
HAL Id: hal-04516752
https://hal.science/hal-04516752

Preprint submitted on 22 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Solving the Restricted Assignment Problem to Schedule
Multi-Get Requests in Key-Value Stores (extended

version)
Louis-Claude Canon, Anthony Dugois, Loris Marchal

To cite this version:
Louis-Claude Canon, Anthony Dugois, Loris Marchal. Solving the Restricted Assignment Problem to
Schedule Multi-Get Requests in Key-Value Stores (extended version). 2024. �hal-04516752�

https://hal.science/hal-04516752
https://hal.archives-ouvertes.fr

Solving the Restricted Assignment Problem to Schedule Multi-Get
Requests in Key-Value Stores (extended version)

Louis-Claude Canon1, Anthony Dugois1, and Loris Marchal2

1 FEMTO-ST Institute, Univ. Bourgogne Franche-Comté, CNRS
Besançon, France

{louis-claude.canon,anthony.dugois}@femto-st.fr
2 LIP, ENS Lyon, CNRS

Lyon, France
loris.marchal@ens-lyon.fr

Abstract. Modern distributed key-value stores, such as Apache Cassandra, enhance performance
through multi-get requests, minimizing network round-trips between the client and the database. How-
ever, partitioning these requests for appropriate storage server distribution is non-trivial and may result
in imbalances. This study addresses this optimization challenge as the Restricted Assignment problem
on Intervals (RAI). We propose an e�cient (2−1/m)-approximation algorithm, where m is the number
of machines. Then, we generalize the problem to the Restricted Assignment problem on Circular Inter-
vals (RACI), matching key-value store implementations, and we present an optimal O(n logn) algorithm
for RACI with �xed machines and unitary jobs. Additionally, we obtain a (4− 2/m)-approximation for
arbitrary jobs and introduce new heuristics, whose solutions are very close to the optimal in practice.
Finally, we show that optimizing multi-get requests individually also leads to global improvements,
increasing achieved throughput by 27%�34% in realistic cases compared to state-of-the-art strategy.

Keywords: Key-Value Stores · Multi-Get · Scheduling · Restricted Assignment · Intervals · Approxi-
mation

1 Introduction

Many theoretical scheduling problems capture the essence of practical challenges in modern distributed sys-
tems. Among those, NoSQL databases such as distributed key-value stores, which spread data over several
servers and map items to unique keys, became central components in the architecture of online cloud appli-
cations, thanks to their excellent performance and capability to scale linearly with the dataset [5,12]. They
are often subject to high throughput, and must therefore be able to serve requests with low latency to meet
user expectations. Hence, the proper scheduling of these requests is of paramount importance, and has a
direct e�ect on the overall observed performance of the system [17].

The API of modern distributed key-value stores o�er various operations to interact with the dataset,
among which single reads and writes are the most common. As the dataset is usually replicated on several
servers (in order to ensure accessibility of data in case of node failure), each key is accessible at di�erent
replica servers, which unlocks the possibility to execute the corresponding read operation on any of these
replicas. Most web-services often need to retrieve several data items to perform their own calculations. Thus,
some APIs provide a special type of operations called multi-get requests, which permit to retrieve several
items from a given key set in a single round-trip [16]. When executing such a multi-get request, the key-
value store needs to partition the requested key set into several sub-operations at the destination of storage
servers, and it should carefully balance the keys between these sub-operations in order to respond as quickly
as possible.

In this paper, we show how the partitioning and scheduling of a multi-get request may be seen as the
so-called Restricted Assignment problem, whose objective is to schedule jobs to machines in such a way that
the makespan (i.e., maximum completion time) is minimized, with the additional constraint that a given job
can be processed only by a particular subset of machines. Unfortunately, this problem is strongly NP-hard,

{louis-claude.canon,anthony.dugois}@femto-st.fr
loris.marchal@ens-lyon.fr

meaning that partitioning multi-get requests in an optimal manner clearly cannot be done in reasonable time
in the general case. On the positive side, the actual variant of the Restricted Assignment problem that applies
to multi-get request partitioning is slightly easier than the general problem: the data replication strategy
often consists in duplicating items in such a way that the replica sets are contiguous intervals of machines.
This enables us to develop low-cost, guaranteed algorithms for multi-get request partitioning, giving good
results in practice without dominating the actual service time.

Contributions. We start from prior work, done by Lin et al. [14], on the Restricted Assignment problem
on Intervals (RAI). The authors provide an e�cient algorithm in the special case of unitary jobs, although
we �nd their analysis to be incorrect. We take their results further by generalizing the proposed algorithm,
providing a corrected proof and a corrected version of its complexity analysis. In the case of unitary jobs, this
enables us to derive an optimal algorithm, called Estimated Least Flexible Job (ELFJ), which runs in time
O(m2 + n log n+mn), where m is the number of machines and n is the number of jobs. We also prove that
ELFJ (with a small adaptation) is a (2−1/m)-approximation algorithm when jobs have arbitrary processing
times.

Moreover, we further generalize the RAI problem by introducing the notion of circular intervals, i.e.,
intervals that may begin at the end of the list of machines and loop back to the start, which matches
the actual replication strategy of distributed key-value stores. We call this generalization the Restricted
Assignment problem on Circular Intervals (RACI). In the case of K di�erent processing times, we develop a
general framework that provides an optimal algorithm for the RACI problem, running in time O(nKf(n)),
assuming that one knows an optimal algorithm running in time O(f(n)) for the corresponding RAI problem.
We illustrate how this framework applies to existing solutions by giving an optimal algorithm for the RACI
problem withK job types, running in time O(mn3K log

∑
pj). This enables us to revisit the case with unitary

jobs by adapting ELFJ for the RACI problem, and we show that this generalization does not a�ect the time
complexity of the algorithm. We iterate over ELFJ to develop a new (4 − 2/m)-approximation algorithm
called Double ELFJ (DELFJ), also running in time O(m2 +n log n+mn) (Theorem 5). Finally, we derive
two heuristics from DELFJ, called ASLFJ and GSLFJ, and we evaluate their performance in simulations.
We �nd that, for individual multi-get requests, the solutions given by our heuristics largely improve from
simple system-like greedy solutions and remain very close to the optimal (with a median ratio to the optimal
of 1.031). Even more interestingly, our heuristics are able to improve the overall throughput of the system
by 27%�34% in realistic cases compared to a classical strategy.

We present the model in Section 2, where we formally de�ne the Restricted Assignment problem and
its variants, and where we explain the motivation of this work more exhaustively. Next, we review related
work in Section 3. In Section 4, we present the approximation algorithm ELFJ for the RAI problem, and
we introduce the general RACI problem in Section 5. Then, we build on ELFJ to derive the approximation
algorithm DELFJ for the RACI problem in Section 6. Finally, we present our new heuristics and evaluate
their performance in Section 7, before concluding the paper in Section 8.

2 Applicative Context & Formal Model

In this section, we introduce the partitioning of multi-get requests in distributed key-value stores (Section 2.1),
and we give the formal de�nition of the corresponding Restricted Assignment problem (Section 2.2).

2.1 Partitioning Multi-Get Requests in Key-Value Stores

Key-value stores are low-latency databases where each data item is associated with a unique key [12,5]. In
these systems, a read operation consists in retrieving the value that corresponds to a given key, whereas
a write operation consists in adding a new association between a value and a key. As it is too large to �t
on a single server, the overall dataset is split into several data partitions, and each partition is stored on a
di�erent server. Moreover, in order to guarantee accessibility of data in case of node failure, each partition is
replicated on di�erent physical servers. Although the replication strategy di�ers from one system to another,
a common and practical way consists in arranging the servers on a virtual ring, and replicating the partition

2

mget(a, b, c, d)

{a, b}

{b, c}

{c, d}

read(a, b)

read(c)

read(d)

Fig. 1: Example of a multi-get request. The keyset {a, b, c, d} is partitioned into three opsets ({a, b}, {c} and
{d}), which are sent to the appropriate servers.

of each server i on its k− 1 successors i+1, i+2, · · · , i+k− 1 (modulo the number of servers m), where k is
a small integer (k = 3 is a common value). In other words, servers are virtually ordered, and each key/value
couple is stored on an interval of k di�erent consecutive servers.

In contrast with single read operations, multi-get requests involve several keys. Such aggregated opera-
tions are useful, for instance, to reduce the number of network round-trips between a web-service and the
database, as a single end-to-end request often requires to retrieve several data items before responding to
the client [16,9]. In a multi-get request, the requested keys (which constitute the key set of the request) may
be located in di�erent data partitions, which are physically stored on di�erent servers. Thus, the contacted
server must split the multi-get request into several sub-requests, each sub-request being redirected towards
the appropriate storage server. In other words, the key set must be partitioned into several subsets (one
per sub-request), and each subset must include keys that are located on the same server. These subsets are
called the opsets of the multi-get request. Choosing these opsets is a crucial step, because the key-value store
cannot respond before gathering all requested data items (i.e., executing all sub-requests). As we do not
want a few very fast sub-requests, and one that is very slow, the opsets must be well-balanced to guarantee
a good response time for the overall multi-get request. Figure 1 gives an example of execution of a multi-get
request in a distributed key-value store.

Partitioning the key set of a multi-get request in opsets may be seen as a scheduling problem, where
servers correspond to machines, and each single read operation for a given key correspond to a job, whose
processing time is the time required to retrieve the data item from the store. Each job may be processed
only by a subset of machines, which correspond to the physical servers on which the requested key is located.
Then, partitioning the jobs on machines in the context of this scheduling problem is equivalent to choosing
the opsets of the multi-get request, and minimizing the maximum completion time of jobs is equivalent to
minimizing imbalance between these opsets. In Figure 2, we show how a partitioning of a multi-get request
may be suboptimal.

a b

c

d
time

t t+ 9

{c, d}

{b, c}

{a, b}

(a) Non-optimal partitioning. The request completes
at time t+ 9.

a

b

c d
time

t t+ 7

{c, d}

{b, c}

{a, b}

(b) Optimal partitioning. The request completes at
time t+ 7.

Fig. 2: Two possible partitions of a multi-get request released at time t. The gray areas represent the current
load of each machine, while the sets written on the left represent the values stored on each machine. In the
�rst case, the opsets are {a, b}, {c} and {d}, which causes imbalance. In the second case, the opsets are {a},
{b} and {c, d}, which is the best possible choice for the current multi-get request.

3

As the number of jobs and machines are relatively small in this context, a simple solution to this problem
could consist in an integer programming formulation. However, this approach is not scalable, as solving such
model is a costly operation that would be usable for a single multi-get request, but not for a continuous
stream to treat in real-time (especially in key-value stores, which are usually dimensioned to handle extreme
throughput). We need instead a polynomial, guaranteed (even if not optimal), and ideally greedy algorithm,
to ensure that the time taken to partition a multi-get request does not dominate the time required to execute
the request itself. In this paper, we propose to work from the fact that the formulated scheduling problem
corresponds to the well-known Restricted Assignment problem, which we describe in the following section.

2.2 The Restricted Assignment Problem

In the problem of scheduling jobs on unrelated machines (also known as the R ||Cmax problem in Graham's
classi�cation), we are given a set of n jobs J = {1, · · · , n} and a set of m machines M = {1, · · · ,m},
where each job j ∈ J has a processing time pij > 0 on machine i ∈ M . The objective is to schedule (non-
preemptively) the jobs on machines so as to minimize the makespan, that is to say, the maximum completion
time of the jobs.

The Restricted Assignment (RA) problem is a special case of R ||Cmax, where each job j ∈ J can be
processed only on a subset of machinesMj ⊆ M , which we call the processing set of j. In this setting, the
job j has processing time pj on machine i if and only if i ∈ Mj , and +∞ otherwise. The RA problem is
sometimes noted P |Mj |Cmax.

