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Abstract

Understanding why some points in a data set are considered as anomalies cannot
be done without taking into account the structure of the regular points. Whereas
many machine learning methods are dedicated to the identification of anomalies
on one side, or to the identification of the data inner-structure on the other
side, a solution is introduced to answers these two tasks using a same data
model, a variant of an isolation forest. The initial algorithm to construct an
isolation forest is indeed revisited to preserve the data inner structure without
affecting the efficiency of the outlier detection. Experiments conducted both
on synthetic and real-world data sets show that, in addition to improving the
detection of abnormal data points, the proposed variant of isolation forest allows
for a reconstruction of the subspaces of high density. Therefore, the former can
serve as a basis for a unified approach to detect global and local anomalies, which
is a necessary condition to then provide users with informative descriptions of
the data.

Keywords: Anomaly/Outlier detection, Isolation Forest, Clustering

1. Introduction

Because of its numerous applications ranging from spam detection [1] to
cancer detection [2], anomaly detection has been extensively studied and now
constitutes a research field in itself [3]. The Isolation Forest (IF) [4] is one of
the most appealing anomaly detection methods. This is due to the fact that it5

is unsupervised, fast and has few hyper-parameters. An IF is a set of binary
trees, each of them is constructed by recursively partitioning the data space at
random, with the aim to isolate points into its leaves. As many outlier detection
methods, IF returns a subset of points identified as anomalies because of their
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Figure 1: 2D toy data set illustrating the notions of global and local anomalies

high anomaly score. However, in many applicative contexts, and so as to make10

the right corporate decision, end users often need to know the reasons why a
data point is considered as an anomaly. Explaining anomalies has therefore
become a crucial issue that has received some attention during the last decade
among the machine learning community [5, 6]. It has been pointed out in [7]
that understanding the provenance of found anomalies ideally relies on a con-15

trastive comparison with the structural properties of so-called regular points.
The identified anomalies are therefore explained in relation to one or several
groups of regular data, and not as isolated points from the rest of the data. As
an illustrative example, Figure 1 depicts, on a toy 2-dimensional dataset, the
difference between global anomalies (x1 and x2 for instance) and local anoma-20

lies: points x3 and x4 may indeed be considered respectively as deviations from
the cluster of circles and the cluster of squares. Although the existence of local
anomalies is acknowledged in the literature, that local context is often forgotten
during the explanation: anomalies are generally explained as if they deviate
from all the other instances in the data set. An explanation for the abnormality25

of x3 would therefore be that its value for feature f1 (x−axis) is too high for
instance, which is an incomplete explanation in this context. A complete expla-
nation for x3 would be that it seems to belong to the cluster of circles, because
of its value on feature f2 (y−axis), but deviates from that cluster because the
value on f1 is too high. However, only few of the existing approaches reach this30

level of detail in the provided explanations. This paper takes a step towards the
extraction of such contrastive explanations between anomalies and the intrinsic
structure of regular points.

The goal of this work is to provide a unified solution to both the detection
of anomalies and the identification of the regular points inner structure. Having35

such structural knowledge available is a prerequisite for explaining the reason
why some points are considered as outliers. The contribution of this paper is
therefore to consider an IF as a unified data model that can be used to iden-
tify isolated points and dense regions of regular points as well. By reconsidering
random separations that split dense regions of points, leaves of the obtained iso-40
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lation trees may contain isolated points, corresponding to anomalies, or groups
of similar points.

The objective of the method proposed in this paper, named RIFIFI that
stands for Revised Isolation Forest to Identify Fraud1 and the data Inner struc-
ture, is to preserve as much as possible the structural information during the45

construction of the isolation forest, in order to reconstruct the regular point
clusters. To do so, the selection process of the separations is revisited, without
changing its complexity: it is no longer completely random, but guided by the
will to preserve as much as possible the proximity between the points belonging
to the same data cluster. This contribution is a first step toward a complete50

data-structure-aware anomaly explanation strategy.
The remainder of the paper is organized as follows. Section 2 positions the

proposed approach in relation to existing works in the field of anomaly detection
and explanation, especially in connection with the data inner structure. The
initial algorithm of IF is recalled in this section as well. The proposed RIFIFI55

method is described in Section 3. Then, experiments showing the relevance of
the approach to build a partition of regular data are presented in Section 4.
Some perspectives of this work are finally discussed in Section 5.

2. Related Work

This section positions the proposed approach against existing works in the60

field of anomaly detection, anomaly explanation and clustering with outlier
management capabilities.

