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A metric-based adaptive mesh refinement criterion under constrain

for solving elliptic problems on quad/octree grids

Prouvost Lucasa,∗, Belme Ancaa, Fuster Daniela,∗∗

aSorbonne University, CNRS, Institute Jean Le Rond d’Alembert, F-75005 Paris, France

Abstract

In this work we propose and investigate the performance of a metric-based refinement criteria
for adaptive meshing used for improving the numerical solution of an elliptic problem. We show
that in general, when solving elliptic equations such as the Poisson-Helmholtz equation, the
minimization of the interpolation error often used as local refinement criteria, does not always
guarantee the minimization of the total numerical error. Numerical and theoretical arguments
are given to unveil the critical role of the mesh compression – the size aspect ratio between the
finest cell size and the mean cell size of an adapted mesh – to determine whether the estimated
error is purely local meaning that the interpolation error is a good enough error model for
the total error or if other, non-local, sources of error needs to be accounted for. We show
through particular examples that a slightly sub-optimal mesh in terms of interpolation error
may significantly reduce the total error of a numerical solution, depending on the value of the
compression ratio and not on the number of grid points. Based on this observation, we propose a
new method to exclude the grids where non-local errors can control the accuracy of the solution.
This is achieved by an automatic estimation of the optimal compression ratio, which is imposed
as an additional constraint in the minimal element size during the mesh adaptation process.
The method is tested on quadtree and octree grids, showing very satisfactory performances in
reducing the total numerical error despite the additional constrain imposed.

Nomenclature

η Compression ratio

η0 Local optimal compression ratio

ηc Characteristic compression ratio

ηopt Optimal compression ratio

γp Normalized Lp-norm total error

γI
p Normalized Lp-norm interpolation error

h Mean element size

ΠM Continuous interpolation operator

Πh Discrete interpolation operator
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s̃ Source term of a discretized PDE

ũ Discrete solution of a PDE

Cn Isotropic metric-based error prefactor

cn Anisotropic metric-based error prefactor

d∗ Dimensionless mesh density function

H Hessian matrix

h Mesh element size

hmin Mesh minimal element size

l Adaptive mesh level of refinement

L0 Square/cube domain length

lmax Adaptive mesh maximum level of refinement

N Number of elements of the current adapted mesh

Nfine Number of elements of a fine mesh

Ngoal Targeted number of elements for an adapted mesh

Nhmin
Number of elements of a uniformly refined mesh with elements of size hmin

s Source term of a continuous PDE

u Continuous solution of a PDE

u′ Implicit error term

1. Introduction

The numerical resolution of physical and mechanical problems is of primordial importance
in numerous applications, from academical purposes [1] to industrial applications [2]. It is
common knowledge that the analytical solution of the mathematical equations governing these
complex and potentially multi-scale phenomena is out of reach while building and testing ex-
perimental prototypes is a highly costly operation. Numerical simulations render feasible the
understanding and improvement of complex physical phenomena, making them a key ingredient
in the decision-making processes.

The numerical resolution of partial differential equations in problems where multiple scales
with potentially multiple flow phases are involved requires highly accurate numerical schemes
and meshes, which leads to highly costly simulations (see for example [3] where a pseudo direct
numerical simulation combined with a representative volume element is used for the simulation
of water droplets dispersed in a turbulent airflow). A common methodology to increase the effi-
ciency of computations is the use of adaptive methods, for example automatic adaptive meshes.
By increasing locally or ballancing the mesh resolution in regions where a more accurate pre-
diction is needed, it is possible to significantly reduce numerical errors without a significant
increase in computational time. Mesh adaptation is therefore an interesting alternative for
accurate prediction of multi-scale, multi-phase flows or for flow problems with thin boundary
layers and/or singularities such as shocks. The search for efficient and fully automated mesh
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adaptation methods is under continuous development and has been identified as one of the
major bottlenecks in CFD workflows in the CFD vision 2030 Study [4, 5].

The main purpose of mesh adaptation methods is to reach an optimal balance between the
computational cost and the numerical error reduction (or targeted accuracy). The accuracy of
a numerical solution is affected by errors coming from several sources [6, 7, 8, 9]. Discretization
errors account for the errors due to the discrete representation (mesh, solution) of a continu-
ous problem. In particular, interpolation errors measure the discrepancies between the exact
(continuous) solution and the projection of the continuous solution into an element of size h.
Interpolation errors are local measures of the solution accuracy. Other sources of numerical
errors related to the numerical schemes and their implementation are not necessarily local: they
can be advected or diffused throughout the computational mesh.

It has become common practice to quantify mesh discretization errors using interpolation
errors since they are local by nature and can be efficiently used as error indicators for mesh
refinement. H-adaptation methods are the most widespread adaptive methods for Finite Vol-
ume discretizations. They are also called Adaptive Mesh Refinement (AMR) methods and
their core concept is to adapt the size of the mesh elements: fine elements are required in
critical regions, whereas coarse elements are sufficient elsewhere. The generation of new ele-
ments in h-adaptation techniques may be divided in several categories: either an initial group
of elements is divided in smaller elements (cell -based AMR [10, 11], patch-based [12, 13] and
block -based AMR [14]) or the entire domain is completely re-meshed with a new elements’ dis-
tribution at each adaptation step [15, 16]. One currently active research field for h-adaptation
is the metric-based anisotropic adaptation [15, 17, 18, 19], which allows the generation of
anisotropic elements: this is well-suited to follow the features orientation of flow fields. The
metric-based method has been applied to both re-meshing techniques [9, 15, 18, 20], and cell-
based AMR [19, 21]. Of crucial importance in mesh adaptation problems is the definition of an
accurate refinement indicator which also accounts for the physics of the problem to be solved.
Error estimators based on the interpolation error [15, 22, 23, 24] are often used as refinement
criteria for feature-based methods which quantify the interpolation error, |u− Πhu|, identified
as the difference between a continuous (exact) solution u and its interpolation Πhu on a discrete
mesh. For the special case of linear interpolation, this error is governed by the second deriva-
tives of a physical field. Among the interpolation error estimates, some uses high-order accurate
estimates of the solution [25, 26, 27, 28, 29, 30] for relatively smooth solutions. Another ef-
ficient use of the interpolation error in mesh adaptation problems combines the computation
of a metric associated to a continuous interpolate in the Riemannian metric space (see for
example [15, 21, 23, 24, 31]). A continuous representation of the mesh is proposed to solve
the mesh optimization problem leading to the control of the interpolation error in various Lp-
norm. This method has shown to be efficient in capturing all the scales of the flow features
including problems with shocks or discontinuities. The metric-based refinement method has
been traditionnaly developed for tetrahedral and triangular elements and successfully applied
in numerous problems [15, 32, 23, 33]. However, the application of this method to hexahedra
and quadrangular elements is far less studied. Two main directions are under development to
refine these mesh elements using the Riemannian metric theory. The most trivial path is to
generate tetrahedral elements, and recombine them to form hexahedra. Recent works propose
to generate quasi right-angled triangles and tetrahedras, allowing for easy recombination into
hexahedra. These particular elements are obtained through a point-distribution energy mini-
mization process done by the mesh generator [33, 34, 35]. The second direction uses directly
hex-meshes [19, 21, 32, 31]. In these works, a set of initial quad/hex-elements are refined (or
coarsened) based on a metric-based size criterion. This refinement (or coarsening) consists in
successive element divisions (or merging).
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Feature-based (including interpolation error-based) error estimates have a common property:
they are only based on the local representation of the numerical solution. Therefore, they do not
consider the equations being solved, nor they take into account the errors propagation. In order
to account for the partial differential equation (PDE) and the associated discrete solver in the
mesh adaptation problem, many error estimates have been developed that can be divided into
two major classes: the residual-based error estimators and the adjoint-based error estimators.
The residual-based methods [36] originate mainly from the finite-element mathematical con-
text and rely on the estimation of the residuals: the difference between the discretized equation
and its continuous counterpart. Residual-based methods are commonly used as residual-based
errors [37, 38, 39, 40, 41] or in the error transport equation [42, 43, 44, 45, 46]. In the first
case, the residual is directly used to bound the discretization error using usually an energy
norm. The computation and accuracy of the residual depends on the continuous PDE and its
discretization and is either computed analytically or approximated and reconstructed, which
often necessitate to estimate quantities on different (nested) grids. In the second family of
residual-based methods, a (linearized) equation governing the discretization error is written,
and the residual is the source term of this equation. Considering that fact, the regions of higher
residual amplitude are generally considered as the site of production of the discretization er-
ror. This second method intrinsically takes into account the transport of errors from regions
with insufficient resolution [36, 42], but may lead to over-refinement in the regions where it is
transported – referred as pollution error [47], instead of the region it is produced, resulting in
sub-optimal performances [36, 47, 48]. Furthermore, this method requires the solution of an
additional equation or set of equations increasing thus the computational cost.