The R ||Cmax problem, and more speci�cally the RA problem, are well-known NP-hard problems in the
strong sense, and it has even been proved that no algorithm can approximate an optimal solution within
a factor better than 3/2 unless P = NP [13]. Hence, speci�c cases of the RA problem have also been the
subject of extensive research. One possible manner to reduce the complexity of the problem is to bring
structure in the processing sets of jobs. For example, a common sub-problem consists in solving the RA
problem on nested3 processing sets, that is to say, one of the following properties holds for any two jobs
j, j′ ∈ J :Mj ⊆Mj′ ,Mj′ ⊆Mj , orMj ∩Mj′ = ∅. An even more speci�c case is when the processing sets
are inclusive, i.e., for any two jobs j, j′ ∈ J , eitherMj ⊆Mj′ , orMj′ ⊆Mj .

In this paper, we focus on interval processing sets, which also constitute a particular case of the RA
problem, but more general than the nested and inclusive cases. Here, the machines can be rearranged such
that the processing sets of jobs consist in contiguous intervals of machines. More formally, let us note 〈a, b〉
the interval4 ranging from machine a (inclusive) to machine b (inclusive, a ≤ b): 〈a, b〉 = {a, a+ 1, · · · , b}.
In the Restricted Assignment problem on Intervals (RAI), for all jobs j ∈ J , we de�neMj = 〈aj , bj〉, where
aj and bj are respectively the lower and upper bounds of the interval of machines on which the job j can be
assigned.

As a generalization of the classical makespan problem P ||Cmax, the RAI problem, that we denote by
P |Mj(interval) |Cmax in Graham's classi�cation, remains NP-hard in the strong sense. In the following,
we show that formal guarantees can still be obtained, especially on slightly simpler variants such as the case
with unitary jobs, which may happen in homogeneous workloads where all requested data items have similar
sizes. Another example is the case with K types of jobs, which corresponds to a discrete categorization of
read operations, for example by considering small and large data items.

3 Related Work

Key-value stores have been the subject of extensive research since the nominal publication on the Dynamo
system [5]. Their wide adoption in the industry, partly due to their excellent performance, availability and
scalability properties, has led to the development of numerous optimization techniques, in particular to mit-
igate the well-known tail latency problem [4]. One such technique consists in batching single read operations

3 This special case is also known as laminar processing sets.
4 We will extend the interval de�nition later, thus we do not use the common notations of integer intervals.

4

into so-called multi-get requests, in order to reduce the natural variability that arises with large numbers of
requests, and increase the network e�ciency by reducing the number of round-trips. However, as explained
in the previous section, the service time of a multi-get request is equal to its slowest read operation, which
can be largely improved by carefully balancing the load.

Reda et al. [16] proposed Rein, a scheduler that is able to identify the bottleneck of a given multi-get
request and that assigns di�erent priorities to the contained operations to improve response time. Compared
to the default First-Come First-Served policy, the priority-based scheduler reduces the median latency by
1.5× and the 99th percentile of latency by 1.9×. Under heterogeneous workloads, in which the dataset is
categorized into small/large items and multi-get requests consist of a varying number of operations, Jaiman
et al. [9] proposed TailX, a scheduler that is able to perform better than Rein by taking into account an
estimation of the actual service time of read operations. Their evaluation shows a 75% improvement on the
median latency and a 70% improvement on tail latency compared to Rein.

On the theoretical side, the Restricted Assignment (RA) problem has received a signi�cant attention,
as it captures the essence of many practical problems, among which, as demonstrated in this paper, the
partitioning of multi-get requests. It is a subcase of the more general unrelated scheduling problem R ||Cmax,
for which a famous 2-approximation algorithm, based on linear programming, has been proposed by Lenstra
et al. [13]. The authors also considered the RA problem and proved that no polynomial algorithm may
give an approximation better than 3/2, unless P = NP. A Quasi-Polynomial Time Approximation Scheme
(QPTAS) has recently been derived for the RA problem, which approximates an optimal solution within a
factor 11/6 + ε in time O((n+m)O(1/ε log(n+m))) [11].

Various subcases of the RA problem have also been considered in the literature. For instance, Ebenlendr
et al. [6] studied the Graph Balancing problem, which corresponds to the RA problem where each job may
be processed by at most two di�erent machines. They show the 3/2-hardness of the problem, and provide a
7/4-approximation algorithm. List-scheduling is a famous (2−1/m)-approximation for the problem P ||Cmax,
and it has also been proved to give the same guarantee for the nested case of RA, at the condition that jobs
are initially sorted by non-decreasing size of their processing set [8]. The authors also derived an e�cient
3/2-approximation for the inclusive case, running in time O(nm logm). On the negative side, Maack et al.
proved that no Polynomial Time Approximation Scheme (PTAS) exists for the interval problem RAI unless
P = NP [15]. Interestingly, there is a PTAS when all intervals are overlapping without any strict inclusion,
i.e., for any two jobs j, j′, Mj 6⊂ Mj′ and Mj′ 6⊂ Mj [18]. There is also a PTAS for the nested case and
other variants [7].

Some authors also studied the RA problem with restricted processing times. Jansen et al. proved that even
when considering only two possible processing times, there is no algorithm giving an approximation better
than 4/3 [10]. However, in the speci�c case where pj ∈ {1, 2}, there is a 3/2-approximation algorithm [8].
By approaching the RA problem as a matching problem, Biró et al. derive a (2− 1/2k)-approximation when
pj ∈

{
1, 2, · · · , 2k

}
for all jobs [2]. They also give an optimal algorithm when the same constraint is applied

on the nested case. When jobs are unitary, the RA problem becomes simpler, and it is possible to �nd
optimal schedules in time O(n3 log n) by coupling a binary search procedure to a network �ow formulation
of the problem [14].

4 An Algorithm for the Restricted Assignment Problem on Regular Intervals

We focus here on the standard RAI problem P |Mj(interval) |Cmax, for which Lin et al. [14] have proposed
a polynomial algorithm when jobs are unitary. They argue that their algorithm runs in time O(m(m+ n)),
although we found their analysis to be slightly incorrect. We also noticed an error in their proof of optimality.
In this section, we give a correct version of their proof, and we generalize their approach to derive the following
results:

(i) an optimal algorithm for the RAI problem with unitary jobs, which runs in time O(m2 + n log n+mn)
(Theorem 1), and

(ii) a tight (2− 1/m)-approximation algorithm for the RAI problem with arbitrary jobs, which also runs in
time O(m2 + n log n+mn) (Theorem 2).

5

Algorithm 1 Estimated Least Flexible Job (ELFJ)

Input: jobs J , machines M and makespan λ
Output: an assignment µ
1: sort jobs in non-decreasing order of bj
2: for all machines i ∈M do

3: δi ← 0
4: for all unassigned jobs j ∈ J such that i ∈ 〈aj , bj〉 do
5: if δi + pj ≤ λ then

6: µj ← i
7: δi ← δi + pj

8: return µ

We introduce Algorithm 1, called Estimated Least Flexible Job (ELFJ), which generalizes Lin et
al.'s algorithm. ELFJ takes a time λ as parameter and builds a schedule that is guaranteed to �nish before
this time. In other words, λ denotes an upper bound on the optimal makespan, i.e., the better the quality
of the bound, the closer ELFJ gets to an optimal schedule. The algorithm performs two steps. First, it sorts
the jobs in non-decreasing order of interval upper bound bj (in time O(n log n)). Second, it greedily assigns
jobs on machines (in time O(mn)), and returns an assignment vector µ, where µj denotes the machine on
which job j is assigned. In the following, we explain how to choose λ to get various guarantees on the quality
of the schedule.

Let us start with some notations and de�nitions. For any interval of machines 〈α, β〉, where 1 ≤ α ≤
β ≤ m, we de�ne K〈α,β〉 as the set of jobs whose processing set is included in 〈α, β〉, i.e., K〈α,β〉 =
{j ∈ J s.t.Mj ⊆ 〈α, β〉}. We denote the total processing time of jobs in K〈α,β〉 by w〈α,β〉, i.e., w〈α,β〉 =∑
j∈K〈α,β〉 pj . Let w̃〈α,β〉 represent the minimum average work that any schedule must perform on machines

α, · · · , β, i.e.,
w̃〈α,β〉 =

w〈α,β〉

β − α+ 1
,

and let w̃max be the maximum value of w̃〈α,β〉 over all intervals (that is, w̃max = max1≤α≤β≤m
{
w̃〈α,β〉

}
).

From these de�nitions, we can easily derive a lower bound on the optimal makespan COPT
max for a given

instance I of the RAI problem, as shown by Lin et al. in their original work [14].

Lemma 1. The optimal makespan is bounded by w̃max, i.e., COPT
max ≥ w̃max. If all processing times are

integers, then we have COPT
max ≥ dw̃maxe.

Proof. Let COPT
〈α,β〉 be the maximum completion time of machines α, · · · , β in an optimal schedule. We clearly

have COPT
〈α,β〉 ≥ w̃〈α,β〉 for any interval 〈α, β〉, because all jobs in the set K〈α,β〉 must be done between machines

α and β, and in the best case, the jobs are perfectly balanced on the β − α + 1 machines of the interval
〈α, β〉.

Let 〈a, b〉 be the interval of machines such that w̃max = w̃〈a,b〉. We have COPT
〈a,b〉 ≥ w̃〈a,b〉. As C

OPT
max ≥ COPT

〈α,β〉
for any α, β, we necessarily have COPT

max ≥ COPT
〈a,b〉 , i.e., C

OPT
max ≥ w̃max.

If all processing times are integers in the considered instance, we have COPT
〈α,β〉 ≥ dw̃〈α,β〉e for any interval

〈α, β〉, because jobs are not divisible. Thus, in an analogous manner, we necessarily have COPT
max ≥ dw̃maxe.

4.1 Computing w̃max for Arbitrary Jobs

The idea of Lin et al. is to use dw̃maxe as the value of the parameter λ in ELFJ to get an optimal schedule
when jobs are unitary. Suppose for a moment that all processing times are unitary, i.e., for all intervals
〈α, β〉, w〈α,β〉 =

∣∣K〈α,β〉∣∣ (thus w̃max = max1≤α≤β≤1
{∣∣K〈α,β〉∣∣ /(β − α+ 1)

}
). In the original paper, the

authors propose the following procedure to compute each
∣∣K〈α,β〉∣∣. First, for all machines i, construct the

sets Ai = {j ∈ J s.t. i ≤ aj} and Bi = {j ∈ J s.t. bj ≤ i} in time O(mn). Then, for all intervals 〈α, β〉,
compute

∣∣K〈α,β〉∣∣ = |Aα ∩Bβ |.
6

w〈1,m−1〉

w〈2,m−1〉w〈1,m−2〉
w〈2,m−2〉

v〈1,m〉

v〈1,m−1〉 v〈2,m〉

v〈1,m−2〉 v〈2,m−1〉 v〈3,m〉

v〈1,m−3〉 v〈2,m−2〉 v〈3,m−1〉 v〈4,m〉

v〈1,1〉 v〈2,2〉 v〈m−1,m−1〉 v〈m,m〉· · ·

Fig. 3: Interval hierarchy represented as a lattice graph. Each node represents an interval 〈x, y〉 and is labeled
with the value v〈x,y〉. Nodes are organized by level, where nodes on level h represent intervals of size h, e.g.,
if m = 3, the node on level m is the interval of size 3, nodes on level m− 1 are intervals of size 2, and nodes
on level m− 2 are intervals of size 1.