2.1. Anomaly Detection

Anomaly detection in machine learning can be considered as a supervised,
semi-supervised or unsupervised problem. The supervised and semi-supervised65

settings both require labels and rely on two successive steps: training and test-
ing. In the supervised setting, the training step is performed on regular and
abnormal data, whereas in the semi-supervised setting, only regular instances
are used during training. The unsupervised case is the most attractive one
because of the unpredictability of anomalies and the difficulty of labeling data70

sets. Local Outlier Factor (LOF) [8], One-Class Support Vector Machines [9]
and IF [4] are among the most popular unsupervised methods even if many
other approaches exists, e.g. using autoencoders [10], correlation laws [11], etc.
The contribution of this work being an extended use of an isolation forest, a
focus is given on this particular anomaly detection method.75

IF is an algorithm dedicated to the detection of global anomalies relying
on the principle that an anomaly may be easily separated from the rest of the
data. It is an ensemble-based algorithm as a forest is composed of t trees, each

1The term fraud is used in the name as a synonym of anomaly because this work takes
place in a large research project aiming at detecting suspicious goods shipped across seas.
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Algorithm 1 Isolation Forest : build tree [4]

Inputs: a sample D ⊂ D, the depth d of the current node
Output: a node in an isolation tree
if |D| = 1 or d > hlim then

Return node(null, null,D, d, null, null) ▷ Leaf (terminal node)
else

A← random(A) ▷ Random attribute selection
v ← random(range(A)) ▷ Random value selection
Dl ← {x ∈ D/x.A < v}
Dr ← {x ∈ D/x.A ≥ v}
Return node(build tree(Dl, d+ 1), ▷ Internal node

build tree(Dr, d+ 1), D, d,A, v)
end if

of them contributing in the calculation of an anomaly score attached to each
data point.80

Each isolation tree of an IF is built on a randomly drawn sample D of the
dataset D (Table 1 recaps the notations used throughout the paper). At each
step of the construction of the tree (see Algorithm 1), an attribute A and a
value v in the range of values observed for A in D are selected randomly. The
points with a value lower than v on attribute A are transferred to the left child85

of the current node, and the others to the right child. The process is repeated
recursively from the root of the tree that contains all the sample data, until one
of the following two conditions is met:

• the node is no longer separable (it contains a single point) ;

• the depth limit of a tree, a predefined hyper-parameter of the method, is90

reached.

The algorithm depends on three hyper-parameters: the number of trees in the
forest t, the sample size Ψ and the depth limit of a tree hlim.

A node is formally defined by a sextuplet (LN,RN,D, d,A, v), where LN
and RN are pointers to its left and right node respectively, D ⊆ D, d ∈ N is95

its depth in the tree, A ∈ A and v ∈ dom(A). In Algorithm 1, the method
node(left child, right child, D, d, A, v) returns a new node.

Once the forest built, each point to evaluate is propagated to the leaves of
each tree in the forest and an anomaly score, function of the average depth of
the node containing the data point in each tree, is computed as follows [4]:100

s(x) = 2−
E(h(x))

c(Ψ) , (1)

where E(h(x)) is the average depth of the data point over the t trees. c(Ψ) is
a normalization factor corresponding to the average path length of unsuccessful
searches in a binary tree with Ψ nodes.
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Several variants of isolation forests have been proposed in the literature.
Some focus on the calculation of the anomaly score, without modifying the pro-105

cess of building the trees and the forest. This is the case of [12] where five new
functions to compute anomaly scores are proposed. Others modify the con-
struction of the trees but not the calculation of scores. In [13] and [14], oblique
separations are used, but with different goals: detecting clusters of anomalies
for the former and improving score consistency for the latter. In [15], the sep-110

arations are no longer completely random and aim at minimizing the weighted
standard deviation of the subtrees depth induced by each separation. The bi-
nary separation operated in the initial IF approach has been reconsidered in [16]
to take into account the local data inner structure. Instead of separating a set of
points into two child nodes, a k-means algorithm combined with an elbow rule115

to determine the value of k is applied at each step of the tree construction. Each
found cluster forms a leaf and the anomaly score now depends on the distance
of the point with the limits of the cluster it is assigned to. This extension of the
IF strategy, in addition to introducing a prohibitive cost overhead during tree
construction, relies on the definition of a distance metrics and do not aim at120

reconstructing the global data inner structure as clusters are only very locally
identified, i.e. at the node level.

