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Abstract—There is an upward trend in using multimode fiber 

for an increasing number of applications such as optical 

telecommunication, endoscopic imaging or laser beam shaping, 

which require knowledge of the fiber characteristics. In this paper, 

we propose a new method for learning the complex transmission 

matrix of a multimode fiber from a set of speckled output patterns 

without interferometric setup. In a first step, our method finds a 

model to predict the intensity pattern of a coherent beam at the 

distal end of the multimode fiber. In a second step, this model is 

improved by using some additional intensity images in the far 

field, resulting in the prediction of the actual 3D complex field 

leaving the multimode fiber, without the use of a reference beam. 

Our two-step method was validated numerically and 

experimentally with a standard 50µm-core diameter step-index 

fiber guiding up to 140 LP modes at 1064nm. Experimentally, 

using the validation set, we obtain a similarity between predicted 

and true speckle images at fiber output of 99.2% and 98.5% 

respectively in the near field and far field, proving the accuracy of 

the retrieved complex transmission matrix. Finally, we 

successfully demonstrated projection of images simultaneously in 

two planes as proof of complex field shaping.  

 
Index Terms—Machine learning, Multimode fiber, Complex 

transmission matrix, Referenceless method, Deformable mirror 

 

I. INTRODUCTION 

n the recent years, performance improvements of spatial 

light modulators (SLM) or digital micro-mirror devices 

(DMD), namely larger number of pixels, higher frequency 

modulation, better stability and power handling have led to a 

renewed interest in multimode fibers (MMF). Even if the 

coherent field from a MMF appears to have a random structure 

(speckle), this is actually a deterministic distribution, resulting 

from a linear transform of the excited field described by modes 

propagation in the fiber. It is therefore possible to control the 

interference pattern at the MMF output by pre-compensating 

the wavefront of the laser field seeding the fiber with a SLM. 

This coherent control has opened up new perspectives for 
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MMFs [1] and expanded their fields of application, such as in 

optical telecommunications [2]–[4], bio-imaging [5]–[7], 

spectroscopy [8], quantum signal processing [9] or laser source 

[10]. To shape a laser beam from a MMF, there are four main 

types of processes: digital phase-conjugation [11], adaptive 

control in a feedback loop [12], neural networks (NN) for image 

propagation [13]–[15], or modal decomposition [16] and 

transmission matrix (TM) measurement [17], [18]. The first two 

approaches have mainly demonstrated their ability to focus the 

field at the fiber output. In [13], [15], in order to predict the 

input phase-map required for a desired image at the MMF 

output, the authors need to learn at least two sub-NN, one for 

the forward propagation through MMF and the other for the 

backward description. The TM of the MMF describes the 

relationship between the coherent field on the SLM and the 

field leaving the fiber (from the actuators of the SLM to the 

pixels of the camera imaging the end facet of the MMF). Then, 

using the inverted TM, one can theoretically synthetize on 

demand at the fiber output any complex field that is a linear 

combination of the fiber modes. Usually, an interferometric 

setup with a reference beam retrieves the phase of the output 

beam to build the TM [5]. This method is complex to set-up and 

particularly difficult to implement when measuring the TM of 

a long MMF. Thus, different works already proposed to 

measure this TM without any reference beam, only from a set 

of output intensity patterns obtained with different input 

wavefronts. They require solving a set of non-linear equations 

that links the field displayed on the SLM to the corresponding 

output intensity pattern. Very recent publications have 

proposed optimization algorithms based on specific gradient 

descent [19], [20] or on alternating projection [21] to improve 

the accuracy of the recovered TM, evaluated by the focusing 

quality through the MMF. Despite significant enhancement of 

the focusing parameter, the experimental results show a large 

discrepancy with the expected theoretical value. These 

experiments highlight the sensitivity of the algorithms to noisy 

data, degrading the TM quality. Moreover, the TM learnt thanks 
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to a set of speckled patterns at the MMF output can only predict 

intensity patterns in this target plane, like focused beam for 

instance. As the TM’s rows are independently optimized, there 

exists an unknown and random phase bias between them. Very 

recently, J. Zhong et al [22] used a set of additional 

measurements taken in a Fresnel plane of the fiber output to 

recover and correct the phase bias. Thus, they demonstrated 

focusing in different planes at the fiber exit after phase bias 

correction. Recovery of the complex TM from intensity-only 

images was demonstrated in 2022 thanks to a transformer NN 

that managed a few number of modes (~5 LP modes) [16]. In 

the present work, we report a new reference-less method based 

on machine learning that provides a high fidelity TM of a highly 

multimode fiber without any phase bias. It offers the ability to 

deliver controlled 3D coherent fields at the fiber distal end 

instead of 2D intensity patterns with remaining phase errors as 

commonly reported. The performances of the method are 

evaluated through speckle correlations between experimental 

measurements and images in two specific planes (output fiber 

plane and its corresponding far field) given by the predicted 

TM. 