We argue that counting the number of common elements in two sets is clearly not a constant-time
operation in the general case. Hence, as there are O(m2) possible intervals, the time complexity of this
procedure is at least O(cn ·m2), where cn is the time complexity of counting common elements in two sets
of size O(n). If we recall that the original algorithm performs a sorting operation (in time O(n log n)) and
the assignment of jobs to machines (in time O(mn)), we conclude that the total complexity O(m2 +mn)
given by Lin et al. for their algorithm is underestimated, and we argue that their approach gives in fact an
algorithm with time complexity O(cn ·m2 + n log n+mn). Last but not least, their method is not suitable
to the case where processing times are arbitrary.

We provide a new procedure to compute w̃max in time O(m2 + n) for any instance of the RAI problem
with arbitrary processing times. We notice that the set of intervals in a list of m machines can be represented
by a graph, where nodes correspond to intervals. For all intervals 〈α, β〉 such that α < β, the node 〈α, β〉
is the parent of two children nodes 〈α, β − 1〉 and 〈α + 1, β〉 (see Figure 3). Let J〈α,β〉 be the set of jobs
whose processing set is exactly 〈α, β〉, i.e., J〈α,β〉 = {j ∈ J s.t.Mj = 〈α, β〉}, and let v〈α,β〉 be their total
processing time. We have a recursive relation between the values w〈α,β〉: for a given interval 〈α, β〉 that has
two children intervals, the work K〈α,β〉 includes the work J〈α,β〉, the work K〈α,β−1〉, and the work K〈α+1,β〉,
minus the work K〈α+1,β−1〉, as it is included both in K〈α,β−1〉 and K〈α+1,β〉. Then, for any α, β, we have

w〈α,β〉 = v〈α,β〉 + w〈α,β−1〉 + w〈α+1,β〉 − w〈α+1,β−1〉,

with the convention w〈α,β〉 = 0 if α > β. Values v〈α,β〉 can be pre-computed in time O(n) by scanning jobs,
and the computation of values w〈α,β〉 is done in time O(m2). Thus, w̃max can be found in time O(m2 + n)
and space O(m2), as shown in Algorithm 2.

4.2 Optimality of ELFJ for Unitary Jobs

We now prove that, if λ = dw̃maxe, then ELFJ is optimal for unitary jobs (problem P |Mj(interval), pj =
1 |Cmax). The principle of the proof comes from Lin et al. [14], although we found their demonstration to be
incorrect. We know from Lemma 1 that the optimal makespan COPT

max is at least dw̃maxe (as jobs are unitary,
all processing times are integers), which is the value of λ here. We seek to prove that ELFJ gives a schedule
whose makespan is at most λ.

By contradiction, Lin et al. assume there exists a unitary job j that could not be assigned by ELFJ on
any machine before time λ, which means that all machines between aj and bj must be full. Then we consider
the machine with the smallest index α ≤ aj such that all machines between α and bj are full. Let β = bj .

7

Now the goal is to prove that all jobs assigned by ELFJ on machines α, α+1, · · · , β come from the set K〈α,β〉,
that is, the processing set of any job assigned between machines α and β is included in 〈α, β〉. Proving this
property leads to the conclusion λ < w̃〈α,β〉, which is a contradiction because λ = dw̃maxe.

To do so, Lin et al. argue that any job j′ assigned on a machine between α and β must have aj′ ≥ α,
otherwise j′ would have been put on α−1 (which is not full), and bj′ ≤ β, because jobs have been assigned by
non-decreasing order of bj . This last justi�cation is an error, as highlighted by the following counterexample:
suppose that α = aj − 1, and there are λ jobs with interval α, α + 1, · · · , β + 1 (call these jobs the �lling
jobs). The job j must be done in the interval α + 1, α + 2, · · · , β. Then, the �lling jobs will be assigned on
machine α by ELFJ, even if we have bj′ = β + 1 > β for all �lling jobs j′, because they are the only jobs
that are feasible on α. Therefore, we cannot conclude that all jobs assigned on machines α, α+1, · · · , β come
from K〈α,β〉.

We present here a constructive proof that also consists in exhibiting a contradiction by �nding a machine
α ≤ aj such that all jobs assigned between α and β come from K〈α,β〉. However, α is more carefully chosen
in this new version. We start from the interval 〈aj , bj〉, and we extend this interval step by step until the
appropriate condition is met.

Theorem 1. Let λ = dw̃maxe. Then ELFJ (Algorithm 1) is optimal for P |Mj(interval), pj = 1 |Cmax, and
the full procedure runs in time O(m2 + n log n+mn).

Proof. The beginning of the proof is similar to the one of Lin et al. By contradiction, suppose that ELFJ
does not give a feasible schedule with makespan at most λ. Let j0 be one of the non-assigned jobs. Then, as
all jobs are unitary and λ is an integer, all machines inMj0 must �nish at least at time λ. Let β = bj0 , and
let γ ≤ aj0 be the smallest machine index such that all machines between γ and β complete at time λ. This
means that the machine γ − 1 completes before time λ if γ > 1.

Now our goal is to �nd a machine α between γ and aj0 such that all jobs assigned on machines α, α +
1, · · · , β come from the set K〈α,β〉. The process here is constructive. For the �rst step, let j be a job assigned
on a machine between aj0 and β. Then, we have bj ≤ β, otherwise j0 would have been scheduled instead of
j. Now there are two cases: either we have aj ≥ aj0 for all j assigned between aj0 and β, or aj < aj0 for at
least one job j assigned between aj0 and β.

If the �rst case holds, then we set α = aj0 , and we are done: all jobs assigned between α and β have a
processing set included in 〈α, β〉. If the second case holds, let us choose such j with the smallest aj (then
aj < aj0), and let us call this job j1. Now we proceed to the next step. If j1 has been assigned between aj0
and β, it means that bj ≤ bj1 ≤ β for all jobs j assigned on machines aj1 , aj1 + 1, · · · , aj0 − 1, otherwise
we would have scheduled j1 instead. Moreover, we have two cases again: either we have aj ≥ aj1 for all j
assigned between aj1 and aj0 − 1, or aj < aj1 for at least one job j assigned between aj1 and aj0 − 1.

In the �rst case, we set α = aj1 , and we are done. Otherwise, we choose j with the smallest aj , we call
this job j2, and we proceed to the next step by repeating the same reasoning.

To conclude, note that we have aj ≥ γ for all jobs j assigned on a machine whose index is greater than
or equal to γ, otherwise j would have been put on machine γ− 1, as it completes before time λ. By applying

Algorithm 2 Computing w̃max

1: v〈α,β〉 ← 0 for all 0 ≤ α ≤ β ≤ m
2: for all jobs j ∈ J do

3: v〈aj ,bj〉 ← v〈aj ,bj〉 + pj

4: w̃max ← 0
5: for all l from 0 to m− 1 do
6: for all a from 1 to m− l do
7: b← a+ l
8: w〈a,b〉 ← v〈a,b〉 + w〈a,b−1〉 + w〈a+1,b〉 − w〈a+1,b−1〉
9: w̃〈a,b〉 ← w〈a,b〉/(b− a+ 1)
10: if w̃〈a,b〉 > w̃max then

11: w̃max ← w̃〈a,b〉

8

the described process iteratively, we inevitably reach a step k where there cannot exist a job j such that
aj < ajk , and we set α = ajk .

Therefore, there exist α ≤ β such that

(i) j0 ∈ K〈α,β〉,
(ii) machines α, α+ 1, · · · , β complete at time λ, and
(iii) all jobs assigned on machines α, α+ 1, · · · , β belong to K〈α,β〉.

Then we have

w〈α,β〉 ≥ (β − α+ 1)λ+ 1 > (β − α+ 1)λ,

i.e., λ < w̃〈α,β〉, which is a contradiction. Hence, ELFJ gives a schedule feasible in λ time units, which means
that COPT

max ≤ λ. By Lemma 1, we also know that COPT
max ≥ λ. We conclude that COPT

max = λ, thus ELFJ is
optimal. Moreover, as demonstrated earlier, the computation of λ is done in time O(m2+n), and ELFJ runs
in time O(n log n+mn), which gives a total time complexity of O(m2 + n log n+mn).

In this proof, we avoid the error from Lin et al. by making sure that bj ≤ β for all jobs j assigned between
either aj0 and β, or between aj1 and β, or between aj2 and β, etc. In the previous counterexample, we would
have stopped at α = aj and β = bj .

4.3 An Approximation for Arbitrary Jobs

As shown by Lin et al., ELFJ is optimal for unitary jobs if λ = dw̃maxe. The same principle may well be
applied to arbitrary jobs, but does not produce an optimal schedule. However, we show here that, subject
to a small adaptation on the value of λ, ELFJ also constitutes an approximation algorithm for this more
general case. In the following, we note pmax the maximum processing time among all jobs.

Theorem 2. Let λ = w̃max +
(
1− 1

m

)
pmax. Then, ELFJ (Algorithm 1) is a tight (2− 1/m)-approximation

algorithm for RAI, and the full procedure runs in time O(m2 + n log n+mn).

Proof. Suppose by contradiction that ELFJ does not give a feasible schedule with makespan at most λ. Let
j0 be the �rst non-assigned job. Then all machines in Mj0 must �nish after time λ − pj0 , otherwise we
would have assigned j0. Let β = bj0 , and let γ ≤ aj0 be the smallest machine index such that all machines
between γ and β complete after time λ − pmax. This means that the machine γ − 1 completes at or before
time λ − pmax if γ > 1. Hence, we have aj ≥ γ for all jobs j assigned on a machine whose index is greater
than γ, otherwise j would have been assigned on γ − 1 by ELFJ, as pj ≤ pmax (by de�nition of pmax).

Now let S(a, b, t) be the set of jobs assigned by ELFJ between machines a and b, and scheduled to start
at or before time t (S(a, b, t) = ∅ if a > b). We can see this set S(a, b, t) as a work area, whose minimal shape
is the rectangle delimited by a, b and t. Our goal is to prove that there exists a machine α between γ and
aj0 such that all jobs in the set S(α, aj0 − 1, λ− pmax) ∪ S(aj0 , β, λ− pj0), whose minimal work area can be
represented by two adjacent rectangles, come from the set K〈α,β〉, which includes all jobs whose processing
set is in the interval 〈α, β〉. The Figure 4 highlights the work areas of interest.

To do so, we adapt the constructive process that we used in the previous proof. Let us prove that there
exists a non-empty set of machines u1 > u2 > · · · > ux between aj0 and γ such that

� for all uk, bj ≤ β for all jobs j ∈ S(uk, aj0 − 1, λ− pmax) ∪ S(aj0 , β, λ− pj0),
� for all uk<x, there exists j ∈ S(uk, aj0 − 1, λ− pmax) ∪ S(aj0 , β, λ− pj0) such that γ ≤ aj < uk, and
� aj ≥ ux for all j ∈ S(ux, aj0 − 1, λ− pmax) ∪ S(aj0 , β, λ− pj0).

Base case (u1 = aj0). Let j ∈ S(aj0 , β, λ − pj0) be a job assigned between aj0 and β, and starting at or
before λ− pj0 . We have bj ≤ bj0 = β, otherwise the job j0 could have been scheduled instead of job j. Then,
either aj ≥ aj0 for all j ∈ S(aj0 , β, λ− pj0), or there is j ∈ S(aj0 , β, λ− pj0) such that γ ≤ aj < aj0 . In the
�rst case, we set x = 1 and we are done. In the second case, we proceed to the next step.

9

j0

λ− pmax

λ− pj0 λ

β = bj0

aj0

aj0 − 1

α

γ

γ − 1

Fig. 4: Work areas between machines α and β. The blue area is S(α, aj0 − 1, λ − pmax). The red area is
S(aj0 , β, λ − pj0). Gray areas are the other jobs. We seek to prove that the blue and red areas are made of
jobs included in K〈α,β〉.