In cases where one focuses on improving the computation and thus accuracy of some quan-
tity of interest depending on the solution of a PDE, the solution does not need to be resolved
with the same accuracy in the whole domain and the computational resources can rather be
redirected in a given region of interest [49, 50]. These adaptive methods are called adjoint-based
or goal-oriented [51, 52, 53] methods and require the computation of an adjoint state in the
error estimation. Adjoint-based methods generally provides better error rate of convergence
regarding the quantity of interest accuracy than feature-based error estimations [9] since the
mesh refinement effort focuses only on capturing flow features that will affect the quantity of
interest. Several adjoint-based error estimates have been developed in the literature, the most
common one is expressed as a weighted residual formulation computed from primal and/or
dual (adjoint) states [51, 52, 53, 54, 55, 56]. However, other forms of adjoint-based error es-
timates exist, some of which are combined with the interpolation error theory [15, 17, 18, 20]
or more recently the norm oriented framework [57, 58, 59]. These last methods are based on
the continuous framework of Riemannian metrics and propose a priori estimates expressed as
adjoint-weighted interpolation errors.

A large extent of residual-based and goal-oriented methods have been used in the litera-
ture to improve the AMR performances of elliptic PDE solvers, which provide a large amount
of error estimators. Among them, we can for example find residual-based estimators in the
works [60, 61, 62, 63, 64, 65] and goal-oriented estimators in [18, 66, 67, 68]. However, the
former are by nature dependent of the discretization scheme used in the solver while the lat-
ter focus only on minimizing the error of a quantity of interest. Error estimates for elliptic
equations containing non-regular terms, such as Dirac source terms [69, 70, 71], have been also
used as mesh adaptation criterion, as they allow to obtain graded meshes on which the order
of convergence is increased with compared to uniform meshes.

In this paper, we propose to extend the metric-based mesh refinement method of [15] to
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improving elliptic problems resolutions on quad/octree meshes. While this adaptive mesh re-
finement (AMR) method focuses on minimizing interpolation errors, we show that an additional
constraint on the mesh compression – the size aspect ratio between the finest cell size and the
mean cell size – can be defined to ensure the estimated error remains local. Numerical and
theoretical arguments are given to motivate the need for this additional constraint. We provide
the open-source code as part of the Basilisk software [72, 73, 74].

In the next section, we propose a brief description of the numerical solver and grid structure
used to solve the PDE of interest. Section 3 discusses some theoretical measures of error sources
and their propagation, and in Section 4 we illustrate the theoretical results of the errors behavior
on two analytical examples where a mesh coarsening experiment is performed. In Section 5 we
introduce the improved mesh optimization problem method with the automatic computation
of the mesh compression ratio and the efficiency of this methods is tested on several numerical
problems in the last section. We end this paper with some conclusion and perspectives for
future work.

2. Numerical solver and grid structure

In this work, we concentrate on minimizing the total error – the difference between the
continuous analytical solution of a continuous problem and the numerical solution of the
corresponding discretized problem – when solving a discrete Poisson–Helmholtz equation on
quad/octree meshes. Quad/octree grids are an efficient way to create AMR meshes, and they
are designed to facilitate cell refinement and coarsening by only allowing to divide or merge
previously existing cells. We recall here some basic principles regarding the structure and par-
ticularities of the quad/octree grids implemented and tested in the solver Basilisk [11, 73, 72] .

The quadtree (resp. octree) grid structure [11, 75, 76] is composed with squares (resp.
cubes). The core concept is that each square (resp. cube) can be divided into four squares
(resp. eight cubes): the cell before division is referred to as a parent cell, and the four (resp.
eight) new cells are its children. This structural link between parent and child cells defines the
tree-based grids (see figure 1 (left image)). The tree grids are defined from an original element
called the root cell of size L0. The tree is constructed through successive cell divisions, where
all the cells obtained after a common number of divisions of the root cell are by definition at
the same hierarchical level l (with l an integer number) as illustrated in figure 1 (right image).
Each cell having the same level l has the same number of parent cells, and the same size h
which is directly obtained as a function of the root cell size :

h =
L0

2l
. (1)

The tree grid structure contains two types of cells: the cells without children on which the
solution is computed, called leaf cells or leaves, and the cells with children – called parent cells.
The minimal cell size hmin of a non-uniform mesh is represented by the maximum refinement
level lmax

hmin =
L0

2lmax
. (2)

Three important characteristics should be highlighted. First, quad/octree grids are composed
of isotropic elements, where each mesh element is defined by a unique length h (see (1)). Sec-
ondly, the set of element size h(l) forms a discrete set due to the dependence on the associated
level l, which is an integer value for each mesh element. This introduces jumps in the transition
of the maximum grid size and imposes a finite size of the mesh optimization problem, which for
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a given number of grid elements N can be shown to scale as NN/3 in 2D domains and the max-
imum admissible level of refinement is lmax ≈ N/3. Finally and to ease solvers implementation,
the quad/octree structure of Basilisk limits the element size change between two neighbour-
ing elements, which can not be different than one level. This feature, called 2:1 constraint in
Basilisk [11], is also known as 1-irregularity rule [77, 78] and graded mesh and limit the space
of possible solutions compared to methods based on non-graded quad/octree [79, 80, 81, 82].
The number of cells which must be added to respect this constraint is expected to be small
for sufficiently smooth solutions (absence of shock waves or singularities), as it can be inferred
from the results presented in [79, 80, 81, 82].

level 0

level 1

level 2

level 3

Figure 1: Example of the structure of a quadtree grid.

One important property of an adaptive grid is the compression ratio η defined as

η =
N

Nhmin

, (3)

where N is the number of cells of an adapted mesh and Nhmin
is the number of cells that would

contain a uniform mesh whose cell size is equal to the minimum grid size hmin of the adapted
grid. The compression ratio represents a measure of the level of compression of a grid, and
by definition it is bounded in the interval η ∈]0, 1]. The limit η = 1 corresponds to a uniform
mesh, whereas η tends to 0 as long as the number of elements decreases while keeping a constant
minimal cell size. The compression ratio may be rewritten as a function of a cell size ratio.
Suppose h is the mean cell size of an adapted mesh with N elements, h and N are linked by
the relation N =

(
L0/h

)n
, with L0 the domain size and n the problem dimension. Using the

number of elements of a uniform mesh with the minimum element size, Nhmin
= (L0/hmin)

n,
we deduce that the compression ratio is directly related to the ratio between the minimum and
averaged grid size

η =

(
hmin

h

)n

. (4)

3. Error sources in a numerical solution

3.1. General description

Let us consider u the exact solution of a continuous partial differential equation (PDE)
expressed through it’s continuous operator L and source term s as:

Lu = s (5)

with appropriate boundary conditions. The discretization of the system above on a given grid
is expressed as

L̃ũ = s̃ (6)
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where L̃ represents the discretized operator applied to the numerical approximate solution ũ.
The objective is to quantify the total error, i.e ∥u− ũ∥Lp(Ω) commited on a computation domain
Ω for a given Lp norm.
We introduce a linear interpolation operator Πh and an error measure :

u′ ≡ ũ− Πhu

which accounts for the difference between the numerical solution ũ and the interpolation of the
exact solution Πhu. In some works such as [18, 24] this error term is called implicit error. Using
the triangle inequality, it readily follows that the total error is bounded by

∥u− ũ∥Lp = ∥u− Πhu− u′∥Lp ≤ ∥u− Πhu∥Lp + ∥u′∥Lp (7)

This representation of the total error allows us to isolate the contribution of the purely local
interpolation error intrinsic to the structure of the solution, ∥u− Πhu∥Lp , and the error intro-
duced in the numerical solution due to the discretization of the PDE, ∥u′∥Lp . Indeed, suppose
a linear discretization operator L, then the additional source of error u′ verifies the relation:

L̃u′ = s̃− L̃(Πhu). (8)

The right hand side in this relation is the residual of the discretized equation when the exact
solution is interpolated into a given grid. This representation of the total error allows writting
an explicit expression of the contribution of the purely local error into the estimation of the
total error.

The interpolation error is a lower bound of the total numerical error. For situations where
∥u− Πhu∥Lp ≫ ∥u′∥Lp the total numerical error is essentially controlled by local errors and the
strategies to model and minimize such errors are known and local. Otherwise, the techniques
to minimize u′ are more involved. In this work, we will evaluate the relative contribution of
both sources of errors when adapting the grid using only the interpolation error as refinement
indicator.

3.2. Interpolation errors

We focus here on modeling the interpolation errors introduced by classical second order
methods where the solution is bilinearly interpolated from exact nodal values. In the context
of Riemannian metric-based mesh adaptation, a continuous interpolation error – equivalent
to the discrete interpolation error – is defined and allows to find an optimal mesh as the so-
lution of an interpolation error minimization problem. Expressions for the local and global
optimal error for grids containing anisotropic triangular/tetrahedral elements has been derived
in [83, 84]. The core of this approach is to use a continuous formulation of the mesh which
is possible by equivalence relationships as shown in references bellow. A continuous mesh
M(Ω) = (M(x))x∈Ω in a domain Ω is then defined using the Riemannian metric, a symetric
positive defined matrix associated to each vertex in the discrete mesh H. In this continuous
framework the mesh adaptation problem is convex and the optimal mesh is obtained such that
all simplicial elements are unit elements in the computed Riemannian metric.

