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Abstract. We focus herein on the analysis of the one-dimensional Rie-
mann problem arising from the convective subset of a second-moment
turbulent non-conservative model for incompressible flows. The sketch
of proof of existence and uniqueness of the solution is given, assuming
a set of approximate jump conditions. Some first numerical simulations
applying for the Finite Volume method are given and compared with an-
other scheme classically used in CFD codes. This suggests to implement
standard projection schemes to cope with the complete model.
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1 Introduction

Unsteady Reynolds-averaged Navier–Stokes models are widely used in the indus-
trial framework in order to predict incompressible or compressible flows (see e.g.
[8]). Second-moment tensors also arise when modelling shallow-water models (see
[4, 5]). All these models contain first-order non-conservative terms which require
special attention (see e.g. [2]). This work is highly motivated by the occurrence
of non-physical oscillations in many practical situations (see e.g. [9]).

2 Second-moment turbulence models

The system of equations is composed of mass conservation (1a), momentum
conservation (1b) and second-moment transport equation (1c):

div (u) = 0, (1a)

∂tu+ (u ·∇)u+ div (R)− div
(
Σ
)

= 0, (1b)

∂tR + (u ·∇) R + R ·∇u+ ∇uT ·R + div (GR)−Φ = 0, (1c)

with Σ := − p
ρ0

1 + ν0
(
∇u + ∇uT

)
the mean stress tensor per mass unit, p the

mechanical pressure. The Reynolds stress tensor R := u′ ⊗ u′ is symmetric and
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it is also expected to be positive and half-definite (called realizability constraint),
owing to its intrinsic form (see [8]). Models for GR := u′ ⊗ u′ ⊗ u′ usually rely
on a classical first gradient assumption GR = −CRνt (R, T )∇R, where CR
is a positive constant, νt is the turbulent viscosity, and T is the time scale

related to turbulent dissipation. Moreover Φ := u′ ⊗ div
(
Σ′
)

+ div
(
Σ′
)
⊗ u′

is classically split into two parts:

Φ = Φr (∇u, R) + Φs (R, T ) , (2)

where the so-called rapid contribution verifies: Φr(0,R) = 0 and Φr(∇u, 0) =
0. Moreover Φr is linear with respect to ∇u (see e.g. [8] for a review of the
turbulence models). The following result is useful to examine the realizability of
the Reynolds stress tensor.

Lemma 1. Assume that the governing equation of a symmetric second-rank ten-
sor R ∈ R3 × R3 is:

∂tR + (u ·∇) R + R ·H + HT ·R = 0.

Let δR be the determinant of tensor R. Then the governing equation of δR is:

∂tδR + (u ·∇) δR + 2tr(H)δR = 0.

A proof can be found in appendix 1 of [7]. H is deduced from the terms R ·∇u+
∇uT ·R, Φr and Φs, and the boundedness of the trace of H must be examined
to ensure positive values of δR.

3 A first-order time scheme

Starting with initial conditions (un, Rn) and using suitable boundary condi-
tions, (un+1, Rn+1) arises from the following first-order time scheme:

div
(
un+1

)
= 0, (3a)

un+1 − un

∆t
+ ∇pn+1

ρ0
− div

(
ν0∇un+1

)
= − ((u ·∇)u+ div (R))

n
,

(3b)

Rn+1 −Rn

∆t
− div

(
CRνt∇Rn+1

)
−Φs

(
Rn+1, T

)
= − ((u ·∇) R)

n
(3c)

−
(
R ·∇u+ ∇uT ·R

)n
+ Φr (∇u,R)

n
.