Induction step. Suppose that bj ≤ β for all j ∈ S(uk, aj0 − 1, λ − pmax) ∪ S(aj0 , β, λ − pj0). Moreover,
suppose there exists j1 ∈ S(uk, aj0 − 1, λ − pmax) ∪ S(aj0 , β, λ − pj0) such that γ ≤ aj1 < uk at step k. Let
us choose j1 such that aj1 is minimal, and let uk+1 = aj1 .

Now let j2 ∈ S(uk+1, uk − 1, λ− pmax) be any job assigned between machines uk+1 and uk − 1. We have
bj2 ≤ bj1 , otherwise the job j1 would have been scheduled instead of job j2. Hence, bj2 ≤ β (by induction
hypothesis), thus bj ≤ β for all j ∈ S(uk+1, aj0 − 1, λ− pmax)∪S(aj0 , β, λ− pj0), because S(uk+1, uk− 1, λ−
pmax) ∪ S(uk, aj0 − 1, λ− pmax) = S(uk+1, aj0 − 1, λ− pmax).

Then, either aj2 ≥ uk+1 for all j2 ∈ S(uk+1, uk−1, λ−pmax), or there exists j2 ∈ S(uk+1, uk−1, λ−pmax)
such that γ ≤ aj2 < uk+1. In the �rst case, we conclude that aj ≥ uk+1 for all j ∈ S(uk+1, aj0 − 1, λ −
pmax) ∪ S(aj0 , β, λ− pj0), because we have chosen j1 in a way that aj1 is minimal (thus aj ≥ aj1 = uk+1 for
all j ∈ S(uk, aj0 − 1, λ− pmax)∪S(aj0 , β, λ− pj0)). Hence, we set x = k+1 and we stop there. In the second
case, we proceed to the next step.

Therefore, we proved that we can �nd a machine ux such that aj ≥ ux and bj ≤ β for all j ∈ S(ux, aj0 −
1, λ− pmax)∪S(aj0 , β, λ− pj0). In other words, all jobs in the set S(ux, aj0 − 1, λ− pmax)∪S(aj0 , β, λ− pj0)
come from the set K〈ux,β〉.

Recall that all machines aj0 , aj0 + 1, · · · , β �nish after time λ − pj0 , and by construction, all machines
ux, ux + 1, · · · , aj0 − 1 �nish after time λ− pmax, because ux ≥ γ. Thus, we set α = ux, and we have

w〈α,β〉 > (β − α+ 1)(λ− pmax) + (β − aj0 + 1)(λ− pj0 − (λ− pmax)) + pj0 ,

which gives the following inequality:

λ < w̃〈α,β〉 −
pj0

β − α+ 1
− (β − aj0 + 1)(pmax − pj0)

β − α+ 1
+ pmax.

As β − aj0 + 1 ≥ 1 and β − α+ 1 ≤ m, we have
β−aj0+1

β−α+1 ≥
β−aj0+1

m ≥ 1
m , and as pmax − pj0 ≥ 0,

λ < w̃〈α,β〉 −
pj0

β − α+ 1
− 1

m
(pmax − pj0) + pmax,

thus,

λ < w̃〈α,β〉 +

(
1− 1

m

)
pmax +

(
1

m
− 1

β − α+ 1

)
pj0 .

Finally, we have 1
β−α+1 ≥

1
m , i.e., 1

m −
1

β−α+1 ≤ 0, and pj0 ≥ 0. Therefore,

λ < w̃〈α,β〉 +

(
1− 1

m

)
pmax,

10

which is a contradiction.
Hence, ELFJ gives a schedule that is feasible in time λ, i.e., Cmax ≤ λ. By Lemma 1, we have COPT

max ≥
w̃max, and obviously, COPT

max ≥ pmax, so λ ≤ (2− 1/m) · COPT
max . We conclude that Cmax ≤ (2− 1/m) · COPT

max .
Note that this approximation ratio is tight. Consider an instance with one large job of size L (where L is

an integer), and L(m− 1) unitary jobs. All jobs are feasible on all machines. Thus, we have λ = (2− 1/m)L,
which means that ELFJ will keep scheduling jobs until time λ′ = b(2 − 1/m)Lc. As L is an integer, there
must exist positive integers c, d such that L = cm+ d, with d < m. Therefore, λ′ = b(2− 1/m)(cm+ d)c =
b2(cm+ d)− c+ d/mc = 2(cm+ d)− c, as d/m < 1. The optimal solution has a makespan of L. Hence, the
approximation ratio is

λ′/L = 2− c

cm+ d
= 2− 1

m+ d/c
,

which tends to 2− 1/m as c→ +∞.

5 A General Framework for Circular Intervals

In this section, we present a generalization of the RAI problem to so-called circular intervals, which match
the usual replication strategy of key-value stores.

5.1 Introducing Circular Intervals

In the standard RAI problem, machines are linearly arranged, that is to say, they are numbered from 1 to m
and virtually placed on a line. As we have seen in the introduction, distributed key-value stores often organize
machines in a virtual ring, where the machines able to answer a query for a particular key are consecutively
arranged in this ring. We generalize here the notion of interval to take into account this setting. In addition
to regular intervals 〈a, b〉 (with a ≤ b), we introduce circular intervals such that a > b. In this case, the
corresponding set 〈a, b〉 includes machines a, a+ 1, · · · ,m and machines 1, 2, · · · , b, i.e., we have

〈a, b〉 =

{
{a, a+ 1, · · · , b} if a ≤ b,
{1, 2, · · · , b} ∪ {a, a+ 1, · · · ,m} otherwise.

Note that we clearly cannot always rearrange machines to transform an instance with circular intervals to
an instance without circular intervals. Consider the instance with 3 machines and 3 jobs with processing
setsM1 = {1, 2},M2 = {2, 3} andM3 = {3, 1}: any permutation of the machines will exhibit exactly one
circular interval. Figure 5 illustrates the generalization of the RAI problem to circular intervals. By extension,
we call this generalized problem the Restricted Assignment problem on Circular Intervals (RACI).

1

2

3

4

5

6

a1

b1

a2

b2

1
2
3

4
5
6

a3

b3

a4

b4

Fig. 5: Comparison between instances of the standard RAI problem (on the left) and its generalization to
circular intervals (on the right). In this example, we have a1 = 1, b1 = 4, a2 = 2, b2 = 5, a3 = 2, b3 = 4, a4 =
6, and b4 = 3. Thus, 〈a4, b4〉 is a circular interval, whereas the other intervals are regular.

11

De�nition 1. The interval 〈ag, bg〉 precedes the interval 〈ah, bh〉 if and only if ag ≤ ah and bg ≤ bh. In this
case, we note 〈ag, bg〉 � 〈ah, bh〉.

For a given instance, let Z∗ be the set of circular intervals that are associated to at least one job (Z∗ =
{〈aj , bj〉 s.t. j ∈ J and aj > bj}). In this section, we restrict ourselves to instances where the previously-
de�ned relation � is a total order on Z∗. In other words, for any 〈ag, bg〉, 〈ah, bh〉 ∈ Z∗, we cannot have
〈ag, bg〉 ⊂ 〈ah, bh〉. This constitutes a particular case of RACI, but it is still a more general case than RAI.
Moreover, we assume that there are K types of jobs, and each job of type k has processing time p(k).

5.2 An Optimal Procedure for K Job Types

We introduce in this section a general procedure that solves the RACI problem for the described restricted
instances, assuming that one already knows an optimal algorithm A for the standard RAI problem with K
job types.

Theorem 3. Let A be an optimal algorithm for the RAI problem with K job types running in time O(f(n)).
Then there exists a procedure that solves the corresponding RACI problem on totally ordered circular intervals
in time O(nKf(n)).

We begin with a few de�nitions. Then we present the procedure, before proving our result.

Preliminaries. Let J∗ be the subset of jobs whose processing set is a circular interval (that is, J∗ =
{j ∈ J s.t. aj > bj}), and we note n∗ = |J∗|. We call J∗ the circular jobs (by extension, the jobs J \ J∗ are
called regular jobs). We also partition J∗ into K subsets J∗1 , · · · , J∗K , such that all jobs in J∗k are of type k,
and we note n∗k = |J∗k |.

Moreover, in a given schedule, we say that a circular job j assigned between aj (inclusive) and the
last machine m (inclusive) is a left job. Equivalently, a circular job j assigned between the �rst machine 1
(inclusive) and bj (inclusive) is a right job. This means that a schedule π implicitly de�nes a partition of
each set J∗k into two subsets Gk and Dk, where Gk contains γk left jobs, and Dk contains δk right jobs.
Figure 6 shows an example of such schedule.

.

m − 2m − 1 m 1 2 3

1 2

3

4

5

6

7

8

9

Fig. 6: Example of circular jobs in a schedule. Colors denote jobs with common processing intervals. Jobs 1,
2, 4, 5, 9 are left jobs, whereas jobs 3, 6, 7, 8 are right jobs. Moreover, there are two types of jobs. Jobs 1, 2,
4, 5, 7, 8, 9 are of type 1 (with p(1) = 1), whereas jobs 3 and 6 are of type 2 (with p(2) = 2). Thus, in this
example, G1 = {1, 2, 4, 5, 9}, D1 = {7, 8}, G2 = ∅, and D2 = {3, 6}.

We present here the intuition on how to compute an optimal schedule by considering all possible partitions
of jobs with circular processing sets into left and right jobs. For the moment, we simplify the problem by
considering only one type of jobs. A schedule de�nes a partition of jobs J∗ into left and right jobs, which
means that we need to �nd how many jobs in J∗ should be assigned to the left or to the right. Thus, assume
that we know that r jobs of J∗ must be assigned to the right in an optimal schedule. Intuitively, the r
circular jobs with rightmost intervals should be put on the right, and the remaining jobs of J∗ should be put
on the left. For example, consider only the small jobs in the instance of Figure 6. If we suppose that r = 5
(arbitrarily), then we guess that the 2 red jobs and the 3 green jobs should be put on the right (i.e., between

12

machines 1 and 3), and the 2 blue jobs should be put on the left (i.e., between machines m− 2 and m), as
the red and green intervals are more on the right than the blue interval. We introduce below the notion of
right-sorted schedules that captures this intuition, and we will prove later that there always exists at least
one optimal schedule that has this property.

De�nition 2. A schedule π is right-sorted if and only if for all types k, the property 〈aj , bj〉 � 〈aj′ , bj′〉
holds for any jobs j ∈ Gk and j′ ∈ Dk.

We denote the set of all possible schedules for a given instance I by Π(I) (I is omitted when it is
clear from the context). Let RK be the set of all vectors r = (r1, · · · , rK) such that rk is an integer and
0 ≤ rk ≤ n∗k for all k (n∗k is the number of circular jobs of type K). For a given vector r ∈ RK , we call Πr

the subset of schedules Π that put exactly rk jobs of type k on the right, and n∗k − rk jobs of type k on the
left. Recall that COPT

max denotes the optimal makespan among all schedules Π. We de�ne analogously CBEST
r

as the best possible makespan among schedules Πr. Note that the subsets Πr de�ne a partition of Π, and
thus

COPT
max = min

r∈RK

{
CBEST

r

}
. (1)

Optimal procedure.We introduce a polynomial procedure φr that transforms any instance I of the (totally
ordered) RACI problem into another instance I ′ = φr(I) that does not include any circular interval (i.e., I ′
is an instance of RAI). We prove later the following two statements:

(i) Applying an optimal algorithm A to I ′ produces a valid solution for I.
(ii) The makespan of this solution is at most CBEST

r .

Given these statements and Equation (1), we can �nd an optimal solution for I by performing an exhaustive
search of the best vector r ∈ RK . For a given instance I, the function φr works as follows:

1. Sort jobs J∗ by non-increasing order of bj , and sort jobs with identical bj by non-increasing order of aj .
Note that this corresponds to sorting jobs by non-increasing order of �. As � is a total order on Z∗, all
jobs are comparable.

