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Abstract. We focus herein on the analysis of the one-dimensional Rie-
mann problem arising from the convective subset of a second-moment
turbulent non-conservative model for incompressible flows. The sketch
of proof of existence and uniqueness of the solution is given, assuming
a set of approximate jump conditions. Some first numerical simulations
applying for the Finite Volume method are given and compared with an-
other scheme classically used in CFD codes. This suggests to implement
standard projection schemes to cope with the complete model.
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1 Introduction

Unsteady Reynolds-averaged Navier—Stokes models are widely used in the indus-
trial framework in order to predict incompressible or compressible flows (see e.g.
[8]). Second-moment tensors also arise when modelling shallow-water models (see
[4,5]). All these models contain first-order non-conservative terms which require
special attention (see e.g. [2]). This work is highly motivated by the occurrence
of non-physical oscillations in many practical situations (see e.g. [9]).

2 Second-moment turbulence models

The system of equations is composed of mass conservation (la), momentum
conservation (1b) and second-moment transport equation (1lc):

div (uw) =0,
ou+ (u-V)u+div (R) — div (i) =0, (1b)
3R+ (@-V)IR+R-Vu+Va!l -R+div (Gr) —® =0,

with 3 = —:%1 + 19 (Vﬁ + VHT) the mean stress tensor per mass unit, p the

mechanical pressure. The Reynolds stress tensor R := v/ ® u’ is symmetric and
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it is also expected to be positive and half-definite (called realizability constraint),
owing to its intrinsic form (see [8]). Models for Gr = v’ ® v’ ® u’ usually rely
on a classical first gradient assumption Gg = —Cgrv (R, T) VR, where Cg
is a positive constant, v; is the turbulent viscosity, and T is the time scale
related to turbulent dissipation. Moreover ® = u’ ® div (E/) + div (E’) QRu’
is classically split into two parts:

® =" (Vu, R)+ & (R, T), (2)

where the so-called rapid contribution verifies: ®"(0,R) = 0 and ®"(Vw, 0) =
0. Moreover ®" is linear with respect to V@ (see e.g. [8] for a review of the
turbulence models). The following result is useful to examine the realizability of
the Reynolds stress tensor.

Lemma 1. Assume that the governing equation of a symmetric second-rank ten-
sor R € R3 x R3 is:

R+ @ -V)IR+R-H+H' . R=0.
Let 6 be the determinant of tensor R. Then the governing equation of g is:
0i0Rr + (ﬁ . V) or +2tr(H)ér = 0.

A proof can be found in appendix 1 of [7]. H is deduced from the terms R-Vu+
Vva! - R, ®" and ®°, and the boundedness of the trace of H must be examined
to ensure positive values of dp.

3 A first-order time scheme

Starting with initial conditions (@™, R"™) and using suitable boundary condi-
tions, (@', R"*') arises from the following first-order time scheme:

div (@"') =0, (3a)
an+1l _ =n =n+1
4 Y orvE Cdiv (vaErt!) = — (@ V)@ + div (R))",
At Po
(3b)
Rn+1 -R" . n+1 s n+1 - n
————— —div (Cg, VR"™') = ®* (R""',T) = — ((u- V)R) (3¢c)

At
- (R-vu+va' R)"
+&" (Va,R)".

A Stokes-like step has been applied in the scheme (3a) and (3b) (see, among
others, [12,1]). The space discretization associated with the right-hand-side of
(3b), (3c) is derived from the analysis of the following evolution system (4):

ou+ (w-V)u+div (R) =0, (4a)
R+ @ - V)R+R -Vu+Va!l -R—- & (Vu,R) =0. (4b)
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4 Analysis of the evolution step

In the following, we restrict to the simple Lumley’s model which does not con-
tain so-called rapid terms: ®* = 0. We also restrict from now on to the two-
dimensional framework to ease the presentation. We first recall that the latter
system (4) is hyperbolic if the Reynolds stress tensor is realizable (which is guar-
anteed, owing to lemma 1, since in that case we have: trH = diva = 0). Eq.
(4) is invariant under frame rotation, so we can rewrite it in the (n, 7) refer-
ence frame (where n, T are some unit orthogonal vectors), defining z,, := x - n,
Up =T N, Uy =W T, Rpp =0nTRn, R, :=n"R7 and R,, = 7TR7. We
now define the evolution step in the n—direction, by neglecting the transverse
derivatives, which yields:

Oty + U Optly, + Op Ry, =0, (5a)
Oitbr + UnOptr + OnRyr =0, (5Db)
O Ry + UnOn Ry + 2Ry On iy =0, (5¢)
O¢Rr + unOn Rypr + RynOntiy + RyrOptiy =0, (5d)
O Ryr + unOyRyy 4 2Ry, Onur =0. (5e)

We set W = (uy, tr, Run, Rrr, Rpr). We assume from now on that initial and
boundary conditions comply with the strictly realizability constraint, which will
imply that R remains strictly realizable. Once more, system (5) preserves the
realizability, which implies that R,,, > 0 whatever the unit vector n is.