Let u be a quadratic positive function with H its associated Hessian matrix, and ΠM the
continuous linear interpolation operator in the continuous Riemannian metric space. Loseille
and Alauzet [83, 84] show that a family of optimal grids exist for which the expressions of
the local continuous interpolation error associated to x ∈ Ω, |u(x)− ΠMu(x)|, and the global
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interpolation error, ||u− ΠMu||Lp , can be written as

|u− ΠMu|(x) = cn n

(∫
Ω

(det(H(x))
p

2p+n dx

) 2
n

(det(H(x)))
1

2p+n N
−2/n
goal (9)

||u− ΠMu||Lp = cn n

(∫
Ω

(det(H(x))
p

2p+n dx

) 2p+n
np

N
−2/n
goal (10)

where N∗ is the mesh complexity, n is the dimension of the problem and cn is a constant de-
pendent on the problem dimension: c2 = 1/16 and c3 = 1/20. In the asymptotic regime, Ngoal

is proportional to the number of vertices [84]. This result has been extended to non-quadratic
functions by considering the absolute Hessian, |H| obtained by taking the absolute eigenvalues
from the Hessian H (see [84]).

In this work, we extend this theory to quad/octree grids containing square/cubic elements.
First, we extend the definition of a unit element to the case of a polyhedron as in [85]: A
polyhedron K = (ei)i∈ne with ne edges is unit with respect to a metric M if the length of all
of its edges is unit in this metric. In 2D, a square element with a length h is unit for the metric
Mu = h−2I2, with I2 the identity matrix. Following [84], we define the continuous interpolation
operator ΠM such that the continuous error |u − ΠMu| is equal to the discrete interpolation
error on a unit square/cubic element K represented by its metric Mu:

|u− ΠMu|(x) = Cn tr
(
M−1/2

u (x)H(x)M−1/2
u (x)

)
(11)

where u is a quadratic positive function with the associated Hessian H, tr(·) is the trace of a
matrix and Cn = C2 = C3 = 1/12. The details of the demonstration leading to these results
are summarized in Appendix A. As in the case of simplicial elements, we extend this result to
non-quadratic functions by considering their absolute Hessian |H| obtained from their Hessian
H by taking its absolute eigenvalues. Thus, the representation of the continuous local error
obeys the form

|u− ΠMu|(x) = Cn tr(|H|(x))h2. (12)

The search for an optimal mesh that minimizes the global error in Lp norm writes :

Find min
M

(∫
Ω

(|u− ΠMu|(x))p dx

)1/p

, (13)

under the constraint C(M ) =

∫
Ω

(hn(x))−1 dx = Ngoal. (14)

Note that the mesh complexity Ngoal used as a constraint in the error minimization problem is
equivalent to the number of elements of the optimized mesh (see Appendix C).
The optimization problem is solved using Lagrange multipliers theory as detailed in Appendix
C, from which follows that the local interpolation error of an Ngoal element optimal grid is

|u− ΠMu|(x) = Cn

(∫
Ω

( tr(|H|(x)))
np

2p+n dx

) 2
n

( tr(|H|(x))) n
2p+n N

− 2
n

goal . (15)

From the local error estimate, a global formulation is readily obtained as

||u− ΠMu||Lp(Ω) =

(∫
Ω

(|u− ΠMu|(x))p dx

)1/p

= Cn

(∫
Ω

( tr(|H|(x)))
np

2p+n dx

) 2p+n
np

N
− 2

n
goal .

(16)
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Comparing eqs. (10) and (16), we observe that, as expected, and because any n×n symmet-
ric matrix with positive eigenvalues matrix A verifies n det(A)1/n ≤ tr(A), the minimum error
for grids containing only isotropic square/cubic elements is always larger than the values re-
ported for grids containing anisotropic simplicial elements. For both, anisotropic and isotropic
cases, the local error can be written as a local function that depends on the Hessian multiplied

by the square of the averaged cell size N
−2/n
goal = h

2
/
(∫

Ω
dΩ
)2/n

and a prefactor that depends on
the Lp norm chosen for mesh optimization.

It is interesting to note that the compression ratio (equation (4)) can be computed for grids
that minimize the interpolation error. First, the global error is a discrete sum of local errors

||u− ΠMu||Lp(Ω) =

(∫
Ω

(|u− ΠMu|(x))p dx

)1/p

≈
(

N∑
i=1

(|u− ΠMu|pihn
i

)1/p

(17)

Suppose a grid with constant local error, then using equation (12), the local quantity |u −
ΠMu|pihn

i implies that the quantity:

Clocal = tr(|H|(x))h
2p+n

p

i =
||u− ΠMu||Lp(Ω)

Cn N
1
p

goal

=

(∫
Ω

( tr(|H|(x)))
np

2p+n dx

) 2p+n
np

N
− 2p+n

np

goal (18)

is also a constant for all cells. This defines an optimal distribution of element size

h(x) =

 ||u− ΠMu||Lp(Ω)

CnN
1
p

goal tr(|H|(x))


p

2p+n

=
(
∫
Ω
( tr(|H|(x)))

np
2p+n dx)1/n

tr(|H|(x))
p

2p+n

N−n
goal (19)

which, using equation (4) and the definition of the averaged grid size h =
(∫

Ω
dx/

∫
Ω
h−n
i dx

)1/n
,

can be also writen as

h(x)

h
=

(tr(|H|)
np

2p+n )1/n

tr(|H|(x))
p

2p+n

, (20)

where the overline is used to denote volume average. The ratio between the grid size and the
averaged grid size is a function that does not depend on the number of grid points (e.g. the
element size) for all grids minimizing the interpolation error. Thus, the following value of the
compression ratio (equation (4)) for optimal grids

η0 =
tr(|H|)

np
2p+n

max(tr(|H|)
np

2p+n )
(21)

is an intrinsic property of the solution that is independent of the number of grid points. It is
imposed by the ratio between the averaged value of the Hessian of the function and its maxi-
mum value, which can take small values for cases where the interpolation error is concentrated
in small regions of the domain.

3.3. Propagation errors

Unlike interpolation errors, which depend on the structure of the Hessian of the solution
only and not on the equation itself, the behavior of u′ depends on the nature of the equation.
In this study we focus on the Poisson-Helmholtz equation :

Lu = D∇2u+ λu = s . (22)
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with D a diffusion coefficient, λ a reaction coefficient and s the source term.
Introducing nodaly exact values of the source, the propagation error is then given by the solution
of the discretized equation (8) as

D∇̃2u′
i + λu′

i = −D(∇̃2(Πhu))i − λ(Πhu)i + si. (23)

Subscript i holds here, as well as for the rest of this paper, for values applied at node coordinate
xi.
Adding and subtracting the exact value of the Laplacian on the right-hand side and using
equation (5), the previuous expression writes

D∇̃2u′
i + λu′

i = s′i (24)

where
s′i = D

[
(∇2u)i − ∇̃2(Πhu)i

]
represents the source term in the error transport equation (24) and is proportional to the errors
due to the numerical discretization of the Laplacian operator applied on the projection of the
exact solution on a given grid.

Although the purpose of this work is not to model these errors, it is important to understand
the behavior of this source term in order to clarify the limits of a purely local adaptation criteria.
Let us consider the 1D version of the discretized Laplacian operator applied on the nodal exact
interpolated values (ui = (Πhu)i),

s′i = D(∇2u)i −D
1

h2
i

 ui+1 − ui

1
2

(
hi+1

hi
+ 1
) − ui − ui−1

1
2

(
hi−1

hi
+ 1
)
 .

This discretized formula can be further developed using Taylor expansion to express the values
on the neighboring cells. For the cells not touching the boundary where the level of refinement
is equal to all neighboring cells we readily find

s′i = − 1

12
Dui,xxxxh

2
i +O(h4

i ).

For 1D uniformly refined grids and λ = 0 we can integrate the equation (24) for the error to
obtain

u′ = − 1

12
ui,xxh

2
i +O(h4

i ).

Thus, u′ contains local errors that, like the interpolation errors, are proportional to the Hessian
of the solution, which is consistent with previous works where u′ is represented as a local
error [38]. Note that for λ ̸= 0, u′ is no longer purely local, and a local interpolation error
model will most likely be insufficient to fully quantify the total error. This situation is even more
problematic when the level of refinement changes. In this case the leading order contribution
of the source term becomes

s′i =
1

2
Dui,xx

(
1− hi+1 + hi−1

2hi

)
+O(h2

i ) (25)

implying that the error term u′ is controlled by the change of the grid size and the second
derivative of the function. If we consider the limit of a continuous and sufficiently fast change
of the level of refinement, an approximate model for the source can be obtained using the
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dimensionless density function d∗ = dh = h/h that does not depend on the number of grid
cells. Using the approximation

1− hi+1 + hi−1

2hi

≈ −1

2
h,xxh = −(d−1

∗ ),xx
2d∗

h
2
=

h
2

2d3∗

(
d∗,xx −

d2∗,x
d∗

)
,

the source term in the continuous limit can be modeled as

s′(x) ≈ −D
u,xx

4d3∗

(
d∗,xx −

d2∗,x
d∗

)
h
2
.