2. For each type k, set aj = 1 for the rk �rst jobs of J∗k , and bj = m for the n∗k − rk other jobs, e�ectively
removing circular intervals.

Let Π�r be the subset of schedules Πr that are right-sorted. The proof of the two statements of interest
is structured as follows. As A is optimal for the standard RAI problem, we know that it �nds one of the
best schedules among Π(φr(I)). Hence, we will prove two lemmas. On the one hand, we show in Lemma 2
that the set Π(φr(I)) is exactly the same as the set of right-sorted schedules Π�r (I) for the initial instance.
On the other hand, we show in Lemma 3 that there always exists a right-sorted schedule that has the best
possible makespan.

Lemma 2. For any r ∈ RK , we have Π(φr(I)) = Π�r (I), i.e., the schedules produced from the transformed
instance are the same as the right-sorted ones from the initial instance.

Proof. Let r be an arbitrary vector of RK . First we show that Π(φr(I)) ⊆ Π�r (I). Let π ∈ Π(φr(I)). By
de�nition of φr, for all types k, there are n∗k − rk jobs in π that were circular jobs in the initial instance
I and that are on the left (similarly, there are rk jobs in π that were circular and that are on the right).
Moreover, the circular jobs have been sorted in φr, which means that for all k, we have 〈aj , bj〉 � 〈aj′ , bj′〉
for any j ∈ Gk and j′ ∈ Dk in π. In other words, π is right-sorted, and thus belongs to Π�r .

Now we show that Π�r (I) ⊆ Π(φr(I)). By de�nition of Π�r , in any schedule π ∈ Π�r (I), for all types k,
we have 〈aj , bj〉 � 〈aj′ , bj′〉 for any j ∈ Gk and j′ ∈ Dk. Moreover, there are exactly n∗k − rk jobs in Gk and
rk jobs in Dk. Thus, π is clearly a valid solution for φr(I) and belongs to Π(φr(I)).

13

Lemma 3. For any r ∈ RK , there exists a right-sorted schedule π ∈ Π�r that has the best possible makespan
CBEST

r .

Proof. Let r be an arbitrary vector of RK . Let π ∈ Πr be a schedule that has the best possible makespan
CBEST

r . If π is right-sorted, we are done. Otherwise, there necessarily exists a type k such that two jobs
j ∈ Gk and j′ ∈ Dk, scheduled in π, are not sorted according to �, i.e., we have 〈aj , bj〉 � 〈aj′ , bj′〉. In other
words, either aj > aj′ , or bj > bj′ . We know that � is a total order on Z∗, which means that if aj > aj′ ,
then we necessarily have bj ≥ bj′ . In a similar way, if bj > bj′ , then we necessarily have aj ≥ aj′ . This means
that even if j is a left job and j′ is a right job in π, there is �more room� to put j on the right side and j′

on the left side of their respective interval. Moreover, as j and j′ have the same type k, they have identical
processing times. Hence, we can clearly swap j and j′ in π without changing the makespan of π.

By repeatedly swapping non-sorted jobs of the same type, we reach another schedule π′ that has the
same makespan than π, that also belongs to Πr, and that is right-sorted.

Now we are able to conclude.

Proof (Proof of Theorem 3). By hypothesis, we know that A �nds a schedule with the smallest makespan
among Π(φr(I)). By Lemma 3, we also know that there exists at least one schedule in Π�r (I) that has the
best possible makespan CBEST

r . Therefore, we deduce by Lemma 2 that:

� the solution given by A, when applied to φr(I), belongs to Π�r (I), which means that it also belongs to
Πr(I), i.e., it is a valid solution for I (Statement (i)), and

� the solution given by A, when applied to φr(I), has makespan CBEST
r (Statement (ii)).

It follows that, for any instance I, we can �nd the best possible schedule among Πr(I) for any vector
r ∈ RK . Moreover, for all vectors r ∈ RK , we have rk ≤ n∗k ≤ n for all k. Thus, the number of possible
vectors r is bounded by O(nK), i.e., we can �nd an optimal schedule for any instance I by searching over
all possible vectors in time O(nKf(n)), assuming that we know an algorithm A that runs in time O(f(n))
when applied to φr(I). This concludes the proof of Theorem 3.

We now study two special cases where this procedure can be applied: the adaptation of an existing
dynamic programming algorithm for K job types and the ELFJ algorithm presented above. In the latter
case, we are able to largely reduce the complexity compared to Theorem 3, as we achieve for ELFJ on circular
intervals the same complexity as ELFJ on regular intervals.

5.3 A Dynamic Program for K Job Types

We illustrate how our framework can be successfully applied to derive a polynomial algorithm for the RACI
problem on intervals of equal length and K job types. Wang et al. [18] showed how to solve the corresponding
problem on regular intervals with a dynamic program. For completeness, we recall their solution in the
following.

Let nk be the number of jobs of type k (1 ≤ k ≤ K), and let us sort jobs by non-decreasing value of
bj . Suppose that λ is a value that represents a hard deadline for all jobs. De�ne Fi(s1, s2, · · · , sK) = 1 if
and only if it is feasible, for all types k, to schedule sk jobs of type k on machines 1, 2, · · · , i such that the
makespan is at most λ, and Fi(s1, s2, · · · , sK) = 0 otherwise.

Let F0(0, · · · , 0) = 1, and Fi(s1, s2, · · · , sK) = 1 if and only if there exist s′1 ≤ s1, s
′
2 ≤ s2, · · · , s′K ≤ sK

such that:

(i) Fi−1(s
′
1, s
′
2, · · · , s′K) = 1,

(ii) for each k, the next sk − s′k jobs of type k in the sorted set contain the machine i in their processing set,
and

(iii)
K∑
k=1

(sk − s′k) · p(k) ≤ λ.

14

Then we have Fm(n1, n2, · · · , nK) = 1 if and only if there exists a schedule feasible in time λ. For a given
value of λ, an array with all values of F can be computed in time O(mn2K). Finally, the optimal value of λ can
be found by performing a binary search. Thus the overall complexity of the algorithm is O(mn2K log

∑
pj).

By using our framework, adapting this approach to the RACI problem is straightforward. Let A be the
dynamic program described above. By Theorem 3, we know that we can �nd an optimal schedule for any
instance in time O(nKf(n)), where f(n) is the complexity of A. Therefore, the time complexity of the derived
algorithm is O(mn3K log

∑
pj).

5.4 Revisiting the Unitary Job Case

We proved in Theorem 1 that ELFJ is an optimal algorithm for the standard RAI problem on unitary jobs,
which runs in time f(n) = O(m2 + n log n+mn). Recall that ELFJ consists in 3 distinct steps:

1. computing the optimal makespan, in time O(m2 + n),
2. sorting the jobs, in time O(n log n),
3. performing the actual job assignment, in time O(mn).

By applying our framework around ELFJ, and because we have only one type of jobs in this speci�c case,
we know from Theorem 3 that we can solve the generalized problem on totally ordered circular intervals in
time O(nf(n)) = O(m2n + n2 log n +mn2). We now show how to improve the complexity of this solution,
as stated in the following theorem.

Theorem 4. The totally ordered RACI problem with unitary jobs can be solved in time O(m2+n log n+mn).

Proof. The basic idea is to extract and reorganize some internal computation steps from the exhaustive search
procedure to avoid doing any redundant work. We �rst observe that the only step of ELFJ that actually
depends on knowing an optimal number r of right jobs (in the set of circular jobs) is the computation of
the optimal makespan. Once we know the best values of r and λ, the sorting and job assignment steps are
straightforward. Thus, we know that we can easily re�ne the complexity to O(n(m2 + n) + n log n+mn) =
O(m2n+ n2).

To reduce further the complexity, we notice that we do not really need to recompute the matrix w from
the beginning (in time O(m2 + n)) for each possible value of r in order to �nd the minimum makespan. We
remark that there are two kinds of regular intervals: the ones that may result from cutting a circular interval
〈a, b〉 in two sub-intervals 〈a,m〉 and 〈1, b〉, which we call the outside intervals, and the ones that cannot,
which we call inside intervals. In other words, outside intervals are all regular intervals of the form 〈1, x〉 or
〈x,m〉, with 1 ≤ x ≤ m, and inside intervals are all regular intervals of the form 〈x, y〉 with 1 < x ≤ y < m.
When representing the regular interval hierarchy as a lattice graph, the outside intervals are in fact all the
nodes on the sides of the lattice, and the inside intervals are the others, as shown in Figure 7.

〈1,m〉

〈1,m− 1〉 〈2,m〉

〈1,m− 2〉〈2,m− 1〉 〈3,m〉

〈1, 1〉 〈2, 2〉 〈m− 1,m− 1〉〈m,m〉· · ·

Fig. 7: Outside and inside intervals in the lattice graph representation. Outside intervals (blue area) are
of the form 〈1, x〉 or 〈x,m〉, with 1 ≤ x ≤ m, and inside intervals (red area) are of the form 〈x, y〉, with
1 < x ≤ y < m.

15

Recall that w〈α,β〉 represents the total work of all regular jobs whose interval is included in 〈α, β〉. When
we update our guess on the optimal number of right jobs, we transform the instance by shrinking the intervals
of circular jobs: if a job j is a right job, we keep the right part of the interval, i.e., the sub-interval 〈1, bj〉,
and if it is a left job, we keep the left part of the interval, i.e., the sub-interval 〈aj ,m〉. This means that the
only values of w that may change when we transform the instance are the ones that are associated to the
outside intervals. All other values remain unchanged, no matter how we partition the circular jobs.

Hence, we can decompose the computation of w̃max in two steps. First, compute the value

w̃inside
max = max

1<α≤β<m

{
w̃〈α,β〉

}
,

which represents the maximum value of w̃ among all inside intervals. This value does not depend on r, and
can be computed only once. Second, compute the value

w̃outside
max = max

1≤x≤m

{
max

(
w̃〈1,x〉, w̃〈x,m〉

)}
,

which represents the maximum value of w̃ among all outside intervals. We clearly have

w̃max = max
(
w̃inside

max , w̃outside
max

)
.

In other words, each time we update our guess on r, we only need to recompute the value of w̃outside
max ,

which can be done in time O(m) as there are exactly 2m− 1 outside intervals. Thus, we can search for the
minimum value of max

(
w̃inside

max , w̃outside
max

)
by pre-computing w̃inside

max , and then trying each possible value of r
by updating only w̃outside

max .
The only remaining question is how we know which values to update in the matrix w when we make a

new guess on r. We avoid recomputing the values that are associated to inside intervals. We can also avoid
recomputing the value w〈1,m〉, as it is always exactly equal to n, and we have w̃〈1,m〉 = n/m. Recall that the
set of circular jobs is sorted by decreasing order of � (by de�nition of φr), and for a given number r, we
know that the �rst r jobs in the sorted set are right jobs. We set r = 0 and we pre-compute w, w̃inside

max and
w̃max. Then we loop over the sorted set of circular jobs by adding them progressively on the right side, i.e.,
for each job j ∈ J∗, we add 1 to w〈1,β〉 for all bj ≤ β < m and we subtract 1 to w〈α,m〉 for all 1 < α ≤ aj .
The full procedure is given in Algorithm 3.

We conclude that the RACI problem with totally ordered circular intervals and unitary jobs can be solved
in time O(m2 + n log n+mn), or O(n log n) if we assume that m is �xed.