The RIFIFI method proposed in this paper also produces not completely
random separations with the objective of both efficiently isolate outliers and
preserve the regular data points structure. In a sense, RIFIFI takes the opposite125

direction of the extension of random forests proposed in [17] where a split is
randomly selected among k candidates that maximise a node splitting function.
RIFIFI reconsiders according to a density criterion a random node splitting
function.

2.2. Anomaly Explanation130

Anomaly explanation has received less attention than classification expla-
nation. Yet, because of the diverse nature of anomalies, anomaly explanation
deserves special treatment even though it has benefited from works dedicated
to the explanation of classifiers and neural networks outputs. In [7], four cat-
egories of explanations have been identified: attribute importance explanation,135

attribute value explanation, point comparison explanation, and intrinsic data
structure analysis explanation. In [18], the following categories of explana-
tions are introduced: methods that rank anomalies, methods that reveal causal
relationships between anomalies, and methods that identify the attributes re-
sponsible for the abnormality of points or groups of points. In both cases, it is140

stated that techniques finding important attributes are the most common in the
literature [6, 19]. Furthermore, while point comparison explanations focus on
two points in the data set, explanations revealing cause-and-effect relationships
focus on the detected anomalies, explanations by intrinsic structure analysis
provide a global view on the anomaly to be explained with respect to the data145

set, and is thus more detailed as the whole data set context is taken into consid-
eration. Although some works have tried to fill the gap [20, 21, 22], explanation
by structure analysis lacks references.
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2.3. Outlier-Aware Clustering

The clustering task aims at decomposing a data set into homogeneous, i.e.150

compact, and distinct, i.e. well separated, subgroups in the data. As such,
it can be seen as summarizing the underlying data distribution and providing
a legible overview of the data content. Yet most clustering algorithms suffer
from the presence of outliers: the points that to do not conform with the global
structure of the data most often hinder the identification of regular clusters.155

The so-called robust clustering methods aim at addressing this issue, provid-
ing data partitions that are not perturbed by outliers: they aim at outputting
the same results as would be obtained if the outliers had been removed from
the data set, without requiring to perform a preliminary step of outlier de-
tection and removal. Robust clustering can be roughly categorized into two160

types of methods [23]: some of them proceed by automatically down-weighting
atypical data points [24], using several approaches to define these weights, e.g.
including noise clustering [25], possibilistic clustering [26, 27], replacing the tra-
ditional normal distributions by multivariate t-distributions [28] or dedicated
approaches [29, 30]. Other methods propose to replace the classical squared165

Euclidean distance, which is known to be highly sensitive to outliers, by other
distances [31, 32, 33, 34, 35]. Along the same lines, some approaches are ex-
plicitly based on robust M-estimators incorporated in the cost function [36],
the possibilistic c-means [26] can be seen in this framework. These approaches
define robustness as the ability to ignore the outliers, possibly grouping them170

in a specific cluster, as in the noise clustering approach for instance.
By aiming at providing a rich overview of the whole dataset, including the

regular points inner structure and the existing anomalies, RIFIFI is related
to the approaches introduced in [37], [38] and [39]. The first one relies on
the combination of two types of clustering algorithms, a partitioning one and175

a hierarchical one. The last one applies a partitioning clustering algorithm
to an auxiliary binary representation of the data. In [38], a robust k-means
extension, called k-means-- and aiming at simultaneously identifying clusters
and anomalies is proposed.

3. The RIFIFI Approach180

This section details the contribution of this article as an extension of the
initial IF algorithm (Alg. 1) to isolate anomalies but also to reconstruct the
regular points inner structure. The principle of RIFIFI is first introduced before
detailing the proposed algorithm and how the knowledge it generates is used to
isolate outliers and identify dense subspaces as well.185

3.1. Principle

RIFIFI differs from classical IF (as recalled in Sect. 2) on the recursive
splits/separations generation, where a split is defined as the couple (A, v) con-
taining the chosen attribute and value: while classical IF uses completely ran-
dom separations, RIFIFI has a split selection criterion based on the density of190
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Table 1: Notations used throughout the paper

Notation Meaning
D Data set of n points

A = {A1, . . . , Am} Descriptive attributes
dom(A) Domain of attribute A

Ia Interval on feature a ∈ A
x ∈ D Data point
x.a Value for data point x on attribute a
t Nb. of trees in the forest denoted by F = {T1, . . . , Tt}
Ψ Cardinality of the data subset used to build a tree

hlim Depth limit
ni(x) Cardinality of the node containing x in the i-th tree
α Margin width
η Density threshold

