] OGCM. The model has been
validated with real observational data (current meters and sea surface temper-
ature/height) [11, 13] in order to provide high-resolution realistic snapshots
of past ocean states within the north-west Mediterranean sea (lon 2–8◦ E, lat
41.3–43.9◦ N). In this study, we consider the surface to be two-dimensional
by utilising the uppermost layer only. In the ocean modelling community, it is
standard to approximate the drift of floating objects by ignoring depth infor-
mation [14]. The two-dimensional resolution is 1⁄64◦ which equates to each grid
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cell (pixel)1 being representative of ∼1.3×1.3 km. GLAZUR64 produces an
output every minute, so we average its outputs over a one-day period in order
to fulfil our one-day scenario.

The surface currents are composed of two velocity components each rep-
resented by a matrix over the spatial domain: U (zonal component of the
flow) and V (meridional component). NEMO uses a staggered grid to repre-
sent velocity components such that U and V are offset by half a grid cell to
the right and down, respectively. In preparation for Section 4.2 where we pro-
vide the velocity components as input into a CNN, we align the components
to the pixel centres using linear interpolation. We also replace the NaN values
from land pixels to 0 which provides a natural interpretation of zero flow to
the CNN. An example of the final velocity field is illustrated in Figure 1 left.

In Section 3.2, we simulate particle trajectories using velocity fields for the
years 2018 and 2016. We sample from complete years in order to representa-
tively capture seasonal variances in the currents. In Section 5, we use the data
from 2018 for both training and testing. As a result, velocity fields from the
same season, or even the same day, may be used for both training and test-
ing2. Data from 2016 is reserved exclusively for testing in order to provide a
more thorough evaluation of our model’s generalisation to unseen velocities
and drifts. The dynamics of sea surface currents are not correlated across years,
so we expect the evaluation for 2016 to be representative of the performance
for other years.

3.2 Particle trajectories

Using the daily velocity fields of surface currents from GLAZUR64
(Section 3.1), we simulate 30-day trajectories of floating particles and divide
them up into daily snapshots. We work with probabilistic trajectories, meaning
that for each snapshot, the particle’s position is not represented by a deter-
ministic 2D point, but rather by a 2D probability distribution (see Figure 1
right). We define the representation for this distribution in Section 4.1.

Despite the methodological premise of our work being to predict
Lagrangian drift across a single timestep, we generate long trajectories, from
which we extract snapshots, with the purpose of introducing variance into the
level of uncertainty of the snapshots. As a particle traverses over time, the
uncertainty in its position will grow as the potential for it to take different
paths increases (see Figure 1 right).

3.2.1 Particle advection

We use the OceanParcels [15] library to advect massless, floating particles on
our velocity fields using a 4th order Runge-Kutta integration scheme, where

1Although NEMO uses curvilinear coordinates, the limited region that we consider makes it
reasonable to neglect projection errors and to associate each grid cell to a Cartesian pixel.

2However, different drifter trajectories (thus different input locations) are considered to avoid
the DNN relying on memory for drift prediction (see Section 3.2).
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we update the state of the particles every six hours. The positioning of par-
ticles is continuous, so OceanParcels performs space-time interpolation of the
discretised velocity fields.

We advect particles for up to 30 days and save their positions daily. Par-
ticles may not always complete a full 30-day trajectory due to interactions at
the boundaries. There are two types of boundaries: the ocean-land boundary
and the open boundary (see Figure 1). The open boundary is named as such
due to being caused by the cutoff of our data coverage such that the neigh-
bouring ocean values are unknown. We define two conditions for the premature
termination of particles: 1) an advection step has caused a particle to escape
the ocean-land or open boundary, or 2) a particle has made contact with an
ocean cell (pixel) at the open boundary. The second condition exists to prevent
particles from getting stuck and accumulating at the open boundary.

3.2.2 Probabilistic trajectories

As discussed in Section 2, introducing random behaviour into the modelling
of Lagrangian drift serves the purpose of accounting for uncertainty within
the data or drift process. Thus, we generate trajectories whose drifts are
probabilistically defined by some chosen source of randomness. Our proba-
bilistic trajectories represent a particle’s position as a probability distribution
rather than a single point. We approximate this distribution by advecting
NP particles, where we empirically decide NP = 10, 000 as being sufficient
for approximating the distribution. To demonstrate our framework, we ran-
domly perturb the initial position of each particle within a 5 km radius3. This
choice of randomness is motivated by being simplistic and efficient, as it allows
for the advection process to remain completely deterministic. In practice, our
methodology could be applied to any desired source of randomness such as
perturbations in a drifting particle’s velocity or position.