6 An Approximation for the Restricted Assignment Problem on Circular

Intervals

In this section, we introduce an approximation algorithm to assign jobs on circular intervals, based on the
following intuition: under certain conditions, it is possible to split the problem into two sub-problems, such

1

2

3

m− 3

m− 2

m− 1

m 4

5

6

m

1

2

3

Shift

Fig. 8: Shifting the circular intervals �to the left� to transform them into regular intervals. In this example,
there are two circular intervals (red and blue). Moreover, zleft = m− 2 and zright = 2. The shifted machine
corresponding to the machine with index i has index i− zleft + 1 if i ≥ zleft , i− zleft + 1 +m otherwise.

16

Algorithm 3 Computing r and w̃max

1: sort circular jobs by decreasing order of �
2: transform circular jobs as left jobs, then compute w, w̃inside

max and w̃max

3: rcur ← 0
4: for all circular jobs j ∈ J∗ do
5: w̃outside

max ← w̃〈1,m〉
6: for all β from bj to m− 1 do
7: w〈1,β〉 ← w〈1,β〉 + 1

8: w̃〈1,β〉 ←
w〈1,β〉
β

9: if w̃〈1,β〉 > w̃outside
max then

10: w̃outside
max ← w̃〈1,β〉

11: for all α from 2 to aj do
12: w〈α,m〉 ← w〈α,m〉 − 1

13: w̃〈α,m〉 ←
w〈α,m〉
m−α+1

14: if w̃〈α,m〉 > w̃outside
max then

15: w̃outside
max ← w̃〈α,m〉

16: rcur ← rcur + 1
17: w̃cur ← max

(
w̃inside

max , w̃outside
max

)
18: if w̃cur < w̃max then

19: r ← rcur
20: w̃max ← w̃cur

that each of them consider only regular intervals. On each of these sub-problems, we can use the (2− 1/m)-
approximation algorithm presented in Section 4.3 to get a guaranteed solution.

We consider jobs whose processing set is a circular interval, that is, J∗ = {j ∈ J s.t. aj > bj}, and we
de�ne the smallest �left� index of these intervals, namely zleft = minj∈J∗ {aj}, as well as their largest �right�
index zright = maxj∈J∗ {bj}. We assume in this section that the �leftmost� circular interval does not intersect
the �rightmost� circular interval, that is, zleft > zright . This assumption holds in particular for intervals of
size k if and only if m ≥ 2(k−1), as zleft ≥ m− (k−1)+1 and zright ≤ k−1, i.e., zleft − zright ≥ m−2k+3.

Algorithm 4 Shifting functions

1: function ShiftLeft(x, y)
2: z ← x− y
3: if z < 1 then
4: z ← z +m

5: return z
6: function ShiftRight(x, y)
7: z ← x+ y
8: if z > m then

9: z ← z −m
10: return z

The proposed algorithm, named Double ELFJ (DELFJ) and presented in Algorithm 5, works as follows:
regular jobs are �rst allocated on machines using the (2 − 1/m)-approximation algorithm ELFJ presented
in Section 4.3. To allocate the remaining jobs (from J∗), we use the same algorithm. However, ELFJ only
handles regular intervals. Hence, we �rst shift all intervals so that the leftmost circular intervals start on
machine 1 before applying ELFJ (see Figure 8), and we shift back the allocation in the end. Thanks to
our assumption on zleft and zright , we know that shifting the initially circular intervals will result in all
these intervals becoming regular. As the two categories of jobs are allocated separately using a (2 − 1/m)-
approximation, we obtain a (4− 2/m)-approximation algorithm, as stated in the following theorem.

17

Algorithm 5 Double ELFJ (DELFJ)

Input: jobs J and machines M
Output: an assignment µ
1: J∗ ← {j ∈ J s.t. aj > bj}
2: µ← apply ELFJ on jobs J \ J∗
3: zleft ← minj∈J∗ {aj}
4: for all jobs j ∈ J∗ do
5: aj ← ShiftLeft(aj , zleft − 1)
6: bj ← ShiftLeft(bj , zleft − 1)

7: µ∗ ← apply ELFJ on jobs J∗

8: for all jobs j ∈ J∗ do
9: µj ← ShiftRight(µ∗j , zleft − 1)

10: return µ

Theorem 5. Double ELFJ (Algorithm 5) is a tight (4 − 2/m)-approximation algorithm provided that
zleft > zright .

Proof. Let I be the initial instance and I1 be the same instance I restricted to jobs with non-circular
intervals, i.e, with jobs in J \ J∗. ELFJ applied to I1 is a 2 − 1/m approximation, hence ELFJ(I1) ≤
(2− 1/m) ·OPT(I1).

We consider the instance I2 made of remaining jobs, i.e, with jobs from J∗, but where all intervals have
been shifted so that the leftmost intervals starts at machine 1. More formally, a circular interval 〈α, β〉 is
transformed into 〈α − zleft + 1, β − zleft +m + 1〉 by applying the ShiftLeft function. We assumed that
zleft > zright , hence we have

β − zleft +m+ 1 ≤ zright − zleft +m+ 1 < m+ 1

which proves that all transformed intervals are non-circular. When applying ELFJ on I2, we also have
DELFJ(I) ≤ ELFJ(I1)+ELFJ(I2). Both I1 and I2 are subsets of I (with possible machine renumbering),
hence

OPT(I1) ≤ OPT(I) and OPT(I2) ≤ OPT(I). Thus, DELFJ(I) ≤ 2(2− 1/m) ·OPT(I).
Note that this approximation ratio is tight. Let ` be an arbitrary integer such that ` ≥ 2. Consider an

instance with m = 3+2` and the following intervals of machines: 〈3,m〉 (non-circular), 〈3, 1〉 (circular), 〈2, 2〉
(non-circular) and 〈m, 1〉 (circular). One large job of size L (where L is an integer) and L(` − 1) unitary
jobs must be done on 〈3,m〉. The exact same set of jobs must be done on 〈3, 1〉. Moreover, one job of size L
must be done on 〈2, 2〉, and 2 jobs of size L must be done on 〈m, 1〉. Note that, for this kind of instance, an
optimal solution would have a makespan of L.

In the �rst round (i.e., assignment of non-circular jobs only), we necessarily have w̃max = L, because
a large job must be done on 〈2, 2〉, which consists of one machine. Thus, the estimated makespan is λ1 =
(2−1/m)L, and Double ELFJ will keep assigning jobs on 〈3,m〉 until time λ′1 = b(2−1/m)Lc. In particular,
the machine 3 is necessarily busy until time λ′1.

In the second round (i.e., assignment of circular jobs only), we also necessarily have w̃max = L, because
2 large jobs must be done on 〈m, 1〉, which consists of 2 machines. Thus, the estimated makespan is λ2 =
(2−1/m)L, and Double ELFJ will keep assigning jobs on 〈3, 1〉 until time λ′2 = b(2−1/m)Lc. As the second
round is completely oblivious to the �rst round, the machine 3, which was already busy until time λ′1, will
be �lled until time λ′1 + λ′2.

To summarize, the approximation ratio for this instance is 2b(2−1/m)Lc/L. From the end of Theorem 2,
we know that b(2 − 1/m)Lc/L tends to 2 − 1/m as L → +∞, thus, 2b(2 − 1/m)Lc/L tends to 4 − 2/m as
L→ +∞, which concludes the proof.

18

Algorithm 6 Searched LFJ (SLFJ)

Input: jobs J and machines M
Output: an assignment µ
1: compute w̃max

2: δ ← 0
3: repeat
4: µ← apply ELFJ on jobs J with λ = dw̃maxe+ δ
5: δ ← UpdateMakespan(δ)
6: until all jobs J are assigned in µ
7: return µ

7 Experimental Evaluation

We now derive a new heuristic from our guaranteed algorithm DELFJ to partition multi-get requests, and
we perform a series of experiments to evaluate its practical performance.

7.1 Introducing the DSLFJ Heuristic

Let us begin with the description of the new heuristic that we introduce in this section, called Double

Searched LFJ (DSLFJ). It is based on the same principle as the guaranteed algorithm DELFJ of the
previous section, i.e., it assigns jobs in two rounds. Recall that DELFJ uses ELFJ as a sub-algorithm to
assign jobs in each round, with the estimated makespan λ = w̃max + pmax. As a consequence, it su�ers from
the fact that it keeps putting jobs on the same machine until it reaches λ, which di�ers from the optimal by
a factor of 2− 1/m.

The heuristic DSLFJ also performs two rounds (i.e., it assigns regular jobs in the �rst round, and circular
jobs in the second), but it uses a di�erent sub-algorithm called Searched LFJ (Algorithm 6). This variant no
longer computes an approximated objective value, but instead progressively searches for a feasible makespan
by successively applying ELFJ, starting from dw̃maxe (which is a lower bound on the optimal makespan). The
searching procedure directly depends on a function UpdateMakespan, which de�nes how the makespan
λ grows through iterations: a slow progression will yield a better �nal objective, but the worst-case time
complexity will necessarily be higher. Note that, as we proved in Theorem 2 that ELFJ necessarily �nds
a feasible solution if λ = dw̃maxe + pmax, there can be at most pmax iterations in SLFJ. In practice, it is
possible that a feasible solution exists for a given makespan lower than dw̃maxe+pmax, but that SLFJ fails to
�nd it. To increase the chances of �nding a feasible solution as soon as possible, we perform two additional
improvements over DELFJ.

First, we choose the start of the ring more carefully. Until now, we considered that jobs whose interval
intersects the �rst machine of the cluster were the circular jobs J∗ of the instance. This had no impact on
our approximation algorithms. However, it may happen that the �rst machine has more potential work to
do than the others, leading the practical heuristic to make non-optimal decisions and fail to �nd a feasible
solution with a small makespan. In DSLFJ, we choose the start of the ring such that the �rst machine has
the least potential work to perform, i.e., we choose the machine i such that

∑
j∈J s.t. i∈〈aj ,bj〉 pj is minimized.

Second, we use the partial assignment performed in the �rst round to make better decisions in the second
round by taking into account the load of each machine. For all machines i, we create a new dummy job j
feasible only on i (i.e., aj = bj = i), with a processing time pj that is equal to the total work assigned to i
during the �rst round (i.e., pj =

∑
j′∈J s.t. µj′=i

pj′).

By a simple analysis, we �nd that the worst-case time complexity of DSLFJ is O(m2 + n log n + c ·
mn), where c is the worst-case number of iterations in SLFJ, which directly depends on the function
UpdateMakespan. The complexity of DSLFJ corresponds to the complexity of SLFJ (as it dominates
all the other steps):

� w̃max is computed in time O(m2 + n),

19

� the job sorting step of ELFJ may be done only once outside the loop in SLFJ, in time O(n log n), and
� the assignment step of ELFJ is done in time O(mn), and is repeated at most c times.

In the following, we consider two variants of DSLFJ, according to the function UpdateMakespan:

1. Arithmetically-Searched LFJ (ASLFJ), which increments δ in each iteration (i.e., δ ← δ+1 at line
4 of Algorithm 6), and

2. Geometrically-Searched LFJ (GSLFJ), which doubles δ in each iteration (i.e., δ ← max(1, 2δ) at
line 4 of Algorithm 6).

Their time complexities are respectively O(m2 + n log n+mn · pmax) and O(m2 + n log n+mn · log pmax).

7.2 Experimental Settings

We test the quality of our two heuristics ASLFJ and GSLFJ in simulations. The key-value store is character-
ized by a number of machinesm and a replication factor k, which de�nes the size of each interval of machines.
The usual replication factor in practice is 3, i.e., each data item is available on 3 di�erent servers [12]. We
generate a dataset of 100 000 keys, and we uniformly assign each key to a random machine.

Each key κ is associated a corresponding service time tκ, which is drawn from an exponential distribution
with mean 12. This setting models a workload where the service time of each key is small with high probability
(e.g., the probability that a given key is serviced within 30 time units is higher than 0.9), which corresponds
to realistic measures in key-value stores [1]. The processing time of each job is set to the service time of the
corresponding requested key (i.e., pj = tκ if the job j reads the key κ).