A Stokes-like step has been applied in the scheme (3a) and (3b) (see, among
others, [12, 1]). The space discretization associated with the right-hand-side of
(3b), (3c) is derived from the analysis of the following evolution system (4):

∂tu+ (u ·∇)u+ div (R) = 0, (4a)

∂tR + (u ·∇) R + R ·∇u+ ∇uT ·R−Φr (∇u,R) = 0. (4b)



A scheme using the wave structure of second-moment turbulent models 3

4 Analysis of the evolution step

In the following, we restrict to the simple Lumley’s model which does not con-
tain so-called rapid terms: Φr = 0. We also restrict from now on to the two-
dimensional framework to ease the presentation. We first recall that the latter
system (4) is hyperbolic if the Reynolds stress tensor is realizable (which is guar-
anteed, owing to lemma 1, since in that case we have: trH = div u = 0). Eq.
(4) is invariant under frame rotation, so we can rewrite it in the (n, τ ) refer-
ence frame (where n, τ are some unit orthogonal vectors), defining xn := x · n,
un := u · n, uτ := u · τ , Rnn := nTRn, Rnτ := nTRτ and Rττ := τTRτ . We
now define the evolution step in the n−direction, by neglecting the transverse
derivatives, which yields:

∂tun + un∂nun + ∂nRnn = 0, (5a)

∂tuτ + un∂nuτ + ∂nRnτ = 0, (5b)

∂tRnn + un∂nRnn + 2Rnn∂nun = 0, (5c)

∂tRnτ + un∂nRnτ +Rnn∂nuτ +Rnτ∂nun = 0, (5d)

∂tRττ + un∂nRττ + 2Rnτ∂nuτ = 0. (5e)

We set W := (un, uτ , Rnn, Rττ , Rnτ ). We assume from now on that initial and
boundary conditions comply with the strictly realizability constraint, which will
imply that R remains strictly realizable. Once more, system (5) preserves the
realizability, which implies that Rnn > 0 whatever the unit vector n is.

Proposition 1 (Hyperbolic evolution step). System (5) is hyperbolic. It
admits five real eigenvalues which are:

λ1 =un −
√

2Rnn, λ2 =un −
√
Rnn, λ3 =un,

λ4 =un +
√
Rnn, λ5 =un +

√
2Rnn.

(6)

and the associated right eigenvectors span R5. Fields associated with eigenvalues
λ2,3,4 are linearly degenerate (LD). The 1-field and 5-field are genuinely non
linear (GNL).

We refer to [7] for a proof. Note that this can be extended to the three-
dimensional framework. Right eigenvectors are:

r1 =

(
1,

Rnτ
Rnn

, −
√

2Rnn, −
√

2R2
nτ

(Rnn)
3
2

, −
√

2Rnτ√
Rnn

)T
, (7a)

r2 =

(
0, 1, 0, − 2Rnτ√

Rnn
, −
√
Rnn

)T
, (7b)

r3 = (0, 0, 0, 1, 0)
T
, (7c)

r4 =

(
0, 1, 0,

2Rnτ√
Rnn

,
√
Rnn

)T
, (7d)

r5 =

(
1,

Rnτ
Rnn

,
√

2Rnn,

√
2R2

nτ

(Rnn)
3
2

,

√
2Rnτ√
Rnn

)T
. (7e)
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Riemann invariants IiR of the i-th field (f ∈ IiR, ∇Wf · ri(W) = 0) are:

I1R =

{
un +

√
2Rnn,

Rnτ
Rnn

, Rττ −
R2
nτ

Rnn
, uτ +Rnτ

√
2

Rnn

}
, (8a)

I2R =

{
un, Rnn, uτ +

Rnτ√
Rnn

, RττRnn −R2
nτ

}
, (8b)

I3R =

{
un, uτ , Rnn, Rnτ

}
, (8c)

I4R =

{
un, Rnn, uτ −

Rnτ√
Rnn

, RττRnn −R2
nτ

}
, (8d)

I5R =

{
un −

√
2Rnn,

Rnτ
Rnn

, Rττ −
R2
nτ

Rnn
, uτ −Rnτ

√
2

Rnn

}
. (8e)

Due to non-conservative terms in (5), shock relations cannot be derived in
a classical way. Following [2] approximate shock relations can nevertheless be
proposed. These relations are valid in the limit of weak shocks. Assuming a linear
path from left to right with respect to the variable W, these relations write:

σ[un] = ûn[un] + [Rnn], (9a)

σ[uτ ] = ûn[uτ ] + [Rnτ ], (9b)

σ[Rnn] = 2R̂nn[un] + ûn[Rnn], (9c)

σ[Rnτ ] = R̂nτ [un] + R̂nn[uτ ] + ûn[Rnτ ], (9d)

σ[Rττ ] = 2R̂nτ [uτ ] + ûn[Rττ ], (9e)

where [x] := xr−xl denotes jump and x̂ := xr+xl
2 is the arithmetic mean between

left and right states of the discontinuity travelling at speed σ.