II. MMF TRANSMISSION MATRIX RECOVERY BY MACHINE 

LEARNING 

Our objective was to optimize by a supervised machine 

learning approach the components of the TM that models the 

propagation of a coherent field in a linear regime, through a 

MMF. In the context of controlling the emission of a MMF, the 

transmission matrix 𝐴 ∈ ℂ𝑚×𝑛 connects the field 𝑥 ∈ ℂ𝑛 at the 

input of the MMF (proximal end), to the field 𝑦 ∈ ℂ𝑚 at the 

output (distal end). Each 2D complex field 𝑥  and 𝑦  is reshaped 

as vector to match the relation 𝑦 = 𝐴𝑥. Without any reference 

beam in the setup, the basic data available to train the matrix 𝐴 

are the complex field 𝑥 controlled by a SLM and the related 

intensity |𝑦|2 on a CMOS camera at the fiber output. In our 

experiment, as the SLM is a segmented deformable mirror 

which modulates the incident wavefront, only Arg(𝑥)  is varied 

to create the dataset, |𝑥| is provided by the Gaussian amplitude 

of the incident beam onto the SLM. With these data, we aimed 

first at optimizing a model 𝐴𝐼𝑛𝑡, which provides intensity 

predictions |𝑦𝐼𝑛𝑡|2 at the distal end of the MMF from the 

relationship:  |𝑦𝐼𝑛𝑡|2 = |𝐴𝐼𝑛𝑡𝑥|2 with Arg(𝑥) ∈ [−𝜋, 𝜋[𝑛 and 

|𝑦𝐼𝑛𝑡|2 ∈ ℝ∗
+𝑚

. However, this single intensity constraint does 

not allow retrieving the true matrix 𝐴. Indeed, any additional 

phase bias 𝜓 ∈ [−𝜋; +𝜋[𝑚 between the rows of 𝐴𝐼𝑛𝑡 produces 

the same output intensity pattern, as shown by the following 

equality: 

             |𝑦𝐼𝑛𝑡|2 = |𝐴𝐼𝑛𝑡𝑥|2 = |diag(exp(𝑗𝜓))𝐴𝐼𝑛𝑡𝑥|
2
 (1) 

with the operator diag(⋅) a square diagonal matrix from a 

vector argument. 

This results in accurate intensity but random output phase 

prediction, as it was also shown in [22]. To remove the phase 

ambiguity between the rows of matrix 𝐴𝐼𝑛𝑡 and then correct the 

phase bias 𝜓, we propose to use a few additional measurements 

|𝑧|2 in the Fourier plane of the distal field 𝑦 which are sensitive 

to the phase of 𝑦. In this second step, we learnt the bias phase 

𝜓 so that the ground truth |𝑧| matches 

|FT(diag(exp(𝑗𝜓)) 𝐴𝐼𝑛𝑡𝑥)| where FT is a 2D Fourier 

transform operation. Then, the trained transmission matrix 𝐴𝜓 

was built from both recovered matrix 𝐴𝐼𝑛𝑡 and vector 𝜓: 

              𝐴𝜓 = diag(exp(𝑗𝜓))𝐴𝐼𝑛𝑡  (2) 

To learn 𝐴𝐼𝑛𝑡, we used a dataset 𝐷 = {𝑋, |𝑌|2} obtained by 

applying 𝑁 random phase maps on the SLM (𝑋 ∈ ℂ𝑛×𝑁), and 

by measuring the corresponding intensities (|𝑌|2 ∈ ℝ∗
+𝑚×𝑁

) on 

the camera CMOS1 (see Fig. 1). This dataset fed a mini-batch 

gradient descent algorithm that minimized the cost function 

ℒ1(|𝑌𝐼𝑛𝑡|2, |𝑌|2) (3) with Adaptive Moment Estimation 

(ADAM) with respect to the parameters 𝐴𝐼𝑛𝑡 [23].  