3.2.3 Snapshots of probabilistic trajectories

In preparation for training our CNN to predict Lagrangian drift over a given
timestep (one day in our experiments), we divide the probabilistic trajectories
into snapshots. Each snapshot represents a probability distribution of a parti-
cle’s position in space. As we approximate this distribution by advecting NP

particles, our snapshots are initially represented as a group of particles, before
being converted into probability density maps in Section 4.1. As mentioned
previously, particle advection may be prevented at the boundaries, thus the
sum of a snapshot’s distribution may be less than one due to the number of
particles in a snapshot being less than NP .

3If this results in particles to lie outside of the ocean’s domain then we discard them, and hence
the actual number of particles may be less than NP .
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Fig. 2 Overview of methodology. The input density map DM×N
t is stacked with the cor-

responding velocity field U2×M×N
t to give the input matrix X3×M×N

t , which is fed into a

U-Net architecture to output the successive density map snapshot DM×N
t+1 . We show zoomed

overlays (solid white square) of the foreground region of the density map snapshots (dashed
white square). Note that the coastline is not visible in the density maps due to setting the
land values to have probability density values of 0.

3.2.4 Deployment of probabilistic trajectories

For the year 2018, we deploy NT 30-day probabilistic trajectories whose initial
positions are randomly sampled over the ocean’s spatio-temporal domain. We
choose NT = 10, 000 to encourage a wide spatio-temporal coverage of our
simulated trajectories. To ensure a full 30-day trajectory can be completed,
we set the last sampling date to December 1st. To evaluate our model on a
different year, we deploy 0.15NT trajectories for the year 2016 with the same
sampling characteristics as the year 2018.

4 Methodology

We train a CNN (Section 4.2) to predict the one-day evolution of particle drift
with uncertainty. It takes as input a velocity field (Section 3.1) and a probabil-
ity density map (Section 4.1) of particle location. An overview of this process
is shown in Figure 2. We train the CNN by regressing the pixel-wise probabil-
ity density values between the groundtruth and predicted density maps at t+1
(one day). We propose and compare three different loss functions in Sections
4.2 and 5.1.

4.1 Probability density maps for uncertainty
representation

In Section 3.2, we approximate the distribution of uncertain particle drift by
advecting a large number of particles. Here, we choose to represent the 2D
probability distribution of particle location in the form of probability density
maps. This choice is motivated by the ability to homogenise the representations
between probability distribution and velocity field, which are both given as
input into a CNN in Section 4.2.
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To create our density maps, we produce a first approximation of the prob-
ability distribution by computing a 2D histogram of the locations of the
snapshot’s Np particles (see Section 3.2) with respect to the grid of our veloc-
ity fields. To account for only having a finite number of particles, we produce
a more plausible approximation of the distribution by applying a Gaussian
filter (σ = 1) to the histogram in order to smooth out its unnaturally sharp
spatial gradients. We note that the sum of our density maps may not always
sum to one due to the possibility of particles escaping the region, as explained
in Section 3.2.1.

4.2 Neural network

4.2.1 Architecture

Our CNN takes as input a 3-channel matrix consisting of a 2-channel (U and
V ) velocity field (Section 3.1) stacked with a 1-channel probability density
map (Section 4.1) of particle location. It regresses the probability density map
representation defined in Section 4.1. To demonstrate our methodology, we
use the popular U-Net [16] architecture. U-Net’s encoder-decoder architecture
is well suited for pixel-wise regression due to its deconvolutional layers which
map low-dimensional feature encodings back into the original image space.
Skip connections are also used to preserve higher-dimensional representations
of spatial information at different scales. In practice, other architectures, e.g.
designed for segmentation, can be applied to our pixel-wise regression setup
e.g. [17] and [18].

4.2.2 Loss function

We consider three loss functions to evaluate the quality of the model’s pre-
dicted density map D̂ with respect to the reference density mapDt+1. Lposition

minimises the MSE between the predicted and groundtruth probability den-
sity maps of position (Eq. (1)). Ldrift evaluates MSE on the drift between t
and t + 1 (Eq. (2)). Lthreshold is similar to Lposition but it evaluates MSE on

the foreground pixels (i.e. non-zero) of D̂ and Dt+1 (Eq. (3)). As we know that
particles can only exist within the set of ocean pixels O, we ignore any land
pixels in the output, including when computing the loss.