Each multi-get request is parameterized by the number of keys n that are requested, and the chosen keys
that are drawn according to a given popularity distribution. In the following, we consider two popularity
distributions: the uniform distribution, where each key has the same probability of being chosen, and the Zipf
distribution, where the probability of choosing a key is inversely proportional to its rank in the generated
key list. The Zipf distribution (with bias 1.0) is the default in most benchmarks [3], as it generates a skewed
popularity distribution, e.g., the key with rank 1 has 2 more chances to be chosen than the key with rank 2,
which has itself 1.5 more chances to be chosen than the key with rank 3, etc.

We compare our two heuristics ASLFJ and GSLFJ with the following algorithms:

� Random, which randomly assigns each job to a compatible machine,
� EFT-Min, which assigns each job to the �rst compatible machine that completes the job the earliest,
and

� EFT-Rand, the same as EFT-Min, but with a randomized tie-breaking rule.

EFT-Min is a strategy that actual key-value stores tend to use, even if it is never perfectly implemented in
practice due to the usual constraints of distributed systems [17]. When the instance size is not prohibitive, we
also compare our heuristics with the optimal solution computed by a Mixed Integer Linear Program (MILP)
solver.

7.3 Results

We evaluate the response time of individual requests, and the maximum attainable throughput of the system
on a saturating stream of requests. Note that, for a given multi-get request, the makespan Cmax of the
individual schedule also represents its response time, as it denotes the completion time of the slowest of its
jobs.

Response time of individual requests. In Figure 9a, we schedule one multi-get request made of several
jobs, and we measure the ratio between the makespan Cmax of the schedule computed by each heuristic and
the makespan COPT

max of an optimal schedule computed by the MILP solver. We set the number of machines to
m = 48 and the replication factor to k = 3, and we consider multi-get requests of size n = 32 (medium size,
left column) and n = 256 (large size, right column). The studied popularity distributions of keys are uniform

20

n = 32 n = 256

po
p
∼
U
n
if

po
p
∼
Z
ip
f

R
an
do
m

E
F
T
-M
in

E
F
T
-R
an
d

A
SL
F
J

G
SL
F
J

R
an
do
m

E
F
T
-M
in

E
F
T
-R
an
d

A
SL
F
J

G
SL
F
J

1.0

1.2

1.4

1.6

1.0

1.2

1.4

1.6

O
b
je
ct
iv
e
ra
ti
o
C

m
a
x
/
C

O
P
T

m
a
x

(a) Ratio between Cmax and COPT
max .

n ∼ Unif n ∼ Exp

po
p
∼
U
n
if

po
p
∼
Z
ip
f

R
an
do
m

E
F
T
-R
an
d

A
SL
F
J

G
SL
F
J

R
an
do
m

E
F
T
-R
an
d

A
SL
F
J

G
SL
F
J

-20%

-10%

0%

+10%

+20%

+30%

+40%

-20%

-10%

0%

+10%

+20%

+30%

+40%

R
el
.
th
ro
u
gh
p
u
t
w
.r
.t
.
E
F
T
-
M
in

(b) Relative throughput w.r.t. EFT-Min.

Fig. 9: On the left, we plot the ratio between the makespan Cmax given by each heuristic and the optimal
makespan COPT

max in di�erent settings (the lower the better). On the right, we plot the ratio between the
saturating throughput given by each heuristic on 1000 multi-get requests and the saturating throughput
given by EFT-Min in di�erent settings (the higher the better).

(pop ∼ Unif, top row) and Zipf's law with bias 1.0 (pop ∼ Zipf, bottom row). Each setting is simulated 100
times.

According to the results, we can see that our heuristics ASLFJ and GSLFJ give close-to-optimal solutions
in the considered settings; i.e., the median ratio to the optimal of ASLFJ (resp. GSLFJ) is at most 1.025
(resp. 1.031), whereas EFT-Min systematically has a median ratio between 1.139 and 1.362. Moreover, by
counting the number of times each heuristic gives the best solution for each instance, we �nd that ASLFJ
gives the best solution in 99% of the 400 tested cases. Comparatively, without taking ASLFJ into account,
GSLFJ gives the best solution in 94% of the cases, whereas EFT-Min is the best only in 5.25% of the cases,
and even gives the worst solution in 16.25% of the cases. This con�rms that GSLFJ provides a good trade-o�
between quality and time complexity. Finally, we also observe that the boxplots of ASLFJ and GSLFJ are
�atter than the others, which seems to indicate that they are less sensitive to the instance characteristics.
Indeed, the coe�cient of variation (CV) for ASLFJ (resp. GSLFJ) is at most 0.028 (resp. 0.04), whereas the
CV for the other heuristics ranges from 0.076 to 0.153.

Overall, the proposed heuristics give close-to-optimal response time, where the classical EFT-Min heuris-
tic is between 15% and 35% slower on average, depending on the cases.

Saturating throughput of a stream of requests. In Figure 9b, we study the behaviour of our heuristics
from a system point of view to understand whether optimizing the scheduling of each individual request has
an impact on the saturating throughput. To do this, we schedule a workload of 1000 multi-get request and
measure the �nishing time of the last request to complete. The saturating throughput is de�ned as the
number of requests in the workload dividing by this last �nish time. In this �gure, we plot the ratio between
the saturating throughput of each heuristic and the one of the baseline EFT-Min. Again, we set the number
of machines to m = 48 and the replication factor to k = 3, but we now make the size of multi-get requests
vary according to a uniform distribution between 1 and 256 (n ∼ Unif, left column) and an exponential
distribution with mean 32 (n ∼ Exp, right column). We use this last setting as a realistic workload where
small multi-get requests are a lot more probable than large ones (the probability to send a multi-get request
of size n ≥ 128 is about 0.018 if n ∼ Exp, compared to 0.5 if n ∼ Unif). The studied popularity distributions
of keys are uniform (pop ∼ Unif, top row) and Zipf's law with bias 1.0 (pop ∼ Zipf, bottom row). Each
experiment is repeated 20 times.

21

We observe that ASLFJ and GSLFJ improve the maximum attainable throughput in all tested settings.
However, the improvement is more signi�cant when the size of multi-get requests follows an exponential
distribution. When keys have the same probability of being requested (top row), the median saturating
throughput of ASLFJ (resp. GSLFJ) is greater than the one of EFT-Min by 4.3% (resp. 4.3%) if n ∼ Unif,
whereas it is greater by 27.5% (resp. 27%) if n ∼ Exp. For a Zipf popularity distribution (bottom row), the
median saturating throughput of ASLFJ (resp. GSLFJ) is greater than the one of EFT-Min by 8.8% (resp.
7%) if n ∼ Unif, whereas it is greater by 33.9% (resp. 30.8%) if n ∼ Exp. In our experiments, we noticed that
ASLFJ and GSLFJ were particularly e�cient for small multi-get requests (i.e., they �nd an optimal solution
quasi-systematically when n ≤ 102), which are in majority if n ∼ Exp. Over the 80 tested workloads, ASLFJ
gives the best results in 86.25% of the cases. When ASLFJ is not taken into account, GSLFJ gives the best
results in 97.5% of the cases. Interestingly, in certain cases we see that EFT-Rand also brings a signi�cant
improvement (up to 19.2%) over EFT-Min. Indeed, EFT-Min systematically chooses the �rst least-loaded
machine in the list. This increases the chances to have a con�ict with a subsequent multi-get request that
could also need this particular machine. In contrast, EFT-Rand chooses a least-loaded machine at random,
which tends to improve the overall load-balancing of the workload.

Overall, we notice that our heuristics not only improve the response time of individual requests, but
are also able to improve the maximum load that the system is able to cope with. This is a non-trivial and
interesting conclusion since throughput optimization is similar to load-balancing, which is usually orthogonal
(and sometimes contradictory) to optimizing the individual performance of requests. Depending on the
distribution of request sizes and key popularities, the improvement in throughput goes from 27% to 34% in
realistic cases.

8 Conclusion

In this paper, we tackle the multi-get request partitioning problem that arises is modern key-value stores by
modeling this as a scheduling problem, namely the Restricted Assignment problem on Intervals (RAI), and
proposing approximation algorithms and heuristics to solve it. We �rst exhibit a (2 − 1/m)-approximation
algorithm, and we further extend the RAI problem to circular intervals, which �t the con�guration of actual
replicated key-value stores. In this setting, we propose a general framework that, given an optimal algorithm
for the RAI problem with at most K job types and running in time O(f(n)), computes an optimal solution
for the RACI problem in time O(nKf(n)). This enables us to revisit an optimal algorithm for the RAI
problem when jobs are unitary to solve the corresponding RACI problem in time O(m2 + n log n + mn).
Moreover, we derive a new (4 − 2/m)-approximation algorithm in the general case, which we use as a
basis to design new practical heuristics to partition multi-get requests. We evaluate these heuristics through
extensive simulations, and we show that they not only improve the response time of individual multi-get
requests compared to simple greedy strategies, leading to close-to-optimal allocations, but are also able to
increase the maximum attainable throughput of the system by 27%�34% in realistic cases.

As a future work, the next step would be to implement and evaluate our heuristics in a real key-value store,
e.g., Apache Cassandra. On the theoretical side, it remains unknown if there exists an e�cient approximation
algorithm for the particular instances of RACI where circulars intervals are not necessarily totally ordered,
i.e., a given circular interval may be strictly included into another. Moreover, we conjecture that there exists
an e�cient approximation algorithm for RACI that improves on the 4− 2/m guaranteed factor.

References

1. Atikoglu, B., Xu, Y., Frachtenberg, E., Jiang, S., Paleczny, M.: Workload analysis of a large-scale key-value store.
ACM SIGMETRICS Performance Evaluation Review 40(1), 53�64 (2012)

2. Biró, P., McDermid, E.: Matching with sizes (or scheduling with processing set restrictions). Discrete Applied
Mathematics 164, 61�67 (2014)

3. Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.: Benchmarking cloud serving systems with
ycsb. In: ACM symposium on Cloud computing. pp. 143�154 (2010)

22

4. Dean, J., Barroso, L.A.: The tail at scale. Communications of the ACM 56(2), 74�80 (2013)
5. DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin, A., Sivasubramanian, S.,

Vosshall, P., Vogels, W.: Dynamo: amazon's highly available key-value store. In: SOSP 2007. pp. 205�220 (2007)
6. Ebenlendr, T., Krcál, M., Sgall, J.: Graph balancing: a special case of scheduling unrelated parallel machines. In:

SODA. vol. 8, pp. 483�490 (2008)
7. Epstein, L., Levin, A.: Scheduling with processing set restrictions: PTAS results for several variants. International

Journal of Production Economics 133(2), 586�595 (2011)
8. Glass, C.A., Kellerer, H.: Parallel machine scheduling with job assignment restrictions. Naval Research Logistics

54(3), 250�257 (2007)
9. Jaiman, V., Mokhtar, S.B., Rivière, E.: Tailx: Scheduling heterogeneous multiget queries to improve tail latencies

in key-value stores. In: IFIP DAIS. pp. 73�92 (2020)
10. Jansen, K., Rohwedder, L.: Structured instances of restricted assignment with two processing times. In: Conference

on Algorithms and Discrete Applied Mathematics. pp. 230�241 (2017)
11. Jansen, K., Rohwedder, L.: A quasi-polynomial approximation for the restricted assignment problem. SIAM

Journal on Computing 49(6), 1083�1108 (2020)
12. Lakshman, A., Malik, P.: Cassandra: a decentralized structured storage system. ACM SIGOPS Operating Systems

Review 44(2), 35�40 (2010)
13. Lenstra, J.K., Shmoys, D.B., Tardos, É.: Approximation algorithms for scheduling unrelated parallel machines.