       ℒ1(|𝑌𝐼𝑛𝑡|2, |𝑌|2) =
1

𝑚𝑁
∑ ∑ (|𝑌𝐼𝑛𝑡|2

𝑖𝑗
− |𝑌|𝑖𝑗

2 )
2

𝑚
𝑖=1

𝑁
𝑗=1  (3) 

 

 
Fig. 1. Conceptual representation of the MMF transmission 

matrix measurement, highlighting the data set which seeds the 

machine learning process in both main steps. 

 

Algorithm 1: Mini-batch gradient descent algorithm to 

learn 𝐴𝐼𝑛𝑡 that predicts the intensity pattern |𝑦𝐼𝑛𝑡|2  

Hyperparameters: Batch size 𝐵 ∈ ℕ, learning rate 𝜂 ∈ ℝ∗
+, 

learning rate decay 𝜏 ∈ ]0,1] 
Inputs: Loss function ℒ1, phase modulated complex field 

𝑋 ∈ ℂ𝑛×𝑁, measurement matrix |𝑌|2 ∈ ℝ∗
+𝑚×𝑁

 
Output: Trained weight matrix 𝐴𝐼𝑛𝑡 ∈ ℂ𝑚×𝑛 

1. Initialize weight matrix with random initial 
weights 𝐴𝐼𝑛𝑡 ∈ ℂ𝑚×𝑛, learning rate 𝜂 

2. Randomly shuffle the dataset 𝐷 
3. Split the dataset 𝐷 into a training set 𝐷𝑡  and a 

validation set 𝐷𝑣  
4. Repeat for 𝑒 = [1, … , 𝑁𝐸] epochs: 

a. Randomly shuffle the training set 𝐷𝑡  
b. Repeat for the 𝑏 = [1, … , 𝑁𝐵

𝑡] mini-
batches of the training set: 

i. Get the 𝑏th mini-batch from the 

training set: 𝐷𝑡,𝑏 =
{𝑋𝑡,𝑏 , |𝑌𝑡,𝑏|2 } 
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ii. Evaluate the loss function: 

ℒ1(|𝐴𝐼𝑛𝑡𝑋𝑡,𝑏|2, |𝑌𝑡,𝑏|2) 
iii. Compute the gradient matrix: 

∇𝐴𝐼𝑛𝑡
ℒ1 

iv. Update the weights matrix using 

ADAM update formula: 𝐴𝐼𝑛𝑡 ⟵

ADAM(𝐴𝐼𝑛𝑡 , 𝜂, ∇𝐴𝐼𝑛𝑡
ℒ1) 

c. Evaluate the loss function ℒ1 on the 
validation set  

 

Algorithm 1 describes the optimization process. The 

components of 𝐴𝐼𝑛𝑡 are trained to minimize the distance 

between the measured physical intensity |𝑌|2 and the predicted 

ones |𝑌𝐼𝑛𝑡|2 = |𝐴𝐼𝑛𝑡𝑋|2. We built a dataset of small size 𝐷ℱ =
{𝑋ℱ , |𝑍ℱ|2} made of 𝑁ℱ ≪ 𝑁 additional random phase maps on 

the SLM (𝑋ℱ ∈ ℂ𝑛×𝑁ℱ ), and the corresponding intensities 

measured on a second camera (CMOS2) in the Fourier plane ℱ 

of the output of the MMF (|𝑍ℱ|2 ∈ ℝ∗
+𝑚×𝑁ℱ

). It fed a gradient 

descent algorithm which minimizes the cost function  

ℒ2(|FT(𝑌𝜓)|, |𝑍ℱ|) (4) with ADAM using the dataset 𝐷ℱ . 

             ℒ2(|FT(𝑌𝜓)|, |𝑍ℱ|) = 1 − Γ(|FT(𝑌𝜓)|, |𝑍ℱ|) (4) 

where 𝑌𝜓 = 𝐴𝜓𝑋, 𝐴𝜓 verifies (2), and 𝜓 is the parameter to 

be optimized. The function Γ stands for the Pearson correlation 

coefficient, generally expressed as: 

Γ(𝑎, 𝑏) =
∑(|vec(𝑎)|−|vec(𝑎)|̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)⋅(|vec(𝑏)|−|vec(𝑏)|̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)

√∑(|vec(𝑎)|−|vec(𝑎)|̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)
2

⋅√∑(|vec(𝑏)|−|vec(𝑏)|̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)
2

   (5) 

where 𝑎 and 𝑏 are generic real- or complex-valued n-

dimensional tensors, vec(⋅) is a matrix vectorization, and (⋅)̅̅̅̅  is 

the arithmetic mean. In the case of loss function ℒ2, this metric 

compares the correlation between the Fourier measurement 

matrix |𝑍ℱ|, and the prediction |FT(𝑌𝜓)|. 