Proposition 1 (Hyperbolic evolution step). System (5) is hyperbolic. It
admits five real eigenvalues which are:

)\lzun_ \/2Rnn; A2:un - VRn'm )\3:una (6)
A =1Up + vV Rnn, As=Up + V2R .
and the associated right eigenvectors span R®. Fields associated with eigenvalues

A2,3.4 are linearly degenerate (LD). The 1-field and 5-field are genuinely non
linear (GNL).

We refer to [7] for a proof. Note that this can be extended to the three-
dimensional framework. Right eigenvectors are:

T
Ror 2R? 2R,
r = (1, . —/2Rpn, —\fR"; V2R ) , (7a)

Rnn (Rnn) 2 \Y Rnn

2R, ’
=(0,1, 0, — s =V Rpn |, b
" ( VR ) (™)
ry = (Oa Oa Oa 1) O)Tv (7C)

2R T
=10, 1, 0, "L /Ry | 7d
r“ ( N > (7d)
rs = <1,

T
2
= oy, 2l D) (7

=

=
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Riemann invariants I% of the i-th field (f € I, Vw f - r;(W) = 0) are:

IL =< u, + V2R B R, — By ur + R 2 (8a)
R — n nmn» Rnn 9 TT Rnn ) T nT Rnn ]
2 RnT 2

IR = {’U,n, Rn'n; Ur + T7 RTTRnn - an—}a (8b>

I?% = {u'ru Ur, Rnn7 Rn‘r}7 (80)

R,
I;L? = {un» Rnn; Ur — /7Rnn ) RTTRnn - R’IQ’LT}’ (Sd)
R R? 2
5 _ _ nT _ nT _
Iy = {un V 2Rnna Rom ) R.; Rom y Ur R.r Rom } (86)

Due to non-conservative terms in (5), shock relations cannot be derived in
a classical way. Following [2] approximate shock relations can nevertheless be
proposed. These relations are valid in the limit of weak shocks. Assuming a linear
path from left to right with respect to the variable W, these relations write:

o[un] = Unfun] + [Ran], (9a)
olu:] =y, [uT] + [Rur], (9b)
o[Rnn] = 2R, nnlUn] + Un[Ryn], (9¢)
[Rnr] = Rux [ n] + Runltir] + @ R, (9d)
o[Rer] = 2R ] + TlRrs]. (90)

where [z] := x, —z; denotes jump and 7 := =2 is the arithmetic mean between
left and right states of the discontinuity travelling at speed o.

Theorem 1 (Existence and uniqueness of the solution). Considering ap-
prozimate shock relations (9), there exists a unique self-similar realizable solu-
tion (W(xy,t) = w(Z), with W = (un, Ur, Ryn, Rer, Ryr)) to the Riemann
problem associated with system (5) supplemented with strictly realizable initial
conditions W (z,,,0) = WL for z,, <0 and W(z,,,0) = W for x, > 0, if and
only if the following condition holds:

ul —ul < (\/QR,LW + \/2R§n> . (10)
As in the compressible framework, the Riemann problem structure of system

(4) allows to specify wall, symmetry and inlet/outlet boundary conditions.

Proof. The proof follows the main guidelines recalled in [11] and detailed in
[7]. We consider two initial realizable states W® WZL. We look for the four
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intermediate states labelled I, I1, I11, IV from left to right separating the 5
waves.

Step 0: Preliminary calculation. To connect left and right states W"
across the 1% and 5" waves we set z = g > (. To select the physical solution

n

for shocks (9), we use [u,] = u, — ul, <0 (see [7]).
For the 1-shock connection (z > 1):

l
ro_ . ro_ 1 11—z  /pl . ro_ .10 1—2 Ry, .
Rnn - ann’ Up = Up + /2+1 Rnn7 Ur = Uz + Z+1 /T?l )
_.pl . _ pl (B,,)? /
R, =zRl,; Rp, =Rl +(z—1) .

nTt nT?

