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Abstract. Lack of periodicity in engineering structures can arise because of imperfections in
the production process or a particular purpose to produce desirable physical effects. This
contribution presents a series of numerical simulations that quantitatively characterize the
influence of defects on the dispersion relation and associated eigenmodes of imperfect periodic
structures. Local defects are introduced periodically on a scale larger than the size of the unit
cell of the non-disturbed periodic structure. The observations reveal that these defects can
give rise to non-propagating modes at frequencies situated within the bandgaps of the periodic
structure. The eigenfrequency of such a defect mode varies monotonically with the amplitude
of the defects, and its deformations are located in and around the disturbed cell. Furthermore,
a bounded periodic medium with defects is studied by finite element analysis to demonstrate
the existence of these defect modes in bounded imperfect periodic structures.

1. Introduction
Periodic structures offer unique advantages in the realm of wave propagation, with features

like negative refractive index, frequency band gaps for effective wave filtration, and efficient
vibration isolation. These distinctive properties have propelled the widespread adoption and
rapid expansion of periodic structures, finding applications in metamaterials [1–6] and phononic
crystals [7–11]. The investigation of wave propagation behaviors in periodic systems can be
reduced to that of a unit cell through the use of Floquet-Bloch analysis [12–17]. However, Lack
of periodicity in engineering structures can arise because of imperfections in the production
process [18–24] and potentially undermining the favorable traits highlighted earlier [25, 26].
It is also possible to deliberately disrupt periodicity for a particular purpose to produce
desirable physical effects. In both cases, understanding the effects of periodicity defects on
wave propagation phenomena is crucial and requires thorough investigation.

In this paper, we present a series of numerical simulations that quantitatively characterize the
influence of defects on the dispersion relation and associated eigenmodes of imperfect periodic
structures. Localized defects are introduced periodically on a larger scale than that of the unit
cell of the non-disturbed periodic structure. The wave propagation in such periodic media with
various defects of mechanical or geometric properties is analyzed and compared to the reference
case without defects. The objective is to quantify the influence of periodicity defects on the
dispersion curves and mode shapes.

The article is structured as follows. In Section 2, localized defects are periodically introduced,
and the Floquet-Bloch analysis is applied to the scale of the defects’ periodicity. The numerical



verification of the existence of defect modes is presented, along with parametric studies on their
eigenfrequencies regarding the amplitude of defect, and on their displacements regarding the
scale of the periodicity of defects. Section 3 provides evidence for the existence of defect modes
in bounded periodic media with defects. Conclusions are drawn in Section 4.

2. Floquet-Bloch analysis applied to periodic media with local defects
Introduced by Floquet [12] and then by Bloch [13], the Floquet-Bloch theory allows to reduce

the size of analytical (and therefore numerical) models of a periodic medium by limiting the
study to the analysis of the eigenvalues of the unit cell. This theory has been widely applied in
various fields to understand the wave propagation characteristics in periodic structures, such as
in solid-state physics, photonics, and acoustics.

2.1. Floquet-Bloch theory for elastic waves in periodic medium
We consider the wave equation in an infinite periodic medium of dimension d:

∇x · (C : ε(u)) = −ρω2u, (1)

where u represents the displacement field, ω represents the angular frequency related to
the frequency f , C denotes the fourth-order elasticity tensor, ρ represents the density, and
ε(u) = 1

2(∇xu+(∇xu)T) is the small-strain tensor. ∇x(·) denotes the spatial gradient operator
and (·)T is the transposition operator. The Floquet-Bloch transform for the displacement field
u is then given by:

uB(x,k) =
∑

nj∈Zdp

u(x + njgj)e
−ik·(x+njgj), (2)

with {gj}j=1,...,dp the basis of periodicity vectors of the considered periodic medium, dp ≤ d
the dimension of the periodicity and k represents the wave vector. Applying the Floquet-Bloch
transformation to Eq. (1), we obtain an eigenvalue problem defined on the unit cell with k
belongs to the first Brillouin zone:

(∇x + ik) · [C : (ε(uB) + uB ⊗s ik)] = −ρω2uB (3)

In addition to Eq. (3), periodic boundary conditions should be imposed on the boundaries of the
unit cell.

In what follows, we consider 1D and 2D periodic media with periodically induced defects so
that Floquet-Bloch theory can still be used. The defects are introduced in the following way: the
unit cell of the medium without defects is denoted as q0, and the unit cell of the medium with
defects Q0 = N × q0 is composed of N q0 cells, among which, only one differs from the others.
The Floquet-Bloch theory is then applied to Q0, allowing for the calculation of dispersion curves
and corresponding modes. In the following, we call such a model a two-scale model, with q0
the smaller scale and Q0 the larger scale. All numerical simulations were conducted using the
COMSOL Multiphysics code.