 

Algorithm 2: Gradient descent algorithm to learn the phase 
correction ψ and get the complex transmission matrix 𝐴𝜓 

Hyperparameters: learning rate 𝜂 ∈ ℝ∗
+ 

Inputs: Learnt matrix 𝐴𝐼𝑛𝑡 ∈ ℂ𝑚×𝑛, loss function ℒ2, phase 
modulated complex field 𝑋ℱ ∈ ℂ𝑛×𝑁ℱ , Fourier intensity 

measurements  |𝑍ℱ|2 ∈ ℝ∗
+𝑚×𝑁ℱ   

Output: Correction vector 𝜓 ∈ [−𝜋, +𝜋[𝑚 
 

1. Initialize correction vector matrix with random 
initial weights 𝜓 ∈ [−𝜋, +𝜋]𝑚 

2. Repeat for 𝑘 = [1, … , 𝐾] epochs: 
a. Evaluate the loss function: 

ℒ2(|𝐹𝑇(𝐴𝜓𝑋ℱ)|, |𝑍ℱ|) 

b. Compute the gradient vector: ∇𝜓ℒ2 

c. Update the correction vector using 
ADAM update formula: 𝜓 ⟵

ADAM(𝜓, 𝜂, ∇𝜓ℒ2) 

 

In Algorithm 2, the components of the phase bias 𝜓 were 

trained to minimize the error between the Fourier 

measurements |𝑍ℱ|, and the predicted Fourier measurements 

|FT(diag(exp(𝑗𝜓))𝐴𝐼𝑛𝑡𝑋ℱ)|. Matrix 𝐴𝐼𝑛𝑡 was finally 

corrected with the phase vector 𝜓 to optimize the transmission 

matrix 𝐴𝜓 to be close to the true matrix 𝐴. One could then 

predict the complex optical field at the output of the MMF from 

the learnt matrix 𝐴𝜓. In practice, when considering an 

experimental setup, the TM includes the aberrations of the 

imaging systems at both sides of the fiber from the SLM to the 

detection planes. 

III. NUMERICAL VALIDATION 

The performance of this novel TM measurement method 

without any reference beam was first assessed with synthetic 

data. In the whole paper, we consider a standard step index 

MMF with a 50µm-core diameter and a 0.22-numerical 

aperture, guiding up to 140 LP modes per polarization at 

1064nm. The datasets 𝐷 = {𝑋, |𝑌|2} and 𝐷ℱ = {𝑋ℱ , |𝑍ℱ|2} 

feeding the machine learning based Algorithms 1 and 2 were 

built with an arbitrary but realistic transmission matrix 𝐴. It 

described the propagation of an input Gaussian beam, from the 

SLM to the planes of the cameras CMOS1 and CMOS2, 

through the MMF. The incident wavefront was shaped by the 

SLM with a squared arrangement of 𝑛 macro-actuators to form 

an input reduced vector 𝑥 ∈ ℂ𝒏.  

  

 
Fig. 2. (a) Learning dynamics as a function of epochs. 

Convergence is reached in about 150 epochs with a learning rate 

starting at 0.05. (b)-(c) One example of ground truth and 

predicted near field intensities. 

 

To consider the inherent experimental detection noise, we 

added random values (Gaussian distribution) obtained from 
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experimental data to the modeled intensities |𝑌|2 and |𝑍|2. We 

validated our machine learning approach for 𝑛 = 132 macro-

actuators, close to the number of LP modes. The computation 

spatial grid was 256x256 pixels in all the computed planes (both 

fiber ends and Fourier plane ℱ). Fig. 2(a) shows the learning 

curve of the matrix 𝐴𝐼𝑛𝑡 from Algorithm 1 using a number 𝑁𝑡 

of measurements in the training set that is 15 times the number 

𝑛 of actuators (𝛾 =
𝑁𝑡

𝑛
= 15). 