In a grid where the level of refinement changes continuously, we can then write the general
solution using the Green function G as

u′ = −1

4
Dh

2
∫

G(x, ξ)
u,ξξ(ξ)

d3∗(ξ)

(
d∗,ξξ −

d2∗,ξ
d∗

)
dξ

which reveals that u′ is proportional to the square of the grid size (e.g. it is a second order
error) that it is no longer proportional to the Hessian of the function. Note that the family of
grids sharing the same distribution of normalized grid size distribution d∗ introduce the same
error that is propagated in the solution. This is indeed the case for all optimal grids, for which
this ratio is given by equation (20). When the error introduced in the regions where the level
of refinement change is preponderant, we cannot expect that a correlation exist between the
interpolation error and the error introduced by the change of the level of refinement, invalidat-
ing the use of any local adaptation criterion.

4. Evaluation of the sources of errors in two numerical examples

In this section, we focus on evaluating the relative importance of the two types of errors
previously introduced - local and propagated - using two numerical examples. Let us first
introduce the normalized error ratio

γp ≡
||u− ũ||Lp(Ω)

Cn

(∫
Ω
( tr(|H|(x)))

np
2p+n dx

) 2p+n
np

N− 2
n

, (26)

as the ratio between the total error on a grid containing N points, ||u− ũ||Lp , and the minimum
interpolation error that can theoretically be obtained in an optimal grid with the same number
of points (see equation (16)). This factor represents the relative increase of the total error
obtained in a grid with respect to the minimum interpolation error achievable. This ratio is a
loss factor such that by definition γp = 1 when the total error on the adapted mesh is equal to
the theoretical minimal interpolation error for the same number of elements. Additionally, we
define

γI
p ≡ ||u− Πhu||Lp(Ω)

Cn

(∫
Ω
( tr(|H|(x)))

np
2p+n dx

) 2p+n
np

N− 2
n

, (27)

as the ratio between the interpolation error in any arbitrary grid containing N points and the
minimum interpolation error that can be achieved with N grid points. This factor always verifies
γI
p ≥ 1 and it quantifies the loss of performance of a given grid with respect to the optimal grid

in terms of interpolation error only. Therefore, γI
p = 1 for grids minimizing the interpolation

error. In general, if the interpolation error is preponderant, γI
p is a good approximation of γp.
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(a) Problem A: uA (b) Problem B: uB
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Figure 2: Representation of the two reference solutions for Problem A (left image) and respectively Problem
B (right image)

We focus on two different numerical examples represented in figure 2 associated with the
solution of the Poisson-Helmholtz equation with coefficients D = 0.01 and λ = −1 and where
the source term s is computed such that the solution u is equal to a known function.
The first problem (problem A) is chosen as an illustrative example where we will clearly show
below the problems associated to local adaptation criteria. The analytical solution is

uA(x, y) = exp

(
−
(
xy − a

κ2

)2
)

(28)

with a = 3π/50 and κ =
√

1/(50π) ≈ 0.08.
The second problem (problem B) is chosen as a known problem where local adaptation criterion
has already been shown as an effective way to reduce the numerical errors [86, 87]:

uB(x, y) = xy2 − y2 exp

(
2(x− 1)

κ

)
− x exp

(
3(y − 1)

κ

)
+ exp

(
2(x− 1) + 3(y − 1)

κ

)
, (29)

with κ = 10−2. The domain size for both problems is (x, y) ∈ [0, 1]2.

Our objective in this section is not to test any grid adaptation strategy, but to evaluate
the consequences of minimizing the interpolation error. To that end we perform the following
coarsening study: starting with an initial uniform mesh of level lmax where the solution and
the corresponding total and interpolation errors are calculated, a series of adapted meshes are
obtained by coarsening the cells containing the smallest interpolation error. On each mesh, the
numerical solution is computed by solving the discrete Poisson-Helmholtz equation, which allow
us to compute the total numerical error obtained as the difference between the numerical and
the analytical solution integrated in the L2-norm with a 5 points Gauss quadrature rule. At
the same time, the analytical cell-centered solution is used to compute the exact interpolation
error, which is also integrated in the domain using a 5 points Gauss quadrature rule. This
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(a) Coarsening study results for problem A (uA)
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(b) Coarsening study results for problem B (uB)

Figure 3: Interpolation error obtained for a coarsening study: an initially uniform mesh is successively coarsen
based on the interpolation error. lmax ∈ J8, 13K.

procedure allows us to monitor the evolution of both numerical and interpolation errors when
reducing the number of grid elements.

Figure 3 illustrates the evolution of the interpolation error as a function of the number
of elements on the various grids obtained for various experiments carried out with a differ-
ent initial value of the maximum level of refinement imposed (lmax ∈ J8, 13K). As reference,
we include the theoretical convergence curves for a uniform grid (plain red curve, obtained in
equation (B.2)) and the isotropic metric-based estimation of the optimal interpolation error
convergence curve (plain black curve, obtained in equation (16)). We observe that for nearly
uniform grids, most of the elements reach the imposed minimum grid size and the interpolation
error is almost insensitive to the number of elements. This regime spans until the error is close
to the minimal interpolation error curve where a smooth transition occurs tending to follow the
optimal convergence curve theoretically obtained for quadtree grids. In both cases, when the
grid is uniform, the interpolation error is well predicted by the theory. The theory also predicts
well the minimum interpolation error for a given number of grid points N , the accuracy of the
prediction being better as we increase the number of elements.
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(a) Coarsening study results for problem A (uA)
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(b) Coarsening study results for problem B (uB)

Figure 4: Total numerical error obtained for the coarsening study: an initially uniform mesh is successively
coarsen based on the interpolation error. lmax ∈ J8, 13K.

Figure 4 represents the L2-norm of the total error computed on the same grids than those
where the interpolation error is analysed. For grids close to a uniform grid, the behavior of the
total error is nearly identical to that of the interpolation error, showing a regime where the total
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error is almost insensitive to the total number of cells. Still it is worth noting that the total
error obtained for the problem B is larger than the interpolation error even for cartesian grids,
pointing to the existence of the additional source of error. As we approach the optimal curve,
the behavior of the total error is markedly different in the two considered examples. While in
problem A the total numerical error increases significantly leading to results where the total
error is one order of magnitude larger than the optimal convergence curve, in the problem B
the total numerical errors remain close to the optimal convergence curve. These observations,
which hold irrespective of the maximum level of refinement imposed, indicate that in problem
A the total error is not always correlated with the local interpolation errors preventing the
direct application of a refinement criterion based on the local interpolation error. Instead, for
problem B the total error seems to be always correlated to the interpolation error even for
nearly optimal grids.
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(a) Problem A: Normalized error γ2 versus compression ratio η
for all the grids represented in figure 4a
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(b) Problem B: Normalized error γ2 versus compression ratio η
for all the grids represented in figure 4b

Figure 5: Normalized error obtained for coarsening studies: an initially uniform mesh is successively coarsen
based on the interpolation error.

Figure 5 shows the normalized total error γ2 obtained in the L2 norm, as a function of the
compression ratio η. An interesting remark is that all curves superpose relatively well irrespec-
tive of the minimum grid size imposed, showing how these quantities are well suited to describe
the behavior of the error. The shape of the obtained function is problem dependent: while
for problem A a clear minimum value of the normalized error γ2 appears for a nearly constant
value of the compression factor, for problem B the normalized error is almost a monotonically
decreasing function of η. In general, when starting to coarsen a uniform grid (e.g. values of
η close to one), the normalized error decreases quickly when decreasing the value of η until
reaching values of γ2 close to the optimal value. This can be identified with a group of grids
where the minimization of the local interpolation error is an effective tool to reduce the total
error. However, below a critical threshold, the total numerical error can significantly increase
despite the reduction of the local interpolation error (figure 5a). This behavior is attributed to
the drastic loss of correlation between the local interpolation error and the local total error, as
we can see in figure 6. Despite the fact that u′ is non-zero even for cartesian grids, both errors
remain relatively well correlated in problem B for all values of η, while we observe a drastic loss
of correlation below a critical value of η for problem A. This invalidates the use of any strategy
based on local error adaptation to guide the optimization of grids in this region.

An example of an optimal grid minimizing the total error and respectively the interpolation
error using the same number of elements is shown in figure 7. The cell size distribution is
narrower for the grid minimizing the total error (l ∈ J5, 12K) than for the grid which minimizes
the interpolation error (l ∈ J3, 13K). This leads to a significant source of errors in the regions
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(b) Problem B

Figure 6: Linear regression coefficient between the total numerical error and the interpolation error for all the
grids included in figure 4.

where the level of refinement changes, that are not correlated to the interpolation errors as
discussed in Section 3.3. Thus, while in the case of the optimal mesh minimizing the total
error, the error is concentrated in regions where the element size is minimal, in the case of
the optimal mesh minimizing the interpolation error, the total error is maximal in the regions
where the element size varies. One can also note that the amplitude of the local total errors
is significantly larger in the last case, which is in agreement with the results observed in figure 4.

This observation is confirmed in figure 8, which shows the evolution of the interpolation error
starting from a mesh minimizing the interpolation error (figure 7) and introducing a constraint
on the minimum grid size. Then, a series of AMR iterations are performed until the number
of elements of the final mesh is equivalent to the number of elements of the starting mesh.
We clearly see in figure 8 that, by reducing the minimal cell size, the total error is reduced
by around one order of magnitude at the cost of an increase of the interpolation error. These
results clearly show that the mesh refinement criterion based only on the local representation
of the interpolation error is not sufficient to successfully reduce the total error.