(a) Splits of a classical IF tree (b) Splits of a RIFIFI tree

Figure 2: Examples of splits, shown by the black lines, of a tree: (left) IF, (right) RIFIFI.
The width of the line is inversely proportional to the depth of the split.

the subspace in the neighborhood of each split. The hypothesis is the following:
if a significant number of points are found in the neighborhood of the split, it
is potentially separating a cluster. Another split must therefore be generated.
The goal is to surround the regular point clusters by the separations, so that
leaves may contain a cluster, or a significant portion of a cluster. Two hyper-195

parameters are introduced in addition to the IF hyper-parameters: the size of
the margin α around the separation which represents its neighborhood, and the
density threshold η. If a fraction η of points fall in the margin around the split,
it is discarded.

The impact of this criterion on the isolation procedure is illustrated in Fig-200

ure 2 that depicts two examples of trees. With the proposed criterion, the
separations more rarely separate points belonging to the same cluster, and the
anomalies remain isolated. However, since sampling is still performed during the
construction of the trees, some separations may still separate points belonging
to the same cluster. In this case, several leaves may contain portions of a same205

cluster that have to be combined to reconstruct the whole data inner structure.
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3.2. RIFIFI Algorithm

Algorithm 2 presents the details of RIFIFI. To avoid generating separations
in intervals that have already been discarded because they contain many data
points, the set of tested intervals I (Ia being the intervals on attribute a) is210

stored and passed as a parameter through the recursive calls to the build tree
function (lines 17 and 20 in Alg. 2). If the method was not able to find a valid
separation in the whole interval of values of an attribute (line 10), this attribute
is discarded (line 11). The discarded attributes are therefore also stored (in the
variable C). If the method is unable to find a valid separation on any attribute215

(line 3), then a terminal node is returned (line 4), the current set of points being
considered as inseparable.

In comparison to a classical isolation forest, a RIFIFI forest induces an ad-
ditional cost related to the storage of the excluded intervals. This overhead is in
the worst case a constant equal to |A|∗(100/α+1). The time complexity differs220

from that of a classical isolation forest by the selection of the separations. This
difference is, in the worst case, linear with respect to the number of attributes:
O(|A|).

3.3. Types of Leaves Generated by RIFIFI

We propose to distinguish between three types of terminal nodes in a tree225

generated by Algorithm 2, depending on the condition of the stopping criterion
it satisfies: an Isolation Node (IN) stores a data point that has been isolated
from the rest of the dataset, it is generated when |D| = 1. A terminal node is
called a Dense Node (DN) if it gathers a set of inseparable points, formally if
|D| > 1 and C = A (l.3 in Alg. 2). Finally, a Depth-Limit Node (DLN) is230

such that d = hlim and C ̸= A.
Whereas the classical IF algorithm yields only nodes of type IN and DLN,

RIFIFI also creates nodes of type DN that are particularly informative in the
prospect of reconstructing the data inner structure.

3.4. RIFIFI for Anomaly Detection235

In the original IF approach, the anomaly score of a point to evaluate depends
on its depth of isolation in the different trees of the forest. Relying on a com-
pletely random nested separation strategy, anomalies are those points that are
the most quickly isolated and thus that appear at the top of the isolation trees
in nodes of type IN. In the RIFIFI approach, and as detailed in Algorithm 2,240

the construction of the isolation trees still relies on randomly chosen separation
lines but that may be discarded according to a density constraint. Leaves of
the obtained trees may thus contain a single point isolated after a sequence of
separations (leaves of type IN) or a group of points that remain unseparated at
the end of the tree construction process. This may happen for two reasons: the245

tree depth threshold is reached (leaves of type DLN) or the whole domain of all
the attributes has been explored (leaves of type DN).