Theorem 1 (Existence and uniqueness of the solution). Considering ap-
proximate shock relations (9), there exists a unique self-similar realizable solu-
tion (W(xn, t) = w(xnt ), with W = (un, uτ , Rnn, Rττ , Rnτ )) to the Riemann
problem associated with system (5) supplemented with strictly realizable initial
conditions W(xn, 0) = WL for xn < 0 and W(xn, 0) = WR for xn > 0, if and
only if the following condition holds:

uRn − uLn <
(√

2RLnn +
√

2RRnn

)
. (10)

As in the compressible framework, the Riemann problem structure of system
(4) allows to specify wall, symmetry and inlet/outlet boundary conditions.

Proof. The proof follows the main guidelines recalled in [11] and detailed in
[7]. We consider two initial realizable states WR, WL. We look for the four
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intermediate states labelled I, II, III, IV from left to right separating the 5
waves.

Step 0: Preliminary calculation. To connect left and right states Wl,r

across the 1st and 5th waves we set z :=
Rrnn
Rlnn

> 0. To select the physical solution

for shocks (9), we use [un] = urn − uln ≤ 0 (see [7]).
For the 1-shock connection (z > 1):

Rrnn = zRlnn; urn = uln + 1−z√
z+1

√
Rlnn; urτ = ulτ + 1−z√

z+1

Rlnτ√
Rlnn

;

Rrnτ = zRlnτ ; Rrττ = Rlττ + (z − 1)
(Rlnτ )

2

Rlnn
.

(11)

For the 5-shock connection (0 < z < 1):

Rrnn = zRlnn; urn = uln + z−1√
z+1

√
Rlnn; urτ = ulτ + z−1√

z+1

Rlnτ√
Rlnn

;

Rrnτ = zRlnτ ; Rrττ = Rlττ + (z − 1)
(Rlnτ )

2

Rlnn
.

(12)

To connect the left and right states through the 1-rarefaction wave (respec-
tively 5-rarefaction wave) we use the Riemann invariants (8a) (respectively (8e)).

Step 1: Solution in terms of un and Rnn variables. A glance at (8b),
(8c), (8d) shows that un and Rnn are constant across the three LD waves. First
we can focus only on un and Rnn variables. We denote their intermediate values
by u]n = uIn = uIIn = uIIIn = uIVn and R]nn = RInn = RIInn = RIIInn = RIVnn , and
link these to initial states WR,L:

uLn = u]n − h1(z1)
√

2RLnn, with z1 :=
R]nn
RLnn

> 0,

uRn = u]n + h5(z5)
√

2RRnn, with z5 :=
RRnn

R]nn
> 0,

(13)

h1,5(z) are defined using (8a), (8e), (11), (12), following [11]. Note that z1z5 =
RRnn
RLnn

. We set:

Ψ(z5) := uRn − uLn −
√

2RRnnh5(z5)−
√

2RLnnh1(z1(z5)) = 0. (14)

Solving (14) gives z5, hence R]nn and u]n. The solution is unique since Ψ is a
strictly monotonic function. Its lower and upper bounds enable to conclude that
u]n and R]nn exist if (10) holds. z1 and z5 enable to compute the remaining
components (uτ , Rττ , Rnτ ) of intermediate states I and IV .

Step 2: Solution in terms of uτ , Rnτ , and Rττ variables. Let u?τ =
uIIτ = uIIIτ and R?nτ = RIInτ = RIIInτ , given by:

u?τ +
R?nτ√
R]nn

= uIτ +
RInτ√
R]nn

,

u?τ −
R?nτ√
R]nn

= uIVτ −
RIVnτ√
R]nn

.

(15)
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Then, deduce RIIττ and RIIIττ thanks to (R]nnR
II
ττ −R?,2nτ ) = (RnnRττ −R2

nτ )I and
(R]nnR

III
ττ −R?,2nτ ) = (RnnRττ −R2

nτ )IV .