For the 5-shock connection (0 < z < 1):

Rpp = 2Rl wy =+ 2= VR ) = uf + S2h e
RL )2 )

R:LT = ZR’lILT; R:‘r = Ri’T + (Z - 1)%
To connect the left and right states through the 1-rarefaction wave (respec-
tively 5-rarefaction wave) we use the Riemann invariants (8a) (respectively (8e)).
Step 1: Solution in terms of u, and R,, variables. A glance at (8b),
(8¢), (8d) shows that u, and R, are constant across the three LD waves. First
we can focus only on u,, and R, variables. We denote their intermediate values

by uf, = ufy = uf =u!" =}V and R}, = R}, = R}, = Ri}] = Rl and
link these to initial states WTL:
. R!
ul = uf — hi(21)\/2RE,, with z; = RZ” > 0,
RE (

n —

ul = ! 4 hs(25)\/2RE,, with z5 = R"” > 0,

h1,5(z) are defined using (8a), (8e), (11), (12), following [11]. Note that 2125 =

RR
S We set:

nn

!p(ZE,) = ’U,,r]? — uﬁ — 2R,§nh5(25) — 2R7Llnh1(2’1(25)) =0. (14)

Solving (14) gives z5, hence RY, and uf. The solution is unique since ¥ is a
strictly monotonic function. Its lower and upper bounds enable to conclude that
uf, and Rf, exist if (10) holds. z; and z5 enable to compute the remaining
components (ur, R;r, R,;) of intermediate states I and IV.

Step 2: Solution in terms of u,, R,,;, and R., variables. Let u} =
ull = ul and Rf = RII = R oiven by:

R , RI
’U/: + nT_ _ uT + nT ,

VR, VR (15)
U* _ R:LT _ IV RTILZ

x =u, — .
VR, NI
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Then, deduce R and R thanks to (Rf, REL — R%2) = (RynRer — R2)! and
(REng—I - R:H?) = (RunRrr — R?L‘F)IV'

5 Numerical scheme for the evolution system (4)

The objective of the present work is to obtain a stable numerical scheme (unlike
those usually used, which may use partial upwinding which respect to the mate-
rial mean velocity). Therefore we restrict the presentation to low order schemes
such as Rusanov scheme. Other approximate Godunov schemes and MUSL tech-
niques might also be considered.

For the sake of brevity the scheme is presented in a one dimensional frame-
work. The evolution step (4) can be written (using the incompressibility con-
straint):

OW 0 (u, W) ow
ot = om, 9rn

Wt will be computed using the following Rusanov-like [10] scheme:

+C(W)

0, (16)

Anf(WH = W)+ A (FIL, - FL ) + AN =0, (17)

where the time step At" satisfies the CFL condition max; (|)\:.‘+l|) . 25 < %,
: P

Ax; denotes the size of cell 7. The numerical flux F ?Jr% and the non-conservative

contribution N} are:

n

Wi Wiy A

Froy = )y (W WD, (18a)
n o _Wn
N} = C(W}) (’“ 5 ”) : (18b)

with A? 1 = maxy maxj=;,;+1 (| Ak (unI + C) (W7')|), and where the discrete di-
2

vergence free condition on (uy), 1 holds.

zone L 1 11 117 1%

Un, un(=0) | un Un Un Upn | un(=0)

u£+u§ RﬁT_Rﬁr u£+u§ R7LM'_R§T
ur || uE(=1) |uk 5 T S RV v ul | ufi(=1)
Rnn Rnn(: 05) Rnn Rnn Rnn Rnn Rnn(: 05)
L_ "R nn L R LI _WE nn L R

R R'rI;T(: 0.4) RE (uF—uF)VR - ‘2|' R"LT;-:{M (uf—uf )\/R”I i_ R,,L;;j,w RE RET(: 0.5)
R, ||RE(=03)|RE, | RE 4 P "Wl | pE 4 (x| REIRE (= 0.4)

Table 1. Analytical solution for the tangential flow in the vicinity of a wall.

Unlike scheme (17) and (18), standard schemes only consider material con-

vection upwinding for stabilization: A7, = |(un)7, 1 |-
2 2
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The following test case describes a flow in the vicinity of a wall, while pre-
scribing shear stress. The initial states W% and the intermediate states (I,
I1, III,IV) arising in the 1-dimensional Riemann problem associated with (5)
are given in Table 1. Computations have been performed using code_saturne fi-
nite volume platform. The CFL parameter is set to 0.5 and the meshes contain
from 250 to 32000 cells. The Ll-error and the behaviour of W are shown in Fig.
1, using material-upwind scheme and scheme (17) and (18) accounting for all
convective effects.
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Fig. 1. Profiles of the variables u.,, ur, Rnn, Rrr, and R,, along with convergence
plots obtained by applying material-upwind scheme and Rusanov-like scheme (500
cells, CFL= 0.5, convergence slop of Rusanov-like scheme is 1).
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Of course, more accurate Riemann solvers can be investigated. This method-
ology can be applied to projection step methods or Uzawa algorithms. This
strategy is also suitable for anisothermal flows or mean species transport equa-
tions with second-moment turbulence closures (see [3]). Eventually, more com-
plex models involving non-zero contribution ®" (Vu, R) may be considered,
using the same approach (see for instance appendix 2 in [7]).
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