Due to the fact that separations cannot split dense areas anymore, a leaf
of type DN containing a high number of inseparable points can be located at
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Algorithm 2 RIFIFI : build tree

1: Inputs: data sample D ⊂ D, depth d of the current node, margin width
α, density threshold η, sets of tested intervals I = {IA1 , . . . , IAm}, set of
covered attributes C

2: Output: a node in an isolation tree
3: if C = A or |D| = 1 or d > hlim then
4: Return node(null, null,D, d, null, null) ▷ Leaf
5: else
6: a← random(A \ C) ▷ Random selection of an attribute among

▷ the untested attributes
7: v ← random(domain(a) \ ∪J{J ∈ Ia}) ▷ Random selection of a value

▷ among the untested values for that attribute
8: marg ← 1

2α(maxx∈D x.a−minx∈D x.a)
9: Ia ← Ia ∪ [v −marg, v +marg]

10: if [minx∈D x.a,maxx∈D x.a] ⊆ Ia then ▷ The entire range of values
▷ has been scanned and excluded

11: C ← C ∪ {a} ▷ The attribute is added to the list
▷ of excluded attributes

12: end if
13: Dm ← {x ∈ D/x.a ∈ [v −marg, v +marg]} ▷ Points contained in the

▷ margin
14: if |Dm| ≤ η then
15: Dl ← {x ∈ D/x.a < v}
16: Dr ← {x ∈ D/x.a ≥ v}
17: Return node(build tree(Dl, d+ 1, α, η, ∅, ∅), ▷ Internal node
18: build tree(Dr, d+ 1, α, η, ∅, ∅), D, d, a, v)
19: end if
20: Return build tree(D, d, α, η, I, C) ▷ Selection of another split
21: end if

low depth. It thus makes more sense to define an anomaly score function that250

depends on the number of points grouped together in a leaf, instead of its depth.
Hence the proposed anomaly scoring function:

si(x) = 1− ni(x)− 1

Ψ
. (2)

where ni(x) denotes the cardinality of the node containing x in the i-th tree.
The score si(x) varies in ]0, 1], it takes its maximum value (si(x) = 1) when x
is isolated alone in an IN leaf and is close to 0 when the whole data subset ends255

in a same leaf. The latter last situation occurs when, according to the density
threshold η and the margin α, no separation line can be validated on the whole
universe: the dataset consists of a single indivisible cluster.
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The global anomaly score at the forest level is the average on all t trees:

s(x) =
1

t

t∑
i=1

si(x). (3)

With original IF, the anomaly score of a data point reflects the ease (in terms260

of splits) with which it is separated from others. With LOF [8], the abnormality
of a data point is caused by its lower surrounding density compared to its
neighbors. As RIFIFI splits are located in low density regions, the method
combines the separability property used in IF and the local density property
used in LOF to identify anomalies.265

3.5. RIFIFI for Clustering

Whereas the anomaly detection step leverages leaves of type IN and possibly
of type DN when they gather very small subsets of inseparable anomalies, the
reconstruction of the data inner structure uses leaves of type DN only. As
defined in Section 3.3, leaves of type DN correspond to dense regions of points270

that may form an elliptic cluster or a part of any shape of cluster. Using
Algorithm 2, one knows that points grouped in a DN cannot be separated
anymore, according to the considered hyper-parameter values for α (margin
width around the separation lines) and η (density threshold).

Therefore, still in the spirit of ensemble-based approaches, if points are fre-275

quently found in the same DN in the different trees, they probably belong to
the same cluster. We thus define an inseparability index between two points
as the average number of times they co-occur in the same DN:

sim(x1, x2) =
1

t

∑
f∈F

1f (x1, x2) (4)

with F the set of leaves of type DN in the forest, and 1f (x1, x2) = 1 if {x1, x2} ⊆
f and 0 otherwise.280

The points can then be combined progressively on the basis of their insepara-
bility index using Agglomerative Hierarchical Clustering (AHC) to reconstruct
a partition of the data set.

4. Experiments

The goal of this section is two-fold: show that RIFIFI is still able to correctly285

identify the anomalies, and show that RIFIFI preserves the structure of regular
data. The latter is equivalent to checking whether each leaf is a portion of a
cluster and the information contained in the leaves can be used to reconstruct
the structure of regular data.

Throughout the experiments, default values are set for parameters of RIFIFI:290

t = 100, Ψ = 256, α = 0.05 and η = 0.5. The values of t and Ψ are identical
to the default values of the classical IF [4]. A fixed margin width of α = 5%
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Table 2: Considered anomaly detection data sets ( available in [40]): dimension, number of
instances and number of anomalies.