Lposition =
1

|O|
∑
x∈O

(Dt+1
x − D̂x)

2 (1)

Ldrift =
1

|O|
∑
x∈O

(Rx − R̂x)
2 (2)

Lthreshold =
1

|Oτ |
∑
x∈Oτ

(Dt+1
x − D̂x)

2 (3)

where R = Dt+1−Dt, R̂ = D̂−Dt, andOτ = {x ∈ O | (Dt+1
x > 0)∨(D̂x > 0)}.
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As we aim to learn the change incurred to a density map by a drift, the
drift loss Ldrift provides a learning criteria that matches these aims directly.
This helps to normalise the learning criteria across varying levels of density
gradients, as Lposition may encourage the model to learn the identity function
in response to small gradients. During inference, we add the prediction of the
drift map R̂ to the input Dt to recover the density map D̂.

The sparse nature of our density maps motivates the use of the thresholded
loss Lthreshold for focusing the learning on the scarce foreground information as
opposed to the abundant background. By using a hard threshold of 0 to identify
the foreground, the model is encouraged to implicitly discriminate between
background and foreground by predicting negative values for the background.
During inference, we clip negative values to zero4. Thanks to the smoothing
operation performed on our density maps (see Section 4.1), there is a smooth
transition from foreground to background. Therefore, thresholding does not
introduce any strong gradients in the density maps.

5 Experiments

For each experiment, we train four models with different seeds (0–3) and
present results as ‘mean (std)’. We use the Adam [19] optimiser with betas
(0.9, 0.999), no weight decay, and a learning rate of 0.0001. We decay the
learning rate by a factor of 10 when the validation loss has not improved for
3 epochs. We stop training prior to the second learning rate decay. We use a
batch size of 16. Prior to extracting snapshots from our probabilistic trajecto-
ries, we randomly split the trajectories into training, validation, and test sets
with a ratio of 70/15/15.

5.1 Comparison of loss functions

Results for the three loss functions described in Section 4 are given in Table 1.
When comparing Ldrift with Lposition, we see little difference in the mean per-
formance, although a ∼14% decrease of the mean convergence time is observed
for Ldrift. This quicker training is in line with findings of previous works (e.g.
[20]) that learning residuals improves convergence. Lthreshold performs worse
and stops training much earlier, indicating that the loss function has trouble
converging. In future work, this may be addressed by adjusting the learning
scheme. Due to its good performance and faster convergence, we would rec-
ommend Ldrift as the loss of choice in future works. For simplicity, and since
Lposition obtains similarly good results, we use it for the next experiments in
this paper.

4As negative probability density values are not tangible, we remove them during inference for
all models.
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Identity Lposition Ldrift Lthreshold

2018 5·10−3 2.76 (1.30) 2.52 (1.17) 5.57 (1.06)

2016 5·10−3 4.38 (0.16) 4.47 (0.13) 5.67 (1.10)

# of epochs – 43.3 (20.1) 37.3 (13.3) 11.3 (2.38)

Table 1 MSE evaluation of loss functions (at the magnitude 10−8), and number of training
epochs, as ‘mean (std)’ over 4 runs. For reference, we show MSE of Dt and Dt+1 (Identity).

5.2 Generalisation to different dynamics

We evaluate the ability of our models (trained on 2018 data) to generalise to
different dynamical situations by testing on completely unseen data from a
different year (2016). Because we use a limited number of velocity fields (365)
to generate a large number of snapshots (∼300k), the input velocity fields from
2018 are the same across training, validation, and test datasets. Therefore, the
results presented for 2016 are a better indicator of our model’s performance as
there is no bias of using the same velocity fields between training and testing
sets. Surface currents do not exhibit annual trends, so we expect performances
on 2016 to be representative of performances on other unseen years.

When comparing the results between different years, we observe the per-
formance of Lthreshold to remain consistently lower than the others. Lposition

and Ldrift perform worse on average for the 2016 dataset albeit with a much
tighter spread. However, in Table 1 (Identity), we verify that their predicted
drifts still have a higher added value than merely approximating D̂ as Dt. In
addition, upon inspection (see Figure 3), these poorer results for 2016 come
in part from a larger spread of the probability distributions, indicative of a
higher uncertainty. However, the predicted drifts tend to go in the correct
direction, and are visually close to groundtruth ones (even if there are more
errors than for 2018). This opens promising perspectives for generalisation to
different locations and times.