This curve represents the value of the loss function ℒ1 for the 

training (solid curve) and the validation (dotted curve) sets as a 

function of epoch number. The decrease of the validation curve 

ℒ1 is monotonic, and the distance with the training curve is 

constant, indicating that there is no overfitting.  This training 

was run using a mini-batch size 𝐵 = 32. Changing the mini-

batch size did not significantly affect this learning curve, except 

for the time it requires. Indeed, higher mini-batch size reduces 

the computation time due to better parallelization. Fig. 2(b)-(c) 

highlights the similarity of an example of predicted intensity 

speckle |𝑦𝐼𝑛𝑡|2 = |𝐴𝐼𝑛𝑡𝑥|2 with the true one |𝑦|2, 𝑥 and 𝑦 ∈ 𝐷𝑣 

(validation dataset). The value of the Pearson correlation 

coefficient Γ(|𝑦𝐼𝑛𝑡|2, |𝑦|2) in this example reaches 99.99% and 

reveals the high fidelity of the computed model for intensity 

predictions. The whole validation dataset provides pictures with 

the same quality (see Fig. 2). 

 

  
Fig. 3. (a) Optimization curve of algorithm 2. Convergence is 

reached after about 700 iterations. (b)-(c) Example of ground 

truth and predicted complex near fields. Amplitude is encoded 

as brightness, and phase is encoded as hue.  

 

After this step, we improved the learnt model to get the 

phase-corrected transmission matrix 𝐴𝜓 and predict the 

amplitude and phase of any optical field at the MMF distal end, 

knowing the input field 𝑥. We used the second dataset 𝐷ℱ  with 

only 20 additional measurements in Fourier plane ℱ to compute 

the 𝐴𝜓 with the Algorithm 2. In Fig. 3(a), the loss function ℒ2 

converges to a low value (which corresponds to a high Pearson 

correlation coefficient), proving the efficiency of our two-step 

method. On Fig. 3(b)-(c), we compared the complex fields at 

the MMF distal end with and without phase correction 𝜓 for an 

arbitrary 𝑥 of the validation dataset (𝑥 ∈ 𝐷𝑣). One can observe 

the high fidelity of the predicted field after phase correction 

with the true one in amplitude and phase. Those results provide 

a first validation of our machine learning-based method. 

More accurately, the performance of the learnt and phase-

corrected matrix 𝐴𝜓 was assessed using 1000 random draws 

within the validation set as a function of the ratio 𝛾 = 𝑁𝑡/𝑛. 

We analyzed the distribution of three metrics: the MMF output 

intensity predictions Γ (|𝑦𝜓|
2

, |𝑦|2), the Fourier intensity 

predictions Γ (|FT(𝑦𝜓)|
2

, |𝑧|2), and the MMF output complex 

field predictions 𝑄(𝑦𝜓 , 𝑦).   This last quality factor is a 

normalized cross-correlation defined as follows: 

𝑄(𝑦𝜓 , 𝑦) =  (
∑ |𝑦𝑖⋅𝑦𝜓𝑖

∗|𝑚
𝑖=1

∑ |𝑦𝑖|.|𝑦𝜓𝑖
|𝑚

𝑖=1

)

2

  (6) 

This quality factor quantifies the similarities of complex 

fields in amplitude and phase. Let us note that it can be 

computed in this numerical study but cannot be estimated with 

experimental data. Fig. 4 shows that for 𝛾 ≥ 10, our method 

leads to excellent predictions. The intensity matching 

Γ (|𝑦𝜓|
2

, |𝑦|2) at the MMF distal end was higher than 99.9%. 

As a first assessment of the quality of the phase correction, the 

similarity Γ (|FT(𝑦𝜓)|
2

, |𝑧|2) at the Fourier plane ℱ was also 

excellent (higher than 99%). This leads to a very high quality 

𝑄(𝑦𝜓 , 𝑦) of the overall complex field prediction, of about 95%.  

 

 
Fig. 4. Median of the metric distributions as a function of the 

ratio γ = Nt/n. Blue: Pearson correlation coefficient between 

the predicted and ground truth near field intensities. Orange: 

Pearson correlation coefficient between the predicted and 
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ground truth far field intensities. Green: Quality factor between 

the predicted and ground truth complex near fields. 