Name d n # of anomalies

Annthyroid 6 7200 534
Arrhythmia 271 420 57
Breast 9 683 239
Cover 10 286048 2747
Hbk 4 75 14
Http 3 567498 2213
Ionosphere 32 351 126
Mammography 6 11183 260
Pima 8 768 268
Satellite 36 6435 2036
Shuttle 9 58000 3511
Smtp 3 95156 30
Wood 6 20 4

of the attribute initial range is chosen. The intuition behind a fixed value of α
is the following : if two points are separated by less than that α ∗ range(a) on
an attribute a, they should remain together during the tree building process.295

However, that parameter can be adjusted with some knowledge about the data.
For example, if the user wants to keep together data points having a difference
in values on a specific attribute a less than a quantity β, then the value of α
for this attribute can be set to β/range(a). The motivation for the choice of η
is the following: if the data points are uniformly distributed, then n′ = α×N ′

300

points should fall within the margin, where N ′ is the number of points in the
current node. As a result, if less than 0.5×n′ data points fall within the margin,
one can assume that the separation is not splitting a group of close points.

4.1. Anomaly Detection

The objective of this part of the experiments is to evaluate the anomaly305

detection component of RIFIFI. In the presented experimentations, RIFIFI is
compared with existing approaches according to its capability of separating
outliers from regular points.

Data sets

Thirteen data sets, including 2 statistical ones, are used, that are similar to310

the ones considered in [4] to evaluate IF. The dimension, number of instances
and number of anomalies of each data set are presented in Table 2. The expected
anomalies are known for each data set and serve as ground truths during the
evaluation.

General Assessment: Area Under Curves315

For each data set, the Area Under the Receiver Operating Characteristic
curve (AUC or AUROC) of RIFIFI and IF are compared. This metric is gen-
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Table 3: Mean AUC and standard deviations of IF, RIFIFI, EIF, SCIForest and FCF.

Data set IF RIFIFI EIF SCIForest FCF

Annthyroid 0.802 ± 0.016 0.778 ± 0.022 0.716 ± 0.0 0.760 ± 0.0 0.881 ± 0.0
Arrhythmia 0.765 ± 0.027 0.822 ± 0.007 0.813 ± 0.0 0.683 ± 0.0 0.809 ± 0.0
Breast 0.979 ± 0.003 0.992 ± 0.001 0.987 ± 0.0 0.983 ± 0.0 0.984 ± 0.0
Cover 0.885 ± 0.02 0.857 ± 0.02 0.904 ± 0.0 0.704 ± 0.0 0.929 ± 0.0
Hbk 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 0.984 ± 0.0
Http 0.999 ± 0.001 0.997 ± 0.002 0.999 ± 0.0 0.999 ± 0.0 0.999 ± 0.0
Ionosphere 0.847 ± 0.007 0.832 ± 0.005 0.843 ± 0.0 0.890 ± 0.0 0.872 ± 0.0
Mammography 0.610 ± 0.03 0.843 ± 0.005 0.869 ± 0.0 0.585 ± 0.0 0.655 ± 0.0
Pima 0.676 ± 0.01 0.683 ± 0.007 0.676 ± 0.0 0.600 ± 0.0 0.662 ± 0.0
Satellite 0.705 ± 0.012 0.685 ± 0.009 0.694 ± 0.0 0.623 ± 0.0 0.718 ± 0.0
Shuttle 0.994 ± 0.001 0.993 ± 0.001 0.993 ± 0.0 0.997 ± 0.0 0.994 ± 0.0
Smtp 0.891 ± 0.007 0.866 ± 0.008 0.868 ± 0.0 0.935 ± 0.0 0.925 ± 0.0
Wood 0.903 ± 0.04 1.0 ± 0.0 0.843 ± 0.0 1.0 ± 0.0 0.953 ± 0.0

Mean AUC 0.85 0.88 0.86 0.82 0.87

erally used for the evaluation of anomaly detection methods because it is in-
dependent of the anomaly score threshold. It represents the probability that
anomalies receive higher scores than regular instances. The AUCs of Extended320

Isolation Forest (EIF) [14], SCIForest [13] and Fair Cut Forest (FCF) [15] on
the data sets are also computed for comparison. The implementations of EIF,
SCIForest and FCF are available in the package isotree2.

Table 3 reports the mean AUC obtained on each data set after 10 runs of
each method, and the associated standard deviations.325

IF performs better than RIFIFI on 7 data sets, and RIFIFI performs better
than IF on 5 data sets. Both methods obtain the same perfect results on the
statistical data set hbk. In most data sets, there is no significant difference be-
tween RIFIFI and IF. However, on the data set mammography, RIFIFI performs
much better than IF, with a gain of +0.233 in mean AUC. In average, RIFIFI330

performs better than the classical IF, with an average gain of +0.03 in AUC.
Considering the big picture, the different variants display similar performances.