These results suggest that the velocity fields are well accounted for in
the determination of the drift. This is further verified by a small experiment
in Figure 4 where the velocity field of a random training sample of 2018
was inverted. The drift coherently happened towards the upper left direction,
instead of the original down right. Thus, the input velocity field plays an essen-
tial role in the prediction of the drift. Nevertheless, the higher uncertainty for
testing year 2016 indicates that an internal model of drift for the space-time
location may also play a (conflicting) role in the results. Future work will need
to address the balance between these two influences, in order to improve the
generalisation to other dynamical situations.
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Fig. 3 Sample results for Lposition over different levels of uncertainty and different years.

Left to right: Dt, Dt+1, D̂, groundtruth drift R, and predicted drift R̂. Top 3 rows: samples
from 2016, bottom 3 rows: samples from 2018. Plots are zoomed on foreground regions (one
grid line equals 20 pixels). Drift is from red to blue.

5.3 Application to different representations of surface
currents

To demonstrate our framework’s ability to adapt to different representations
of surface currents, we present results for training with velocity fields of down-
graded resolution (Gaussian filter of σ = 1) and SSH maps (obtained from
GLAZUR64 alongside our velocity fields) using Lposition. Velocity fields used
for forecasting applications at sea have a much lower resolution relative to
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Fig. 4 Result of inverting the velocity field. Left to right: Dt, D̂ with original and inverted
velocities, predicted drift R̂ with original and inverted velocities. Lposition is used. Note that
the prediction reflects the velocity field’s change in direction.

Fig. 5 Sample results for Lposition trained on different representations of surface currents.

Left to right: Dt, R, R̂ (original velocity fields), R̂ (low res. velocity fields), and R̂ (SSH).
Top row: random sample from 2016, bottom row: random sample from 2018.

Low-res velocity SSH

2018 3.45 (1.09) 2.69 (0.79)
2016 4.33 (0.16) 7.27 (0.37)

# of epochs 34.5 (17.2) 46.8 (8.53)

Table 2 MSE evaluation (at the magnitude 10−8) of different representations of surface
currents using Lposition, and number of training epochs, as ‘mean (std)’ over 4 runs.

research models such as the one used in this study (see Section 3.1). Mean-
while, SSH is representative of sea surface currents at large scales but does not
capture small scale phenomena. However, its global availability from satellite
observations makes it a very useful source of information in ocean modelling.

As illustrated in Figure 5, we observe little difference between using our
high resolution velocity field, and the other two representations of surface cur-
rents. In Table 2, when comparing with Table 1, we observe that the MSE
error increases only marginally for 2018 when using either low resolution rep-
resentations. This indicates that the CNN is able to infer the missing physical
phenomena that are not present in the input data, possibly drawing from its
internal model of drift that we discussed at the end of the previous section.
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For 2016, the low resolution velocity fields also obtain consistent results,
while the CNN seems to struggle more with SSH, with MSE error rising from
4.38(0.16) to 7.27(0.37). This may be interpreted as the inference of missing
phenomena from SSH being more dependent on the given location and time.
Therefore, although the results still seem visually plausible, future users may
need to keep in mind that generalisation to new dynamical situations are
harder for SSH.

6 Conclusion

We addressed the problem of modelling Lagrangian drift under the influence of
uncertainty by leveraging the flexibility of CNNs. We demonstrated our frame-
work by considering an application of sea surface currents in which we modelled
the uncertain drift of floating objects. We generated training data by simu-
lating a large number of trajectories to approximate the temporal evolution
of a drifting particle’s probability distribution in 2D space. Our simulations
were performed on velocity field representations of surface currents produced
by a realistic high resolution ocean model. We found that drifts predicted by
our trained model were in good agreement with the simulations, and we found
our model to generalise reasonably well to different dynamical situations of a
different year. We also evaluated our framework’s ability to compensate for
missing physical phenomena in the input data by testing on surface currents
of a low resolution velocity field and SSH maps. On this harder scenario, the
CNN was able to infer some of the missing information from its internal mod-
elling of drift, and even to apply this model to different dynamical situations
with reasonable success. In future works, our framework may be extended to
model full drift trajectories rather than single timesteps.
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