We numerically tested our TM measurement method increasing 

the number of fiber modes up to 1000 LP modes. We 

maintained the number of actuators equal to the number of 

modes, 𝛾 = 15 and an image sampling with 256x256 pixels in 

the near and far fields. These simulations showed no 

degradation, the prediction efficiency is identical with a Q 

factor close to 96 %. It is worth noting that the size of speckle 

grains decreases with the increase of modes number which 

means at some point increasing the number of samples in each 

near field and far field image. More modes would require a 

longer training time since, as the image size increases, so does 

the dimension of the transfer matrix. 

IV. TRANSMISSION MATRIX MEASUREMENTS WITH 

EXPERIMENTAL DATA 

The experimental setup is schematically depicted on Fig. 5. 

The laser source was a distributed feedback laser diode 

operating in the CW regime at 1064nm (QDLaser QLD1061). 

The MMF was the same standard step index fiber as the one 

used previously for the simulations (50/125µm core/clad 

diameters, 0.22 numerical aperture, 1.5 meter-long, 140 LP 

modes/polarization). The laser beam, linearly polarized, with a 

Gaussian profile, was reflected onto a deformable mirror DM 

(Boston Micromachines Corporation, Kilo-CS-0.6-SLM), 

before seeding the MMF. The couple polarizing beam splitter 

(PBS) and quarter-wave plate (/4) is used to illuminate the DM 

in normal incidence with minimal losses. The incident beam 

fully covered the DM. 

 
Fig. 5. Schematic of the experimental setup. The deformable 

mirror (DM) shapes the wavefront of the laser beam. It is 

imaged on the proximal facet of the MMF. The near field and 

far field from the distal facet of the MMF are imaged on CMOS 

cameras 1 & 2 respectively. Magnifications of the four afocal 

systems: 
 L1’

 L1
= 7.5,

 L2’

 L2
=

1

6
,

 L3’

 L3
=

1

40
,

 L4’

 L4
= 15.9, L5: f5 =

60mm, M mirror, PBS: Polarizing Beam Splitter. 

 

The DM shaped the beam wavefront of the signal with a matrix 

of 𝑛 macro-actuators, which were made up of several 

elementary actuators. For the experiment, the number of macro-

actuators was 𝑛 = 120. The macro-actuators are made of 3x3 

elementary actuators (12 macro-actuators per dimension 

distributed on a square mesh but on an overall round area). A 

couple of afocal systems imaged the DM plane onto the 

proximal facet of the MMF. At the other end of the fiber, an 

afocal system imaged the output near field on a CMOS camera 

(CMOS1) while an optical system displayed the far field of the 

output beam on a second CMOS camera (CMOS2). Both 

cameras provided 16-bit images (ThorCam CS2100) of size 

256x256 pixels and 512x512 pixels (CMOS1 and CMOS2 

respectively). Only the vertical polarization of the output beam 

was considered by positioning a polarizing beam splitter (PBS2) 

between the fiber output and the cameras. A dataset of 1900 

phase maps and related near field images was acquired at the 

low frequency of 11Hz, limited by the in/out access of the non-

triggered camera and DM devices. This dataset was split into a 

training set with 1800 couples of data (15 times the number of 

macro-actuators) to learn the matrix 𝐴𝐼𝑛𝑡 and a validation set 

with the remaining 100 couples of data. Fig. 6(a) shows the 

convergence of the learning curve, which required about 150 

epochs to converge with a 32-mini batch size and a learning rate 

starting at 0.05. The Pearson correlation coefficient 

Γ(|𝑦|2, |𝑦𝐼𝑛𝑡|2) between experimental and predicted images 

from this dataset reached an average value higher than 99%.  

 
Fig. 6. Experimental data – (a) Learning dynamics as a function 

of epochs. Convergence is reached in about 150 epochs with 

32-mini batch size and a learning rate starting at 0.05. It lasts 

about 200s with our Pytorch implementation using a laptop 

computer with a NVIDIA RTX A1000 4GB GPU and an Intel 

i7-12700H 2.30 GHz CPU. (b)-(c) Experimental and predicted 

near field intensities. Insets show the corresponding 

experimental and predicted far field intensities.  

These results confirm those of the numerical study: the model 
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𝐴𝐼𝑛𝑡 of the MMF that we retrieved by machine learning 

predicted intensity patterns almost identical to the intensity 

patterns produced by the fiber under test. Fig. 6(b)-(c) show an 

example of experimental and predicted near field intensities at 

the distal end of the MMF. The corresponding far field 

intensities are shown in the insets. As mentioned previously, the 

phase of the predicted field 𝑦𝐼𝑛𝑡 was biased. After this first step, 

𝑦𝐼𝑛𝑡 exhibits in the Fourier plane an unrealistic number of fine 

speckle grains (inset of the Fig. 6(c)) due to the pixel-to-pixel 

random phase of 𝑦𝐼𝑛𝑡 predicted by the 𝐴𝐼𝑛𝑡model, compared to 

the true Fourier image (inset of the Fig. 6(b)). 