5. An adaptive refinement criterion under constrain

5.1. Refinement criterion

In order to achieve the desired number of grid points, we need to establish a criterion
to divide or merge the cells. In the cells where the interpolation error is preponderant, the
interpolation error is proportional to a local function depending on the Hessian of the function
and the square of the element size. When the targeted number of grid points Ngoal is imposed,
we update the value of Clocal (equation (18)) using the following iterative procedure

log(C
(j+1)
local ) = log(C

(j)
local) +

d log(Clocal)

dN
(Ngoal −N (j))

where N (j) is the number of grid points at the current iteration j and log(Clocal) is computed
as

log(Clocal) = log

( ||u− Πhu||Lp

CnN1/p

)
to obtain

C
(j+1)
local = C

(j)
local exp

[
−1

p

Ngoal −N (j)

N (j)

]
. (30)
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Figure 7: Illustration of grids (left), the corresponding grid levels (middle) and the local total error (right)
obtained with the coarsening study. (Top) Optimal grid minimizing the total error (1 512 157 cells) and (bottom)
optimal grid minimizing the interpolation error (1 578 697 cells).

These conditions are sufficient to drive the process of mesh adaptation in the absence of any
additional constrain on the algorithm, leading to grids that minimize the interpolation error
with a given number of grid points Ngoal.

5.2. Mesh compression constrain

We have seen that the minimization of the total error is characterized by an optimal com-
pression ratio ηopt, which is a priori unknown. We have concluded from an illustrative example
that meshes obtained after minimizing the interpolation error can produce results with poor
numerical performances as a consequence of the small values of the compression ratio associated
with these grids. This issue is similar to mesh gradation problems already observed by other
authors [85, 88] and shows to be directly linked to the generation of numerical errors in the
regions where the level of refinement change.

In those grids where u′ is preponderant with respect to the interpolation error, there is no
guarantee that the minimization of the interpolation error leads to grids that minimize the
total numerical error. It is then required to correct the strategy of grid adaptation, in order to
restrict the use of local grid adaptation strategies only to situations where the error propagated
in the solution is not significant. As we have seen, one effective strategy to discriminate among
all possible grids those where the propagation error can control the total error is to use the
compression ratio. Thus, the problem is reduced to finding the value of the compression ratio
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Figure 8: Evolution of the interpolation error and the total numerical error as a function of the iteration number.
The starting mesh is the result of the interpolation error minimization problem for a grid with N = 1512157
elements (figure 7). Then, we impose the maximal cell level to lmax = 12 and we apply recursive AMR steps
until converging to a mesh with the given number of elements Ngoal

below which the total error can be eventually controlled by non-local errors. We note that
imposing the minimum value of the compression ratio as defined in equation (3), is equivalent
to imposing the minimum grid size hmin during the grid adaptation strategy for a fixed number
of grid points Ngoal:

hmin = L0

(
η

Ngoal

) 1
n

, (31)

where, for quad/octree grids, the minimum grid size is given by the maximum level of refinement

lmax =
1

n
log2

(
Ngoal

η

)
(32)

which can only take discrete integer values for quad/octree grids .

Although the optimal value of η for which the total error is minimized depends on the
capability to predict u′, it is possible to propose a simple constraint on the minimum grid size
using the conclusions extracted from the numerical experiments reported in figure 3, where
we have seen that the minimization of the interpolation error starting from a cartesian grid
with h = hmin leads to a roughly iso-error transition between a cartesian grid and an optimal
grid minimizing the interpolation errors. To obtain an estimation of the optimal value of the
compression ratio that ultimately defines lmax we introduce a characteristic compression ratio,
ηc, obtained by balancing the error of an optimal grid (equation (16)) and a uniform grid
(equation (B.2)):

Cn L
2
0

(∫
Ω

tr(|H|(x))p dx

) 1
p

N
− 2

n
hmin

= Cn

(∫
Ω

( tr(|H|(x)))
np

2p+n dx

) 2p+n
np

N
− 2

n
goal

which gives

ηc =
Ngoal

Nhmin

=

(∫
Ω
( tr(|H|(x)))

np
2p+n dx

) 2p+n
2p

Ln
0

(∫
Ω
tr(|H|(x))p dx

) n
2p

. (33)

Like η0, the value of ηc is an intrinsic property of the sensor u that can be obtained analytically
for any given function and it depends on integrated quantities based on the Hessian of the
function, the dimension of the problem and the error norm.
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Figure 9: Total (exact) error and interpolation error (exact and estimated) after the solution of the interpolation
minimization problem without/with constrain as a function of the minimum grid size of the resulting grid. The
results are obtained for the results for N = 29 × 29 elements.

In general, the loss of performance in terms of interpolation error only is expected to be
small for η < ηc, while an exponential increase in the interpolation error is expected for η > ηc.
This is confirmed in figure 9, where, for a given number of grid points (Nobj = 29 × 29 cells),
we show the resulting normalized error for grids obtained with and without imposing the min-
imum grid size (e.g. minimum compression ratio) in the interpolation minimization algorithm.
We remark that the smallest value of the compression ratio tested is freely selected by the
interpolation error minimization algorithm without any explicit restriction on the minimum
grid size. As expected, the interpolation error decreases as the minimum grid size is reduced
in both problems considered. However, the total error behaves very differently in each case.
While in problem A a clear minimum on the total error is observed, the total error monotoni-
cally increases with the minimum grid size in problem B. Still, close to η/ηc = 1, we observe a
clear correlation between the interpolation error and the total error in both problems and only
below a critical threshold of the compression ratio and for problem A, we observe the loss of
correlation between both errors described previously.

The results of figure 9 also indicate that in the absence of any model to predict the response
of the propagation errors, a first estimation of the optimal compression ratio is ηopt ≈ ηc. The
minimization of the local interpolation error under this constraint leads to a family of sub-
optimal solutions that are close to the minimum interpolation error for an imposed number
of grid points Ngoal but that significantly reduces the total error. In quad/octree grids, the
problem of minimizing the total error is reduced to choose among a typically small number
of grids obtained for a fixed number of elements after minimizing the local interpolation error
under a constraint on the minimum grid size. This aspect will be discussed in the last section
of this manuscript.

5.3. Algorithm

The algorithm in diagram 1 below summarizes the basic steps of the adaptation criteria
proposed and implemented in Basilisk solver. Using as inputs the error norm p, the number
of desired points Ngoal and the maximum level of refinement lmax, the algorithm provides the
grid that minimizes the interpolation error. Note that the value of lmax can be imposed by
equation (34) using an estimation of ηc (equation (33)) obtained from a currently available es-
timation of the solution. In the absence of this restriction, the algorithm provides the grid that
minimizes the interpolation error. The additional constraint is thus imposed as input (through
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lmax ) of the algorithm.

Another important ingredient of the algorithm is the imposition of the 2:1 cell level transition
constrain (see section 2). This feature, inherent to the Poisson solver implemented in Basilisk
for adaptive grids, has the advantage to naturally limit the source of errors introduced due to
the change of level of refinement.

Given an initial mesh M0, the error norm p, lmax and Ngoal;
while N ̸= Ngoal ± 3% do

Compute the solution Si on Mi ;
foreach element do

Compute Clocal;
if Clocal(L

p) > ε and l < lmax then
Refine the cell;

else
if Clocal(L

p) < ε/4 then
Coarsen the cell;

end

end

end
Impose 2:1 cell level transition ;
Count the number of elements N ;
Update ε;

end
Algorithm 1: Adaptation loop.

6. Numerical test cases

In this section, we evaluate the performance of the new algorithm presented previously. The
mesh refinement criteria is based on pure local interpolation errors computation and we per-
form the mesh adaptation using both no constraints on the minimum grid size and a variable
constraint on the minimum grid size. Unlike the numerical results presented previously, here
we use an estimation of the interpolation error based on a currently available numerical solu-
tion, rather than evaluating the interpolation error using the analytical solution of the problem.

6.1. Two dimensional tests

We investigate here the performance of the mesh adaptive method applied to Problems A
and B introduced in Section 4.

Figure 10 shows the total error convergence curves obtained for various grids obtained after
the minimization of the interpolation error without constraint. For problem A, we observe that
the grids obtained have errors that are almost one order of magnitude larger than the opti-
mal (minimum) values of the interpolation error theoretically estimated while the algorithm
provides nearly optimal grids for problem B. These results are consistent with the numerical
experiments reported in the previous section, where we have seen that the minimization of the
purely local error leads to grids with large numerical errors in problem A.