2.2. Defect modes in 1D case
In the 1D case, A cell q0 of length l is composed of two bars of length l1 and l2 with different

properties. A localized defect is periodically introduced in a cell q0 either by disturbing the
lengths of the two subdomains (l1, l2) while maintaining l1 + l2 = l; or by disturbing the Young’s
modulus E1 of the subdomain l1. In Figure 1, a two-scale model with N = 6, so Q0 = 6× q0, is
presented as an example of the considered media.



Figure 1. 1D two-scale model with Q0 = 6 × q0 and a defect introduced on the third cell by
disturbing bar’s length.

Table 1. Geometry and mechanical parameters of the 1D periodic structure.

Bar Young’s modulus Ej(j=1,2) (GPa) Density ρj(j=1,2)(kg/m3) Length lj(j=1,2)(mm)

1 50 2700 4
2 250 2700 1.5

The perturbation amplitudes for the bar’s length and Young’s modulus are defined as
ηl ,

l′2−l2
l and ηE , E′1−E1

E1
, respectively. In the non-disturbed model, the material and geometry

parameters in Table 1 are used.
Firstly, we investigated the dispersion curves and mode shapes of two models, each with a

different type of defect applied to the third q0 cell in theQ0 cell. These are presented alongside the
dispersion curves and mode shapes of the non-disturbed model (cf. Figure 2). For the geometric
defect case, we set ηl = 10.8%, and for the material defect case, we set ηE = 50%. Each model
was analyzed for the first 24 modes, covering the first four passbands. In comparison to the non-
disturbed model, defect modes (red lines) appeared inside the stop bands. The dispersion curve
of the last mode is marked by triangle markers, and the 23rd mode is marked by circles. The
mode shapes of these two modes in the non-disturbed and disturbed models are then compared.
Regardless of the type of defect, the displacement of the mode generated by the defect is localized
on the disturbed q0 cell.

To further demonstrate that the defect modes are localized at the disturbed cell, we examined
three two-scale models with respectively N = 3, 6, and 12 while maintaining the bar length defect
ηl = 10.8% or Young’s modulus’s defect ηE = 50% in the same small cell, as shown in Figure 3.
Each two-scale model consists of N modes within each passband. For the low-frequency case, we
considered the 6th mode for N = 3, the 12th mode for N = 6, and the 24th mode for N = 12.
For the high-frequency case, we examined the 12th, 24th, and 48th modes for the three models.
Regardless of the type of defect, the mode shapes are localized on the disturbed cell and converge
as the number of small cells increases. The convergence is faster on higher frequencies compared
to lower frequencies.

To study the influence of the amplitude of defect on the appearance and eigenfrequencies of
the defect modes, a parametric study is carried out, considering the amplitude of defects ηl and
ηE . The results are depicted in Figure 4, where the pass bands are represented by blue lines,
determined by connecting the maximum and minimum frequencies of each eigenmode. With the
increase of the amplitude of defects, mini-bandgaps appear inside each pass band. In stop bands
that correspond to stop bands of the initial periodic medium without defects, the eigenfrequencies
of defect modes exhibit a monotonic increase with the amplitude of the defect. Specifically, when



Figure 2. Dispersion curves (left) and mode shapes (right) of (a) the propagative modes (black
dotted with circles and black dashed lines with triangles) in the non-disturbed medium, and the
defect modes (red line with triangles) alongside the neighboring propagative mode (black dotted
line with circles) of the medium with either (b) a geometric defect or (c) a material defect.

Young’s modulus E1 increases or when the bar length l2 becomes longer, the eigenfrequencies
of defect modes increase. Conversely, the eigenfrequencies of defect modes show a monotonic
decrease when Young’s modulus E1 decreases or when the bar length l2 becomes shorter.

2.3. Defect modes in 2D case
In the 2D case, the unit cell Q0 of the medium with defects comprising 6 × 6 q0 cells, i.e.,

N = 36. Each q0 cell is composed of a matrix with a circular inclusion. The geometric and



Figure 3. Mode shape of the defect modes at the same wave vector k = 0 on different frequencies
in different two-scale models with respectively N = 3, 6, and 12 with defects of (a) bar length
ηl = 10.8% and (b) Young’s modulus ηE = 50%.

Figure 4. Influence of the amplitude of defect of bar’s length (left) and of Young’s modulus
(right) on the pass bands (blue lines) of 1D two-scale structure.

material parameters of the non-disturbed model are summarized in Table 2. In this context, E
denotes the Young’s modulus, ν stands for the Poisson coefficient, and ρ represents the density.
The subscript "mat" denotes parameters for the matrix, while "int" corresponds to those for the
inclusion.