 

 
Fig. 7. Experimental data – (a) Optimization curve of algorithm 

2. Convergence is reached in about 700 iterations. (b)-(c) 

Example of experimental and predicted far field intensities. 

In a second step, as it was performed in the numerical 

validation, we recorded a testing dataset of 200 couples of near 

field and far field intensity patterns (|𝑦ℱ|2 and |𝑧ℱ|2), and their 

relative phase maps 𝑥ℱ . Only 20 of these experimental images 

were used to compute the transmission matrix 𝐴𝜓 by correcting 

the phase bias of the matrix 𝐴𝐼𝑛𝑡 previously retrieved. The 

optimization process with the Algorithm 2 required a few 

hundred iterations to converge (Fig. 7(a)). Fig. 7(b)-(c) show an 

example of an experimentally measured far field and the 

corresponding predicted one by matrix 𝐴𝜓, highlighting the 

high similarity between the two. Finally, we quantified the 

quality of this new model 𝐴𝜓 of the actual fiber complex TM 

on this test dataset. The Pearson correlation coefficient reached 

99.2% on average in the near field (Fig. 8(a)) and 98.5% in the 

corresponding far field (Fig. 8(b)). These results are in line with 

the numerical simulations and confirm the accuracy of our 

referenceless two-step method to find the complex TM of a 

highly multimode fiber with a limited amount of data. Despite 

no specific precautions were taken to protect the fiber from 

environmental perturbations, the fidelity of the predicted 

speckle with respect to the experimental one was maintained 

during a few hours for which the TM did not change 

significantly.  

 

 
Fig. 8. Distribution of Pearson correlation coefficients between 

predicted and experimental intensities from the testing dataset 

in near field (a) and far field (b). 

 

Finally, we validated with two typical cases the ability of the 

measured complex TM to customize the MMF output beam in 

amplitude and phase. First, we computed the DM shape suited 

for focusing at the fiber end. The TM is usually inverted to 

calculate the input complex distribution relating to the output 

target. This method is not appropriate for our experimental set-

up because the DM is a phase-only modulator with an 

amplitude constraint provided by the incident beam. Then we 

computed the phase to be applied to the DM using a gradient 

descent algorithm which reduces the deviation between the 

focused target and the output field given by the measured TM. 

Gradient descent is applied in a purely numerical loop including 

the measured TM (𝑨𝝍), learnt once, to find the DM phase 

vector 𝝓̂ = arg (𝑥) that produces the target intensity patterns 

|𝒛𝑳𝒊
|² at the distance 𝑳𝒊 (ith target plane) from the MMF output. 

The phase vector is initialized to random or flat wavefront. The 

loss function is the sum of the Pearson correlation coefficients 

(𝜞) from the predicted amplitude |𝓕𝒓𝑳𝒊
(𝑨𝝍(|𝒙|𝒆𝒋𝝓))|in each 

plane i, and the target amplitude |𝒛𝑳𝒊
|  in the respective plane: 

 𝜙̂ = 𝑚𝑖𝑛
𝜙∈[−𝜋,+𝜋[𝑛

∑ 1 − 𝛤 (|ℱ𝑟𝐿𝑖
(𝐴𝜓(|𝑥|𝑒𝑗𝜙))| , |𝑧𝐿𝑖

|)𝑘
𝑖=1    

ℱ𝑟𝐿𝑖
 is the Fresnel Transform for a propagation length 𝐿𝑖 and 𝑘 

is the number of target planes (2 planes in the case of the Fig. 

10). ADAM optimizer is used, with a constant learning rate 

value of 0.1 converging in about 50 iterations. Then, the 

optimized phase vector ϕ is applied on the DM. We assessed 

the 3D shaping by recording images in several output planes 

from the distal end of the fiber (plane of focusing) to 5 times 

the Rayleigh length (7.2µm) of the focused beam (1/e² diameter 

= 3.1µm). In addition, we compared these experimental data to 

the intensity distributions from the measured TM (Fig. 9). We 

quantified the fidelity between predictions and experiments 

with the evolution of the 2D Pearson coefficient which is higher 

than 98% all along the beam propagation.  
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Fig. 9. Experimental data – Example of focused beam at the 

fiber output, optimized from the experimental MT. Evolution 

of the Pearson correlation between the experimental images 

|𝑧𝐿|2 and the predicted ones |𝑧𝜓𝐿
|

2
 along the propagation axis. 