5 Numerical scheme for the evolution system (4)

The objective of the present work is to obtain a stable numerical scheme (unlike
those usually used, which may use partial upwinding which respect to the mate-
rial mean velocity). Therefore we restrict the presentation to low order schemes
such as Rusanov scheme. Other approximate Godunov schemes and MUSL tech-
niques might also be considered.

For the sake of brevity the scheme is presented in a one dimensional frame-
work. The evolution step (4) can be written (using the incompressibility con-
straint):

∂W

∂t
+
∂ (unW)

∂xn
+ C(W)

∂W

∂xn
= 0, (16)

Wn+1
i will be computed using the following Rusanov-like [10] scheme:

∆xi(W
n+1
i −Wn

i ) +∆tn
(
Fn
i+ 1

2
−Fn

i− 1
2

)
+∆tnN n

i = 0, (17)

where the time step ∆tn satisfies the CFL condition maxi

(
|λn
i+ 1

2

|
)
· ∆t

n

∆xi
≤ 1

2 ,

∆xi denotes the size of cell i. The numerical flux Fn
i+ 1

2
and the non-conservative

contribution N n
i are:

Fn
i+ 1

2
:= (un)ni+ 1

2

Wn
i + Wn

i+1

2
−
λn
i+ 1

2

2
(Wn

i+1 −Wn
i ), (18a)

N n
i := C(Wn

i )

(
Wn

i+1 −Wn
i−1

2

)
, (18b)

with λn
i+ 1

2

= maxk maxl=i,i+1 (|λk (unI + C) (Wn
l )|), and where the discrete di-

vergence free condition on (un)n
i+ 1

2

holds.

zone L I II III IV R

un un(= 0) un un un un un(= 0)

uτ uLτ (= 1) uLτ
uLτ +uRτ

2
+

RLnτ−R
R
nτ

2
√
Rnn

uLτ +uRτ
2

+
RLnτ−R

R
nτ

2
√
Rnn

uRτ uRτ (= 1)

Rnn Rnn(= 0.5) Rnn Rnn Rnn Rnn Rnn(= 0.5)

Rnτ RLnτ (= 0.4) RLnτ
(uLτ −u

R
τ )
√
Rnn

2
+

RLnτ+R
R
nτ

2

(uLτ −u
R
τ )
√
Rnn

2
+

RLnτ+R
R
nτ

2
RRnτ RRnτ (= 0.5)

Rττ RLττ (= 0.3) RLττ RLττ +
(RIInτ )

2−(RLnτ )
2

Rnn
RRττ +

(RIIInτ )2−(RRnτ )
2

Rnn
RRττ RRττ (= 0.4)

Table 1. Analytical solution for the tangential flow in the vicinity of a wall.

Unlike scheme (17) and (18), standard schemes only consider material con-
vection upwinding for stabilization: λn

i+ 1
2

= |(un)n
i+ 1

2

|.
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The following test case describes a flow in the vicinity of a wall, while pre-
scribing shear stress. The initial states WL,R and the intermediate states (I,
II, III, IV ) arising in the 1-dimensional Riemann problem associated with (5)
are given in Table 1. Computations have been performed using code saturne fi-
nite volume platform. The CFL parameter is set to 0.5 and the meshes contain
from 250 to 32000 cells. The L1-error and the behaviour of W are shown in Fig.
1, using material-upwind scheme and scheme (17) and (18) accounting for all
convective effects.
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Fig. 1. Profiles of the variables un, uτ , Rnn, Rττ , and Rnτ along with convergence
plots obtained by applying material-upwind scheme and Rusanov-like scheme (500
cells, CFL= 0.5, convergence slop of Rusanov-like scheme is 1).
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Of course, more accurate Riemann solvers can be investigated. This method-
ology can be applied to projection step methods or Uzawa algorithms. This
strategy is also suitable for anisothermal flows or mean species transport equa-
tions with second-moment turbulence closures (see [3]). Eventually, more com-
plex models involving non-zero contribution Φr (∇u, R) may be considered,
using the same approach (see for instance appendix 2 in [7]).
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