Identified Anomalies

Why does RIFIFI performs better than IF on some data sets? The answer
to this question has two parts. The first part can be observed on the statistical335

data set wood. On this data set and for this batch of experiments, RIFIFI
systematically assigns a higher score to the real anomalies in comparison to IF.
It is not the case for IF. Table 4 shows the 10 data points that receive the
highest anomaly scores for both methods. Using the same representation as
in [4], Figure 3 shows the first two principal components of the data set.340

The four highest-ranked instances by RIFIFI are the actual anomalies of
the data set (instances 4, 6, 8 and 19), whereas IF scores the instance 10 first.
Observing the two principal components on Figure 3 shows that instance 10,
although regular, lies in a low density subspace. Since with IF the anomaly
score only depends on the average isolation depth of a data point (Eq. 1), it is345

more difficult for the method to make a distinction between real anomalies and
regular data points located in low density subspaces. On the other hand, RIFIFI
takes the local density of the data point into consideration while generating the

2https://github.com/david-cortes/isotree/blob/master/README.md
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Table 4: Anomaly ranking of the wood data set: bold-faced indexes are actual anomalies.

Rank IF RIFIFI

1 10 19
2 19 4
3 4 6
4 8 8
5 20 7
6 7 12
7 1 11
8 12 9
9 11 1
10 17 20

Figure 3: First two principal components of the wood data set. Instances 4, 6, 8, 10 and 19
are displayed.

splits and during the score computation (Eq. 2). As a result, RIFIFI offers a
better contrast between regular data points located in low density subspaces350

(but still surrounded by data points when the local density is considered) and
anomalies (isolated). LOF also correctly identifies the true anomalies, and rank
them first [4]. With LOF, there is also no ambiguity because instance 10 has a
surrounding density similar to the one of its neighbors. These findings are in line
with the principle stated at the end of section 3.4: RIFIFI combines separability355

-anomalies are far from the other data points- and local density information -
anomalies have a lower local density in comparison to their neighbors- during
the identification of anomalies.

The second difference between IF and RIFIFI lies in the identification of
local anomalies. This phenomenon can be observed on the data set on Figure 4.360

On this figure, the opacity of each data point is proportional to its anomaly
score. The scores are min-max scaled. It appears that RIFIFI gives higher
scores than IF to local anomalies.

13



(a) IF (b) RIFIFI

Figure 4: Scores distribution: IF vs RIFIFI

Table 5: Minimum, maximum and mean AUC values obtained when varying the hyper-
parameters

Data set Min Mean Max
Annthyroid 0.752 0.769 0.782
Arrhythmia 0.810 0.814 0.819
Breast 0.993 0.994 0.995
Cover 0.819 0.852 0.889
Hbk 1.0 1.0 1.0
Http 0.993 0.996 0.998
Ionosphere 0.826 0.830 0.836
Mammography 0.826 0.841 0.848
Pima 0.682 0.694 0.717
Satellite 0.680 0.691 0.700
Shuttle 0.992 0.993 0.993
Smtp 0.871 0.886 0.900
Wood 0.941 0.960 0.981

Hyper-parameters Sensitivity

How much does the choice of the hyper-parameters influence the anomaly365

detection performance of RIFIFI?
As a reminder, RIFIFI introduces two additional hyper-parameters: α which

represents the width of the margin surrounding the split and η which controls
the density surrounding of the margin during the split selection. They have the
following default values: α = 5% of the attribute initial range, and η = 0.5.370

For different values of α ∈ {2.5%, 5%, 7.5%} and η ∈ {0.5, 1.0}, and for each
data set, ten RIFIFI forests are built. The mean, minimum and maximum
values among the 10 × 3 × 2 different combinations are displayed on Figure 5
and shown in Table 5. The means and standard deviations of IF and RIFIFI
using default parameters are also illustrated. They have already been shown375

earlier in Table 3.
It appears that the AUCs do not vary much with the parameters, and that
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Figure 5: Influence of the hyperparameters values on the AUC

the default values are appropriate. It also appears that the anomaly detection
performance of RIFIFI presents less variability than that of IF, as highlighted by
the smaller standard deviations in the former. This is due to the fact that some380

properties of RIFIFI are controlled in a deterministic manner. Consequently,
though RIFIFI remains a random method, it is less random than classical IF.

4.2. Clustering: Identifying the Inner Data Structure

The objective of this part is to investigate whether a relevant partition of
the regular data points can be inferred from a RIFIFI forest. The experiments385

described in this section aims at checking that RIFIFI is able to reconstruct the
groups of points defined in the reference corpus.