𝐿𝑅: Rayleigh length of the focused beam. Dashed white circle 

defines the fiber core. 

 

Then, to highlight the fact that our method fully characterizes 

the system in amplitude and phase, we investigated 3D shaping 

by performing image projections through MMF in two planes 

at the same time. This work extends the results of [14,15] in 

which the authors demonstrated image projection at the distal 

end only, where the experimental data were recorded. Using the 

same optimization process as for focusing, we found the best 

input phase vector to target simultaneously two different 

arbitrary images in two planes at the fiber exit. Fig 10 shows 

that the targeted digits 1 and 2 respectively at 8µm and 39µm 

distance planes from the fiber output are properly displayed. It 

has to be noted that these target planes are different from the 

fiber distal end plane where the data were recorded to learn the 

transmission matrix. These performances can only be reached 

if the true complex TM is retrieved: when the phase of the TM 

has been corrected in the second step of our process. 

 

 
Fig. 10. Experimental data – Examples of digit images display 

simultaneously in two different planes at 8µm and 39µm from 

the fiber distal end, obtained with a single optimized input 

phase map. Insets: target digits. 

V. CONCLUSION 

We propose a new method to measure the complex TM of a 

multimode fiber without interferometric setup nor reference 

beam. This method only requires a set of input fields structured 

by a deformable mirror and their corresponding output intensity 

images to predict this complex TM with a two-step machine 

learning approach. The first step consists in training a model 

𝐴𝐼𝑛𝑡 that predicts intensity beam profiles at the fiber distal end, 

with a small number of training data (only 15 times the number 

of actuators of the deformable mirror). In a second step, no 

more than 20 additional Fourier patterns of the output beams 

are necessary to compute the actual complex TM 𝐴𝜓 of the 

MMF. We numerically and experimentally demonstrated that 

our two-step method properly predicts the complex field at the 

distal end of a highly MMF, contrarily to previously reported 

machine learning based methods that only control the intensity 

profile of the output beam. In our study, we measured the TM 

of a 50/125 core/clad step-index fiber of 0.22 numerical 

aperture guiding 140 LP modes per polarization at 1064nm, 

using a deformable mirror of 120 actuators. The convergence 

of the two algorithms (learning of model 𝐴𝐼𝑛𝑡 and phase bias 

correction step to get 𝐴𝜓) is reached in about 150 epochs with 

32-mini batch size and 700 iterations respectively. 

Experimentally, the predicted intensity image and its 

corresponding far field reached a degree of similarity close to 

an excellent 99% with the true image on average. In comparison 

with other machine learning based methods, this is the first 

demonstration to the best of our knowledge, of highly MMF’s 

true TM recovery from intensity-only measurements. The 

simplicity of the approach is an undeniable advantage from a 

practical point of view over more conventional techniques, 

which require a reference wave and a computational method for 

extracting the phase of the field at the fiber output. In addition 

to the high performance of intensity pattern predictions in both 

near field and far field with the measured TM, we use it to 

perform 3D shaping at the fiber output. In particular, we 

investigated the extend of previous demonstrations on image 

projection. As proof of principle, we experimentally 

demonstrated the delivery of two images in two different planes 

simultaneously, different from the fiber distal end where the 

data were recorded to learn the TM. These results pave the way 

to transmission through MMF of more information-rich images 

using the axial dimension.  It is worth noting that a more 

complete characterization of the fiber can be obtained by 

measuring the TM at both orthogonal polarizations in the same 

way as described in this article. The actual modal TM of the 

MMF can also be deduced from the measured TM, knowing the 

guided modes of the fiber [24]. Finally, the principle of the 

technique is not limited to transmission through optical fibers 

since it is independent of the type of the crossed disturbing 

medium. In particular, it is also suitable to measure the TM of 

any random medium like a diffuser. These features are of 

particular interest in many applications such as beam shaping 

for surface treatments, motionless scanning, 3D photo-

polymerization or to create optical tweezers in bioengineering. 
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