For the medium with defect, in the unit cell Q0, the Young’s modulus of the matrix in the
central q0 cell disturbed (Figure 5 (left)). The Floquet-Bloch theory is then applied to the unit
cell Q0, and periodicity conditions are applied to the boundaries. In the reciprocal space of the
wave vector k, the Brillouin zone is defined as dual to the unit cell. In Figure 5 in the middle,
the gray square represents the first Brillouin zone, and the triangular region delimited by the
contour Γ-X-M-Γ is the irreducible Brillouin zone, taking into account the symmetry properties
of the unit cell. The vertices of this zone have coordinates: Γ(0, 0), X(π/L, 0), M(π/L, π/L).

Table 2. Geometry and material parameters of 2D periodic structure.

L (m) R(m) Emat(GPa) Einc(GPa) νmat νinc ρmat(kg/m3) ρinc(kg/m3)

0.013 0.0045 0.233 10 0.25 0.3 1750 2100

The dispersion curves are plotted regarding the contour of the irreducible Brillouin zone of the
two-scale model in Figure 5 on the right. A defect mode (highlighted in red) is observed within
the first band gap. The blue crosses mark the defect modes and neighboring propagative modes
at points Γ (k1 = k2 = 0) and M (k1 = π/L, k2 = π/L) whose mode shapes will be studied later.

Figure 5. 2D two-scale model composed of 36 small cells with a defect of Young’s modulus of
the central matrix (left); the first Brillouin zone with the irreducible zone (middle); the dispersion
curves of the two-scale model with the defect mode highlighted in red (right).

Figure 6 displays ||uB|| for defect modes and neighboring propagative modes at points Γ and
M in the medium with defects, alongside the mode shapes of the modes at the same frequencies
in the non-disturbed medium for comparison. At the point Γ, the mode shape of the defect mode
is quasi-isotropic and concentrated around the disturbed cell. At point M, the mode shape of the
defect mode is no longer isotropic under the influence of the wave vector but remains localized
around the disturbed cell.

Similar to the 1D case, in the 2D structure the defect modes remain concentrated around the
disturbed cell by increasing the scale of the periodicity of introducing defects. For a two-scale
model containing 8 × 8 small cells, the mode shape of the defect mode remains concentrated
around the disturbed cell (Figure 7).

A parametric study is conducted to investigate the influence of the variation in radius
ηR , R′−R

R and Young’s modulus ηEmat ,
E′mat−Emat

Emat
. The results are depicted in Figure 8. As

the radius of the center cell decreases, the eigenvalue of the defect mode decreases. Conversely,
the eigenvalue of the defect mode increases with the Young’s modulus of the matrix of the center
cell.



Figure 6. Comparison of mode shapes of non-disturbed and disturbed model. (a) Mode shapes
||uB|| of the two propagative modes at the point Γ of the non-disturbed model; (b) mode shapes
||uB|| of the defect mode (middle) and the two neighbor modes in pass band (left and right) of
the disturbed model at the point Γ and (c) at the point M.

Figure 7. Mode shapes ||uB|| at the point Γ of the defect mode (middle) and the two neighbor
modes in pass band (left and right) for two-scale models composed of 64 small cells.

3. Numerical analysis of a bounded periodic medium with defects
The preceding section examined defects in infinite periodic media. In this section, we focus

on studying defects introduced in bounded media to investigate whether the bounded nature of



Figure 8. Impact of defect amplitude on pass bands (blue lines) in 2D two-scale structures:
defect on center inclusion’s radius (left) and on center matrix’s Young’s modulus (right)

the medium has an impact on the emergence of defect modes.

3.1. Setting of finite element models
For the study of the bounded periodic medium, the OOFE code (Object-Oriented Finite

Element) [27] is employed for simulating the attenuation of the output signal and the defect
modes in non-periodic models. Developed in the LMPS laboratory (Mechanical Laboratory of
Paris-Saclay University), the OOFE code is specifically designed for simulating the propagation of
elastic waves. It has been utilized in various research endeavors, such as the temporal simulation
of a 2D matrix/inclusion periodic medium by M. Darche [28] for the verification of band gaps
predicted by theoretical analysis and the simulation of ultrasonic wave propagation in polycrystal
materials by X. Bai [29].

Here, the geometric and material parameters from Table 2 are used. The finite element sizes
inside the inclusion and the matrix are in the order of magnitude of 2.4 mm and 0.38 mm,
respectively. The time step is set as ∆t = 1.4× 10−7s, and the number of finite elements in the
smallest wavelength is Nelet = 15. For all models in this section, a uniform surface pressure load
is applied on the left side where the input signal is uniformly applied. A transparent boundary
condition is applied on the right side of the model, and symmetric boundary conditions are
applied on the top and bottom. An explicit solver based on the discontinuous Galerkin method
in space is used with a CFL number set to 0.15.