Figure 11 shows the results obtained after imposing on both problems the constraint on the
maximum level of refinement defined as:

lmax =
1

n
log2

(
Ngoal

ηc

)
(34)
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Figure 10: Results of the convergence study based on the interpolation error minimization without additional
constrain.
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Figure 11: Results of the convergence study when imposing a restriction on the maximum refine level (minimum
grid size) according to eq. (34) and a restriction on the compression ratio η > ηc. The dotted lines distinguish
the meshes respecting η > 1.5 ηc and 1.5 ηc > η > ηc for ease of understanding.

with ηc the value of the compression ratio numerically evaluated using equation (33) from the
currently available solution. Since in quadtree grids lmax must be an integer value, we show the
results after generating grids with the floor and also the ceil values obtained from the expression
above. We add also a constrain on the compression ratio of the generated meshes: η > ηc. The
fact that in quadtree grids the maximum level of refinement lmax is an integer – which prevents
imposing a constant value of the compression ratio η = N

2nlmax – has important consequences
in terms of the performance of quadtree/octree grids for solutions where the numerical error
strongly depend on η (as illustrated in problem A). Introducing a constrain on the value of
the compression ratio implies not only to impose the minimum grid size, but also limiting the
subrange of grids for which the condition η > ηc can be reached.

Figure 12 shows the results of the convergence analysis presented in figures 10 and 11 as a
function of η/ηc for both, the total error (circles) and the interpolation error (triangles). Consis-
tently with the results shown previously, all the grids for different N collapse into a single curve
which is problem dependent where a clear minimum on the total error is observed for values of
the compression ratio η that are close to ηc (ηopt/ηc ≈ 2.25 for problem A and ηopt/ηc ≈ 1 for
problem B). In the absence of any constrain on the grid size, the algorithm provides grids with
the smallest values of the compression ratio in both problems, thus minimizing the interpola-
tion error but having dramatic consequences on the effective performance of the grid efficiency
γ2 in problem A. In this figure we can also see that the introduction of a constraint on the
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Figure 12: Results of the convergence study shown in Figures 10 -11 in a γ2 vs. η/ηc map. In circles we show
the results of the total error efficiency factor γ2, and with triangles we show the interpolation error efficiency
factor γI

2 .

minimum grid size imposes larger values of η which penalizes the interpolation errors obtained
but includes optimal grids in terms of the total error minimization.

In order to accurately impose the compression ratio restriction, a numerical estimation of
the γ2 − η/ηc curve can be obtained as follows. Starting from any arbitrary fine grid generated
either with or without the minimum cell size constrain, we can compute the solution in different
coarser grids generated with and without a constraint on hmin as well as an estimation of the
prefactor on the interpolation error. In this case, an estimation of the total error is

||ũ− u||Lp ≈ ||ũ− ũfine||Lp ,

from which we can readily compute an estimation of the γ2 factor. Because the function γ2(η/ηc)
is shown to be independent of the number of grid points, coarse grids can be used to compute
quickly the optimal value. Figure 13 represents the estimation of the γ2(η/ηc) function from
the solution obtained in a Nfine = 210×210 grid resulting from the minimization of the interpo-
lation error without constrain. From this solution we generate around 30 coarser grids with N
ranging from 218 to 212 using the algorithm proposed without any constraints on the minimum
grid size, and also with a constraint on the maximum level of refinement imposed by the floor
and ceil values resulting from equation (34) and the constraint on the compression ratio value
η > ηc. We can see that the curves are relatively well predicted in both cases. While in problem
A a plateau with minimum values of γ2 is observed for η ≈ 2 ηc, the smallest values of γ2 in
problem B are obtained for η ≤ ηc. Note that for the grids with the lowest compression ratio
in problem A, the estimated value of γ2 is heavily influenced by the local mesh topology and
the error generated due to the changes in the grid size that eventually propagates along the
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Figure 13: Estimation of the interpolation error vs η/ηc using as reference the solution obtained in an uncon-
strained grid with 210 × 210 cells.

domain. This leads to a large variance in the values of γ2 observed in figure 13 (a).

We then conclude that in the absence of any model or method to estimate the contribution
of the interpolation error, the introduction of a constraint on the minimum grid size based on
η ≈ ηc seems to be a reasonable estimation of the optimal value of the compression ratio for
which the total error is minimized. However, in problems where the total error strongly depends
on η, the accurate estimation of ηopt is critical in order to choose the grids that minimize the
total error. This optimal value strongly depends on the behavior of u′ and can be estimated
numerically by comparing the solution obtained on a fine grid with that obtained on several
coarser grids. Otherwise, the development of an accurate model to predict u′ in the absence of
the exact solution is not straightforward and should be the focus of more detailed studies.

6.2. Three-dimensional test

We propose to use the estimation of the optimal compression ratio for which the total error
is minimized using a constraint in the AMR procedure and to validate it on a 3D case. We
solve the Poisson-Helmholtz equation in a domain [−0.5, 0.5]3 with D = 10−2 and λ = −1 and
source term defined as:

s(x, y, z) =
1

κ4
e−

x2y2z2

κ2
(
−2Dκ2

(
x2
(
y2 + z2

)
+ y2z2

)
+ 4Dx2y2z2

(
x2
(
y2 + z2

)
+ y2z2

)
+ κ4s

)
(35)

with κ = 1/(50π). The solution of this problem,

u3D(x, y, z) = exp

(
−
(
xy + z2

κ

)2
)
, (36)

is similar to the 2D exponential function uA previously studied, and intuitively the total error
should have similar behavior.

First, we estimate the optimal compression ratio. Figure 14 represents the estimation of
the γ2(η/ηc) function from the solution obtained in a grid with Nfine = 221 cells resulting from
the minimization of the interpolation error without constrain. From this solution we generate
around 30 coarser grids with N ranging from 218 to 215 cells using the algorithm proposed
without any constrain on the minimum grid size, and also with a constrain on the maximum
level of refinement imposed by the floor and ceil values resulting from equation (34). We can
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Figure 14: Estimation of the interpolation error vs η/ηc using as reference the solution obtained in an uncon-
strained grid with 221 cells.

see that the minimum value is observed for η ≈ 2.5ηc.

Then, we search for a series of adapted meshes respecting lmax from equation (34) (floor
value) and imposing 2 < η/ηc < 6. The error convergence in function of the cubic root of
the number of element is presented in figure 15. We see that following this procedure, we
successfully obtain adapted meshes with a nearly optimal total error. As a comparison, the
error convergence curve when using mesh adaptation without imposing a maximum level of
refinement is also presented in figure 15. One can immediately observe that the error obtained
on these latter meshes is around ten times higher than the expected optimal error, and thus
around ten times higher than the error obtained on the size-constrained meshes. An illustra-
tion of meshes obtained with and without minimial cell size constraint is shown in figure 16.
It may immediately be concluded that the element size repartition is different in both cases,
as finer elements may be observed in the unconstrained case. These observations validate the
performance of the proposed AMR method.
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32 64 128

uniform

optimal

||u
−

ũ
|| L

2

N1/3

No lmax

With lmax

Figure 15: Results of the convergence study with or without imposed restriction on the maximum level of
refinement (or minimum grid size).

7. Conclusion

We have proposed a new adaptive mesh refinement strategy to reduce the total error com-
mited when solving numerically the Poisson-Helmholtz equation. The method is based on the
Riemannian metric theory extended to quad/octree grids where an additional constraint for
the minimum element size (or maximum level of refinement) is imposed. The introduction of
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Figure 16: Adapted meshes. Left: 422 444 elements, with restriction on lmax (e.g. minimizing the total
numerical error). Right: 442 660 elements, no restriction on lmax (e.g. minimizing the interpolation error).

this additional constrain in the minimization problem is motivated by the observation that for
some problems, there exists a family of grids in which the error introduced in the numerical
solution does not show correlation with the local interpolation error used as refinement criteria.

We show that the ratio between the total numerical error and the optimal interpolation
error for a grid of N points is only a function of the structure of the solution and the com-
pression ratio, and independent of the number of elements of the grid. For compression ratios
below a given characteristic value ηc the additional constraint on the minimum element size is
shown to effectively restrict the search domain to grids where the numerical error is more likely
to be proportional to the interpolation error. An approximation of the value of the optimal
compression ratio is theoretically obtained. This value is shown to be a function of the Hessian
of the solution and the number of grid points imposed and free of any other user-defined pa-
rameter. In practice, a prefactor of order unity can be numerically evaluated to optimize the
performance of the algorithm for problems where the numerical error strongly depends on the
compression ratio.

Future research could consider several paths to extend this work. First, an extension to
projection-based Navier-Stokes solvers [89] would increase the range of application of the present
study. Preliminary results presented in [90] seem promising towards this objective. Then, the
error estimate used as refinement criterion to drive the mesh adaptation procedure could be
enriched with added contribution from the source term of the propagating error equation.
This source term contains indeed two major ingredients: the hessian of the solution, which is
similar to the interpolation error, and the element size variation, which can be responsible for
the non-correlation between the numerical error and the interpolation error. As it takes into
account the element size variation, it may be possible to remove the additional minimal cell
size constrain. Finally, the case of problems with singular solutions to the equations should be
studied carefully, as it may reduce the order of convergence of the numerical error, and thus
change the behavior of the numerical error.

Appendix A. Continuous interpolation error for square elements

In this section, we derive the local continuous interpolation error for square/cubic elements,
which differs slightly from the local continuous interpolation error for triangular/tetrahedral
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elements presented by Loseille and Alauzet [83, 84]. We first present the proof for square
elements in 2D and refer to [90] for the proof for 3D cubic elements problem. This proof is
based on the direct calculation of the discrete interpolation error on the considered elements,
and the equivalence between continuous and discrete interpolation errors.