Mathematical programming 46(1), 259�271 (1990)
14. Lin, Y., Li, W.: Parallel machine scheduling of machine-dependent jobs with unit-length. European Journal of

Operational Research 156(1), 261�266 (2004)
15. Maack, M., Jansen, K.: Inapproximability results for scheduling with interval and resource restrictions. In: STACS.

LIPIcs, vol. 154, pp. 5:1�5:18 (2020)
16. Reda, W., Canini, M., Suresh, L., Kosti¢, D., Braithwaite, S.: Rein: Taming tail latency in key-value stores via

multiget scheduling. In: EuroSys. pp. 95�110 (2017)
17. Suresh, L., Canini, M., Schmid, S., Feldmann, A.: C3: Cutting tail latency in cloud data stores via adaptive

replica selection. In: USENIX NSDI. pp. 513�527 (2015)
18. Wang, C., Sitters, R.: On some special cases of the restricted assignment problem. Information Processing Letters

116(11), 723�728 (2016)

A Experimental Results

Table 1: Median ratio between the makespan Cmax given by each heuristic and the optimal makespan COPT
max

in di�erent settings (the lower the better).

m n k pop Random EFT-Min EFT-Rand ASLFJ GSLFJ

m = 12 n = 32 k = 3 pop ∼ Unif 1.485 1.351 1.33 1.009 1.019
m = 12 n = 256 k = 3 pop ∼ Unif 1.443 1.169 1.167 1.182 1.182
m = 48 n = 32 k = 3 pop ∼ Unif 1.259 1.198 1.206 1 1

m = 48 n = 256 k = 3 pop ∼ Unif 1.707 1.362 1.342 1.025 1.031
m = 12 n = 32 k = 3 pop ∼ Zipf 1.467 1.286 1.261 1 1.01
m = 12 n = 256 k = 3 pop ∼ Zipf 1.585 1.165 1.174 1.057 1.059
m = 48 n = 32 k = 3 pop ∼ Zipf 1.265 1.212 1.186 1 1

m = 48 n = 256 k = 3 pop ∼ Zipf 1.5 1.139 1.137 1.01 1.017
m = 12 n = 32 k = 6 pop ∼ Unif 1.495 1.374 1.38 1 1

m = 12 n = 256 k = 6 pop ∼ Unif 1.443 1.152 1.159 1.063 1.063

m = 48 n = 32 k = 6 pop ∼ Unif 1.278 1.199 1.216 1 1

m = 48 n = 256 k = 6 pop ∼ Unif 2 1.53 1.518 1.042 1.054
m = 12 n = 32 k = 6 pop ∼ Zipf 1.581 1.362 1.369 1 1

m = 12 n = 256 k = 6 pop ∼ Zipf 1.468 1.154 1.147 1.057 1.057

m = 48 n = 32 k = 6 pop ∼ Zipf 1.332 1.233 1.272 1 1

m = 48 n = 256 k = 6 pop ∼ Zipf 1.86 1.349 1.336 1.019 1.028

23

Table 2: Number of times each heuristic gives the best or worst solution for each instance. On the right, we
present the table without taking ASLFJ into account to properly see the improvement brought by GSLFJ.

(a) With ASLFJ.

Heuristic Samples #best #worst %best %worst

Random 1600 6 1317 0.38% 82.31%
EFT-Min 1600 63 190 3.94% 11.88%
EFT-Rand 1600 57 188 3.56% 11.75%
ASLFJ 1600 1500 0 93.75% 0%
GSLFJ 1600 1124 3 70.25% 0.19%

(b) Without ASLFJ.

Heuristic Samples #best #worst %best %worst

Random 1600 10 1317 0.62% 82.31%
EFT-Min 1600 72 190 4.5% 11.88%
EFT-Rand 1600 71 188 4.44% 11.75%
GSLFJ 1600 1489 3 93.06% 0.19%

Table 3: Coe�cient of variation (CV) of the makespan Cmax given by each heuristic over 100 experiments
in the tested settings.

m n k pop Random EFT-Min EFT-Rand ASLFJ GSLFJ

m = 12 n = 32 k = 3 pop ∼ Unif 0.136 0.105 0.107 0.03 0.043
m = 12 n = 256 k = 3 pop ∼ Unif 0.085 0.046 0.045 0.036 0.036

m = 48 n = 32 k = 3 pop ∼ Unif 0.131 0.105 0.098 0.028 0.038
m = 48 n = 256 k = 3 pop ∼ Unif 0.127 0.081 0.076 0.027 0.04
m = 12 n = 32 k = 3 pop ∼ Zipf 0.132 0.098 0.096 0.03 0.048
m = 12 n = 256 k = 3 pop ∼ Zipf 0.126 0.048 0.049 0.058 0.057
m = 48 n = 32 k = 3 pop ∼ Zipf 0.153 0.118 0.107 0.012 0.036
m = 48 n = 256 k = 3 pop ∼ Zipf 0.147 0.089 0.084 0.023 0.029
m = 12 n = 32 k = 6 pop ∼ Unif 0.169 0.086 0.094 0.044 0.059
m = 12 n = 256 k = 6 pop ∼ Unif 0.108 0.044 0.036 0.005 0.005

m = 48 n = 32 k = 6 pop ∼ Unif 0.129 0.117 0.114 0.008 0.009
m = 48 n = 256 k = 6 pop ∼ Unif 0.122 0.08 0.075 0.054 0.057
m = 12 n = 32 k = 6 pop ∼ Zipf 0.188 0.117 0.122 0.037 0.046
m = 12 n = 256 k = 6 pop ∼ Zipf 0.116 0.046 0.042 0.009 0.009

m = 48 n = 32 k = 6 pop ∼ Zipf 0.18 0.117 0.121 0.01 0.017
m = 48 n = 256 k = 6 pop ∼ Zipf 0.162 0.116 0.129 0.023 0.039

Table 4: Median relative improvement of the saturating throughput given by each heuristic on the baseline
EFT-Min in di�erent settings (the higher the better)

m n pj pop Random EFT-Rand ASLFJ GSLFJ

m = 12 n ∼ Unif pj ∼ Exp2 pop ∼ Unif -0.9% +1.1% +1.6% +1.6%

m = 12 n ∼ Unif pj ∼ Exp2 pop ∼ Zipf -20% +0.1% +9% +8.9%
m = 12 n ∼ Exp pj ∼ Exp2 pop ∼ Unif +3.4% +5.7% +7.4% +7.4%

m = 12 n ∼ Exp pj ∼ Exp2 pop ∼ Zipf -13.6% +1.7% +16.5% +16.6%

m = 48 n ∼ Unif pj ∼ Exp2 pop ∼ Unif +1.3% +3.7% +7.1% +7.1%

m = 48 n ∼ Unif pj ∼ Exp2 pop ∼ Zipf -13.8% +2.3% +10.1% +9.6%
m = 48 n ∼ Exp pj ∼ Exp2 pop ∼ Unif +23.6% +26.8% +35.9% +35.7%
m = 48 n ∼ Exp pj ∼ Exp2 pop ∼ Zipf +1.4% +12.4% +24.4% +24.2%
m = 12 n ∼ Unif pj ∼ Exp12 pop ∼ Unif -1.3% +0.4% +1% +1%

m = 12 n ∼ Unif pj ∼ Exp12 pop ∼ Zipf -18.4% +0.1% +10.3% +10%
m = 12 n ∼ Exp pj ∼ Exp12 pop ∼ Unif +1.8% +3.4% +5.6% +5.6%

m = 12 n ∼ Exp pj ∼ Exp12 pop ∼ Zipf -11.3% +2.8% +18.1% +17.1%
m = 48 n ∼ Unif pj ∼ Exp12 pop ∼ Unif -1.9% +0.5% +4.3% +4.3%

m = 48 n ∼ Unif pj ∼ Exp12 pop ∼ Zipf -16.5% +1.7% +8.8% +7%
m = 48 n ∼ Exp pj ∼ Exp12 pop ∼ Unif +15.3% +19.2% +27.5% +27%
m = 48 n ∼ Exp pj ∼ Exp12 pop ∼ Zipf +6% +15.6% +33.9% +30.8%

24

Table 5: Number of times each heuristic gives the best or worst throughput for each instance. On the right,
we present the table without taking ASLFJ into account to properly see the improvement brought by GSLFJ.

(a) With ASLFJ.

Heuristic Samples #best #worst %best %worst

Random 320 0 312 0% 97.5%
EFT-Rand 320 3 8 0.94% 2.5%
ASLFJ 320 259 0 80.94% 0%
GSLFJ 320 134 0 41.88% 0%

(b) Without ASLFJ.

Heuristic Samples #best #worst %best %worst

Random 320 0 312 0% 97.5%
EFT-Rand 320 3 8 0.94% 2.5%
GSLFJ 320 317 0 99.06% 0%

m = 12, n = 32 m = 12, n = 256 m = 48, n = 32 m = 48, n = 256

k
=

3,
po
p
∼
U
n
if

k
=

3,
po
p
∼
Z
ip
f

k
=

6,
po
p
∼
U
n
if

k
=

6,
po
p
∼
Z
ip
f

R
an
do
m

E
F
T
-M
in

E
F
T
-R
an
d

A
SL
F
J

G
SL
F
J

R
an
do
m

E
F
T
-M
in

E
F
T
-R
an
d

A
SL
F
J

G
SL
F
J

R
an
do
m

E
F
T
-M
in

E
F
T
-R
an
d

A
SL
F
J

G
SL
F
J

R
an
do
m

E
F
T
-M
in

E
F
T
-R
an
d

A
SL
F
J

G
SL
F
J

1.00

1.25

1.50

1.75

2.00

1.00

1.25

1.50

1.75

2.00

1.00

1.25

1.50

1.75

2.00

1.00

1.25

1.50

1.75

2.00

Heuristic

O
b
je
ct
iv
e
ra
ti
o
C

m
a
x
/
C

O
P
T

m
a
x

Fig. 10: Ratio between the makespan Cmax given by each heuristic and the optimal makespan COPT
max in

di�erent settings (the lower the better). Each boxplot aggregates 100 iterations. The red line represents the
baseline.

25

m = 12, n ∼ Unif m = 12, n ∼ Exp m = 48, n ∼ Unif m = 48, n ∼ Exp

p
j
∼
E
xp
2,

po
p
∼
U
n
if

p
j
∼
E
xp
2,

po
p
∼
Z
ip
f

p
j
∼
E
xp
12,

po
p
∼
U
n
if

p
j
∼
E
xp
12,

po
p
∼
Z
ip
f

R
an
do
m

E
F
T
-R
an
d

A
SL
F
J

G
SL
F
J

R
an
do
m

E
F
T
-R
an
d

A
SL
F
J

G
SL
F
J

R
an
do
m

E
F
T
-R
an
d

A
SL
F
J

G
SL
F
J

R
an
do
m

E
F
T
-R
an
d

A
SL
F
J

G
SL
F
J

-20%

-10%

0%

+10%

+20%

+30%

+40%

-20%

-10%

0%

+10%

+20%

+30%

+40%

-20%

-10%

0%

+10%

+20%

+30%

+40%

-20%

-10%

0%

+10%

+20%

+30%

+40%

Heuristic

R
el
.
d
i�
.
on

th
ro
u
gh
p
u
t
w
.r
.t
.
E
F
T
-
M
in

Fig. 11: Ratio between the saturating throughput given by each heuristic on 1000 multi-get requests and
the saturating throughput given by EFT-Min in di�erent settings (the higher the better). Each boxplot
aggregates 20 iterations. The red line represents the baseline.

26

	Solving the Restricted Assignment Problem to Schedule Multi-Get Requests in Key-Value Stores (extended version)