The amplitude of the pressure loading is a Ricker wavelet defined as

RT (t) = A

(
1− 2

(
π

2t− T
T

)2
)
e−(π

2t−T
T

)2 , (4)

with A being the amplitude and T the period of the Ricker wavelet, whose frequency domain is
centered at 25 kHz (Figure 10).

3.2. Verification of the existence of defect modes inside stop bands
The bounded model is created by replicating the unit cell Q0, with N = 5, of the 2D two-scale

model in the horizontal direction two times, resulting in 5×10 q0 cells (Figure 10). In this context,
the presence of 10 q0 cells allows us to approximate the anticipated band gap as predicted in the
infinite periodic medium [28]. We analyze the kinetic energy Ek =

∫
q0

1
2ρ(v2x + v2y)dx in three q0

cells at different positions, where vx and vy represent the velocity in the horizontal and vertical
directions. In each small cell, the kinetic energy is calculated by doing numerical integration at
8× 8 sample points. The three selected q0 cells are located in the unit cell Q0 2 (cf. Figure 10):
the center q0 cell (red), where a defect will be added, its right neighboring cell (green), and a q0
cell in the corner of Q0 (blue) the farthest from the center cell.



Figure 9. Ricker wavelet used for temporal loading (left) and its frequency content (right).

Figure 10. 2D bounded medium consisting of 5 × 10 small cells. On the left, three sampling
cells are highlighted: the center cell (in red), the neighboring cell (in green), and the marginal
cell (in blue). The right side illustrates the data points of collecting the kinetic energy in each
of these cells.

In Figure 11, the gray rectangles represent the theoretical stop bands, which were obtained
through COMSOL simulations of a model periodic in the horizontal direction. Each unit cell
of the model comprises 5 × 5 small cells. The amplitudes of the kinetic energies in the three
cells decrease to almost zero at the frequency of the stopbands, indicating that the bounded
model effectively captures the wave attenuation behaviors of the periodic model in the horizontal
direction.

Figure 11. Capture of stop bands on the three sampling cells of the bounded periodic model

The bounded periodic model is then used to examine the impact of geometry and material



defects on wave propagation phenomena. Initially, a radius defect ηR = −50% is introduced to
the center inclusion (Figure 12 (a)). The comparison of kinetic energy between the disturbed
cell and its counterpart in the non-disturbed bounded model is illustrated in Figure 12 (b). In
the disturbed cell, a pulse of kinetic energy appears at a frequency within the theoretical stop
band (gray band). This theoretical stop band is obtained from simulations of a model periodic
in the horizontal direction, consisting of unit cells with 5× 5 small q0 cells. The model features
a radius defect of ηR = −50% at the center q0 cell of each unit cell. Figure 12 (c) illustrates
the comparison of kinetic energy on the three sampling q0 cells of the disturbed model. In the
neighbor cell, the energy is significantly smaller than in the defect cell, and the energy within the
marginal cell is nearly zero. This demonstrates that the kinetic energy is localized around the
disturbed cell, and its amplitude decreases rapidly with the increase of distance from the defect.

Figure 12. (a) The bounded periodic model with a radius defect ηR = −50%. (b) Kinetic energy
of the center cell in bounded disturbed model and non-disturbed model (reference model); (c)
Kinetic energy on the disturbed cell, neighbor cell and marginal cell of the disturbed model with
defect of radius ηR = −50%.

Next, Young’s modulus defects of ηEmat = 330% are introduced in the center matrix, as
illustrated in Figure 13. Regardless of the defect amplitude, a kinetic energy pulse is consistently
observed within the defect cell at a frequency within the theoretical stop band. Similar to the
case before, this theoretical stop band is obtained from simulations of a model periodic in the
horizontal direction with a radius defect of ηR = −50% at the center q0 cell of each unit cell.
The amplitude of this pulse diminishes rapidly with distance from the defect.

4. Conclusions and perspectives
This paper presents a series of numerical simulations to qualitatively characterize the influence

of defects on eigenfrequencies and mode shapes of imperfect periodic media. The presence of
defect modes inside the stop bands of periodic media is illustrated, and their mode shapes are
analyzed through numerical simulation. The deformation of the defect mode is localized around
the disturbed cell, and their eigenfrequencies exhibit a monotonic variation with the amplitude



Figure 13. (a) The bounded periodic model with a radius defect ηEmat = 330%. (b) Kinetic
energy of the center cell in disturbed model and non-disturbed model (reference model); (c)
Kinetic energy on the disturbed cell, neighbor cell and marginal cell of the disturbed model with
defect of Young’s modulus ηEmat = 330%.

of the defects. Additionally, the appearance of defect modes is observed within bounded periodic
media featuring defects.
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