We start deriving the discrete L1-norm interpolation error estimate for a square element
K represented by its vertices (vi)i∈J1,4K. In order to find the discrete bilinear interpolation
error, we use an exact point-wise error estimate of the interpolation error within an element of
reference Kref and we apply a change of variables to obtain the error on K from the error on
Kref . The analogy between discrete and continuous interpolation error is used to provide the
continuous interpolation error as in [83, 84].

The reference element is a square element with unit edge lengths. Its vertices are noted
v̂1 = (0, 0), v̂2 = (1, 0), v̂3 = (0, 1) and v̂4 = (1, 1). The transformation between a coordinate
x ∈ K and x̂ ∈ Kref is given by

x = v1 + hx̂ (A.1)

with h the edge length of K.

Let u(x) = xTHx be a quadratic function exactly valued at the vertices of the cube and

represented by its associated Hessian H =

(
a d
d b

)
. We pose Πh the bilinear interpolate

operator. In the framework of Kref , u reads

u(x(x̂)) =
1

2
vT
1Hv1 +

1

2
vT
1Hhx̂+

1

2
x̂ThHv1 +

1

2
h2x̂THx̂ . (A.2)

Linear and constant terms of u(x(x̂)) are exactly interpolated. Therefore, without loss of gen-
erality, we consider only the quadratic term û(x) = 1

2
h2x̂THx̂, as (u−Πhu)(x) = (û−Πhû)(x).

To improve readability, we write u instead of û in the following.

For all x = (x, y, z)T ∈ Kref , the trilinear interpolate Πhu of the function u is

Πhu(x) = α + λx+ µy + βxy . (A.3)

As the solution is exact-valued at the vertices, we have
Πhu(v1) = α = u(x(v̂1)) = 0
Πhu(v2) = λ = u(x(v̂2)) =

1
2
ah2

Πhu(v3) = µ = u(x(v̂3)) =
1
2
bh2

Πhu(v4) = λ+ µ+ β = u(x(v̂4)) =
1
2
(a+ b+ 2d)h2

From that, we readily obtain the point-wise interpolate

Πhu(x) =
1

2
ah2x+

1

2
bh2y + dh2xy . (A.4)

and the point-wise interpolation error on the reference element Kref

(u− Πhu)(x) =
1

2
h2
[
a(x2 − x) + b(y2 − y)

]
. (A.5)

By direct integration, we obtain the interpolation error on Kref in L1-norm

||u− Πhu||L1(Kref ) =

∫ 1

0

∫ 1

0

|u− Πhu|(x)dx dy =
1

12
tr(H)h2 (A.6)
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and applying the change of variables between a coordinate x ∈ K and x̂ ∈ Kref∫
K

f(x) dx =

∫
Kref

f(x̂)h2dx̂ = |K|
∫
Kref

f(x̂)dx̂ (A.7)

with |K| = h2 the volume of the element K, the L1-norm interpolation error of the element K
writes

||u− Πhu||L1(K) =
1

12
tr(H)h2|K| . (A.8)

Finally, and similarly as in [83, 84], we define the continuous interpolate πMu such that the
continuous error |u− πMu| is equal to the error on a square element K:

|u− πMu| = ||u− Πhu||L1(K)

|K| = C2 tr (MuHMu) , (A.9)

with C2 =
1
12
, Mu = h−2I2 the metric in which the cube is unit, and I2 the identity matrix.

Appendix A.1. Continuous interpolation error for cubic elements

The idea of the proof is identical to the case of the square element. We first derive the
discrete L1-norm interpolation error estimate for a cubic element K represented by its vertex
(vi)i∈J1,8K. To find the discrete trilinear interpolation error, we show off an exact point-wise
error estimate of the interpolation error within an element of reference Kref . We apply a change
of variables to obtain the error on K, from the error on Kref . Then we will use the analogy
between discrete and continuous interpolation error to provide the continuous interpolation
error as in [83, 84].

The reference element is a cubic element with unit edge lengths. Its vertices are noted v̂1 =
(0, 0, 0), v̂2 = (1, 0, 0), v̂3 = (0, 1, 0), v̂4 = (0, 0, 1), v̂5 = (1, 1, 0), v̂6 = (1, 0, 1), v̂7 = (0, 1, 1),
v̂8 = (1, 1, 1). The transformation between a coordinate x ∈ K and x̂ ∈ Kref is given by

x = v1 + hx̂ (A.10)

with h the edge length of K. One could note here that finding the appropriate change of
variable would allow to extend the proof to any hexaedron instead of the particular case of the
cubic element.

Let u(x) = xTHx be a quadratic function exactly valued at the vertices of the cube and

represented by its associated Hessian H =

a d e
d b f
e f c

. We pose Πh the trilinear interpolate

operator. In the framework of Kref , u reads

u(x(x̂)) =
1

2
vT
1Hv1 +

1

2
vT
1Hhx̂+

1

2
x̂ThHv1 +

1

2
h2x̂THx̂ . (A.11)

Linear and constant terms of u(x(b̂x)) are exactly interpolated, thus we consider, without loss
in generality, only the quadratic term û(x) = 1

2
h2x̂THx̂, as (u− Πhu)(x) = (û− Πhû)(x). To

improve readability, we write u instead of û in the following.

For all x = (x, y, z)T ∈ Kref , the trilinear interpolate Πhu of the function u is

Πhu(x) = α + λx+ µy + ηz + βxy + γxz + ωyz . (A.12)
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As the solution is exact-valued at the vertices, we have

Πhu(v1) = α = u(x(v̂1)) = 0
Πhu(v2) = λ = u(x(v̂2)) =

1
2
ah2

Πhu(v3) = µ = u(x(v̂3)) =
1
2
bh2

Πhu(v4) = η = u(x(v̂4)) =
1
2
ch2

Πhu(v5) = λ+ µ+ β = u(x(v̂5)) =
1
2
(a+ b+ 2d)h2

Πhu(v6) = λ+ η + γ = u(x(v̂6)) =
1
2
(a+ c+ 2e)h2

Πhu(v7) = µ+ η + ω = u(x(v̂7)) =
1
2
(b+ c+ 2f)h2

Πhu(v8) = λ+ µ+ η + β + γ + ω = u(x(v̂8)) =
1
2
(a+ b+ c+ 2d+ 2e+ 2f)h2

From that, we readily obtain the point-wise interpolate

Πhu(x) =
1

2
ah2x+

1

2
bh2y +

1

2
ch2z + dh2xy + eh2xz + fh2yz . (A.13)

and the point-wise interpolation error on the reference element Kref

(u− Πhu)(x) =
1

2
h2
[
a(x2 − x) + b(y2 − y) + c(z2 − z)

]
. (A.14)

By direct integration, we obtain the interpolation error on Kref in L1-norm

||u− Πhu||L1(Kref ) =

∫ 1

0

∫ 1

0

∫ 1

0

|u− Πhu|(x)dx dy dz =
1

12
tr(H)h2 (A.15)

We apply the change of variables between a coordinate x ∈ K and x̂ ∈ Kref . It writes∫
K

f(x) dx =

∫
Kref

f(x̂)h3dx̂ = |K|
∫
Kref

f(x̂)dx̂ (A.16)

with |K| = h3 the volume of the element K. Thus, the L1-norm interpolation error of the
element K writes

||u− Πhu||L1(K) =
1

12
tr(H)h2|K| . (A.17)

Finally, and similarly as in [83, 84], we define the continuous interpolate πMu such that the
continuous error |u− πMu| is equal to the error on a square element K:

|u− πMu| = ||u− Πhu||L1(K)

|K| = C3 tr (MuHMu) , (A.18)

with C3 =
1
12
, Mu = h−2I3 the metric in which the cube is unit, and I3 the identity matrix. It

is interesting to note that the constant Cn is identical for the cubic and the square elements,
which is not the case for triangular and tetrahedral elements.
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Appendix B. Uniformly refined mesh interpolation error

The local continuous error in equation (11) is valid for any mesh containing only square or
cubic element. In particular, we can use it to determine the global Lp interpolation error on a
uniformly refined mesh composed with square/cubic elements:

||u− πMu||Lp(Ω) =

(∫
Ω

(|u− πMu|(x))p dx

) 1
p

= Cn h
2

(∫
Ω

tr (|H|(x))p dx

) 1
p

, (B.1)

with h the uniform cell size.

Using the number of element N of the uniform mesh N =
(
L0

h

)n
, the interpolation error on

a uniform mesh reduces to

||u− πMu||Lp(Ω) = Cn L
2
0

(∫
Ω

tr(|H|(x))p dx

) 1
p

N− 2
n . (B.2)

We refer the reader to [90] for the validation of this error estimation on several examples.
We validate this estimation using the quadratic function

u(x, y) = 6x2 + 2xy + 4y2 (B.3)

with the associated Hessian H =

(
12 2
2 8

)
. Imposing a unit length square domain, the global

error reduces to

||u− πMu||L1(Ω) = 20C2N
−1 . (B.4)

In figure B.17a, we can see that the theoretical prediction perfectly matches the error mea-
sured with a Gauss quadrature. This behaviour is confirmed for various functions in table B.1,
where we introduce cth = Cn

∫
Ω
tr(|H|(x)) dx and cexp the constant obtained from the linear

fit of the error measured with the Gauss quadrature.
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Figure B.17: Comparison between the error measured on uniform meshes for a function and its theoretical
prediction.

Similarly, we present in figure B.17b the validation of the octree estimation using the
quadratic function

u3D(x, y) = 6x2 + 2xy + 4y2 + 3xz + 4yz + 11z2 (B.5)
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with the associated Hessian H3D =

12 2 3
2 8 4
3 4 22

. Its global interpolation error reduces to

||u3D − πMu3D||L1(Ω) = 42C3N
−2/3 . (B.6)

The theoretical estimation is in close agreement with the measured error via a Gauss quadra-
ture, which confirms the validity of this error estimation in 3D.

u(x, y) cth cexp
6x2 + 2xy + 4y2 1.67 1.67

e2x
2+y 4.57 4.57

sin(x) 0.038 0.038
x2 − e2(x−1)/0.1 1.73 1.73

Table B.1: Comparison between the theoretical error prefactor cth = Cn

∫
Ω
tr(|H|(x)) dx and the measured

error prefactor cexp (linear fit of the error measured with the Gauss quadrature) for different functions.

Appendix C. Optimal interpolation error for quad/octree grids

In this section we detail the resolution of the interpolation error minimization problem
(13)-(14). This optimization problem has allready been solved in [24, 83, 84] for the case of
anisotropic meshes on triangles or tethrahedras. Here we follow an analogous procedure to de-
rive the expression for the optimal error in the case of isotropic elements (e.g. quadtree/octree
grids).

For square/cubic elements, the continuous local interpolation error of a twice differentiable
function u whose Hessian is H and positive Hessian |H| is shown in equation (12) to be

|u− ΠMu|(x) = Cn tr(|H|(x))h2(x) = Cnh
2(x)

n∑
i=1

γi(x) ,

with γi = |vT
i (x)H(x)vi(x)| and (vi)i∈J1,nK the eigenvectors of the square/cubic element metric

M = h−2In. Introducing the local density of the metric d = h−n, the minimization problem
becomes convex and writes:

Find min
M

(∫
Ω

(
d−

2
n (x)

n∑
i=1

γi(x)

)p

dx

)
, (C.1)

under the constraint C(M ) =

∫
Ω

d(x) dx = Ngoal . (C.2)

Resolution. We solve this optimization problem using the Lagrange multipliers theory. This
theory states a necessary optimality condition verified by the solution of the optimal problem:

the variation of the Lagrangian associated to the quantity to minimize Ep =
∫
Ω

(
d−

2
n (x)

∑n
i=1 γi(x)

)p
dx

and the constraint at point M in direction δM vanishes. In other words, it exists a unique
real α such that

δEp(M , δM ) + α δC(M , δM) = 0 . (C.3)
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The variation of Ep is approximated by:

δEp(M , δM) ≈
∫
Ω

∂

∂M

((
d−

2
n (x)

n∑
i=1

γi(x)

)p)
dM (C.4)

The constraint is constant, which implies that its variation is null:

δC(M , δM ) = 0 (C.5)

The optimality condition reduces then to

δEp(M , δM ) = 0 (C.6)

From the variation of the metric, δM = (δd), it follows

∂

∂M

((
d−

2
n (x)

n∑
i=1

γi(x)

)p)
=

∂

∂d

((
d−

2
n (x)

n∑
i=1

γi(x)

)p)
= −2p

n

(
n∑

i=1

γi

)p

d−
2p+n

n .

(C.7)

Equations C.6 and C.7 leads directly to

d = K

(
n∑

i=1

γi

) np
2p+n

, (C.8)

with K a constant that can be obtained by applying the constraint C(M) = Ngoal to obtain

d = Ngoal

∫
Ω

(
n∑

i=1

γi

) np
2p+n

−1(
n∑

i=1

γi

) np
2p+n

. (C.9)

Inverting the change of variable, we found the optimal size

hopt(x) = N
− 1

n
goal

∫
Ω

(
n∑

i=1

γi(x)

) np
2p+n

dx

 1
n ( n∑

i=1

γi(x)

)− p
2p+n

, (C.10)

the point-wise local error

|u− πMu|(x) = CnN
− 2

n
goal

∫
Ω

(
n∑

i=1

γi(x)

) np
2p+n

dx

 2
n ( n∑

i=1

γi(x)

) n
2p+n

, (C.11)

and the optimal global error

||u− πMu||Ω,Lp = CnN
− 2

n
goal

∫
Ω

(
n∑

i=1

γi(x)

) np
2p+n

dx


2p+n
np

. (C.12)

We can further proof the optimal metric M opt is also the unique solution that verifies
Ep(M opt)

p ≤ Ep(M )p for all M having the same fixed (γi)i∈J1,nK. The details of this demon-
stration can be found in [90].
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Uniqueness. Now, we prove that this solution is the unique solution which verifies Ep(M opt)
p ≤

Ep(M )p for all M having the same fixed (γi)i∈J1,nK, and M opt being the optimal metric previ-
ously found. From equation (C.12), we have

Ep(M opt)
p = Cp

nN
− 2p

n
goal

∫
Ω

(
n∑

i=1

γi(x)

) np
2p+n

dx


2p+n

n

. (C.13)

The density equation (C.9) is rewritten as d = N∗(
∫
Ω
f(x) dx)−1 f , where f is a strictly

positive function. For any set of metric M , writes

Ep(M )p = Cp
nN

− 2p
n

goal

(∫
Ω

f(x) dx

) 2p
n

(∫
Ω

f(x)−
2p
n

(
n∑

i=1

γi

)p

dx

)
. (C.14)

To prove Ep(M opt) < Ep(M ), we use the inequality (
∑n

i=1 γi)
np

2p+n ≤ (
∑n

i=1 γi)
p
which is

equivalent to the inequality np
2p+n

≤ p as np
2p+n

≥ 0, p ≥ 0 and γi ≥ 0, which is equivalent to

p2 ≥ 0 and it is always verified. We introduce g = (
∑n

i=1 γi)
np

2p+n and obtain

Ep(M opt)
np

2p+n = c
np

2p+n
n N

− 2p
2p+n

goal

∫
Ω

g(x) dx (C.15)

and

Ep(M)
np

2p+n ≥ C
np

2p+n
n N

− 2p
2p+n

goal

(∫
Ω

f(x) dx

) 2p
2p+n

(∫
Ω

f(x)−
2p
n g(x)

2p+n
n dx

) np
2p+n

. (C.16)

Using Hölder inequality, it comes(∫
Ω

f(x) dx

) 2p
2p+n

(∫
Ω

f(x)−
2p
n g(x)

2p+n
n dx

) np
2p+n

=

(∫
Ω

f(x) dx

) 2p
2p+n

∫
Ω

(
g(x)

f(x)
2p

2p+n

) 2p+n
n

dx


np

2p+n

(C.17)

≥
∫
Ω

f(x)
2p

2p+n

(
g(x)

f(x)
2p

2p+n

)
dx (C.18)

≥
∫
Ω

g(x) dx , (C.19)

as 2p+n
2p

≥ 1, 2p+n
n

≥ 1 and 2p
2p+n

+ n
2p+n

= 1. Equation (C.19) implies Ep(M opt)
p ≤ Ep(M)p for

all M having the same fixed (γi)i∈J1,nK. The initial optimization problem is strictly convex, so
the optimal solution M opt is unique.

Finally, using the definition of the complexity Ngoal, we get

Ngoal =

∫
Ω

(h(x)−n) dx =
Ln
0

h
n (C.20)

which means that the mesh complexity constrainNgoal is the number of element of the optimized
mesh N = Ln

0/h
n
. From that, the continuous error writes

|u− πMu|(x) = CnN
− 2

n
goal

(∫
Ω

( tr(|H|(x)))
np

2p+n dx

) 2
n

( tr(|H|(x))) n
2p+n , (C.21)

with C2 = C3 =
1
12
, and

||u− πMu||Ω,Lp = Cn N
− 2

n
goal

(∫
Ω

( tr(|H|(x)))
np

2p+n dx

) 2p+n
np

. (C.22)
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[30] V. Doleǰśı, P. Solin, hp-discontinuous galerkin method based on local higher order recon-
struction, Applied Mathematics and Computation 279 (2016) 219–235.

[31] J. Wackers, G. Deng, A. Leroyer, P. Queutey, M. Visonneau, Adaptive grid refinement for
hydrodynamic flows, Computers and Fluids 55 (2012) 85–100.

34

http://dx.doi.org/10.2514/6.1997-859
http://www.theses.fr/2008PA066622


[32] J. Wackers, G. Deng, E. Guilmineau, A. Leroyer, P. Queutey, M. Visonneau, Combined re-
finement criteria for anisotropic grid refinement in free-surface flow simulation, Computers
and Fluids 92 (2014) 209–222.

[33] K. MacLean, S. Nadarajah, Anisotropic mesh generation and adaptation for quads using
the Lp-CVT method, Journal of Computational Physics (2022) 111578.

[34] T. C. Baudouin, J.-F. Remacle, E. Marchandise, J. Lambrechts, F. Henrotte, Lloyd’s
energy minimization in the Lp norm for quadrilateral surface mesh generation, Engineering
with Computers 30 (2014) 97–110.
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