Considered Datasets

The data sets used in this section are illustrated on Figure 6. They are
constrained to 2D and 3D description spaces so as to control the behavior of390

the method. Each of them contains clusters and anomalies: 2 clusters of regular
data for D1, D2 and D4, 3 clusters of regular data for D3 and 4 clusters of
regular data for D5. D5 is a three-dimensional data set in which each cluster is
located in a 2-dimensional subspace [41]. D4 is the data set moons composed
of two interleaving half circles, to which anomalies have been added manually.395
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(a) D1 (b) D2 (c) D3

(d) D4 (e) D5

Figure 6: Considered 2D and 3D data sets for the clustering experiments

Data set IF RIFIFI
D1 0.999 ± 0.001 1.0 ± 0.0
D2 0.980 ± 0.003 0.986 ± 0.002
D3 0.966 ± 0.006 0.960 ± 0.008
D4 0.998 ± 0.002 0.999 ± 0.0

Table 6: Mean AUC and standard deviations of IF and RIFIFI.

Anomaly Detection

Before diving into the clustering experiments, the anomaly detection per-
formances of IF and RIFIFI on these data sets are compared to confirm that
RIFIFI addresses the two tasks, namely anomaly detection and clustering, using
a unified data model, i.e. the isolation forest. Table 6 reports the mean AUCs400

after 10 runs and the associated standard deviations. The results on D5 are
not shown because anomalies were not manually added to this data set during
its generation. All the instances are expected to be regular, even though some
instances are slightly deviating as part of the generation process.

Leaf Cardinalities and Tree Depths405

The impact of the split selection in RIFIFI on the size of the leaves is evalu-
ated. With IF, the separations are completely random until a point is isolated
or the depth limit is reached. It is therefore expected to have on one hand leaves
containing isolated points, and on the other hand deeper leaves containing more
than a single point. With RIFIFI, it is expected to have leaves containing iso-410

lated points, leaves containing points that could not be separated and leaves
that have reached the depth limit. Ideally, there should be more leaves of the
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Data set
Leaf sizes Tree depths

IF RIFIFI IF RIFIFI
D1 7.30 ± 0.45 30.29 ± 0.84 8.0 ± 0.0 4.36 ± 1.51
D2 8.76 ± 0.24 45.02 ± 1.37 8.0 ± 0.0 4.96 ± 1.03
D3 10.10 ± 0.36 25.68 ± 0.67 8.0 ± 0.0 5.98 ± 0.96
D4 6.65 ± 0.14 38.10 ± 1.35 7.98 ± 0.02 4.21 ± 1.30
D5 9.22 ± 0.46 17.49 ± 0.84 8.0 ± 0.0 7.11 ± 0.83

Table 7: Statistics on the tree structures built by IF and RIFIFI

Data set DLN leaves (%) DN leaves (%)
D1 22.63 ± 6.96 77.37 ± 6.96
D2 30.85 ± 5.64 69.15 ± 5.64
D3 35.25 ± 3.99 64.75 ± 3.99
D4 12.19 ± 3.21 87.81 ± 3.21
D5 70.02 ± 3.26 29.98 ± 3.26

Table 8: Percentages of the different types of leaves

second type, depending on the chosen depth limit, because the objective is to
preserve the clusters. Therefore, RIFIFI trees should be shallower (the depth
limit being more difficult to reach than in the classical version) and the leaves415

should contain more data points.
A classical Isolation Forest and a RIFIFI forest are built on each data set.

The leaves containing isolated instances (IN leaves) are discarded. Then, the
average cardinality of the leaves as well as the average depths of the trees of
each forest type are computed. The means and standard deviations across 10420

runs are reported in Table 7.
RIFIFI leaves contain more points than the leaves of a classical isolation

forest, and this on all the data sets. As for the trees, they are shallower than
the classical isolation trees.

Types of Leaves425

We then study the proportion of leaves that have reached the depth limit
(DLN ), as compared to the proportion of leaves containing points that are
no longer separable (DN ): a RIFIFI forest is built and these two values are
computed. Table 8 reports the means and standard deviations across 10 runs
of this experiment.430

It appears that a significant proportion of leaves are DN. This phenomenon
is verified on data sets D1 to D4, but not on data set D5. The latter also
contains fewer points in the leaves, as compared to the other data sets and the
trees of the RIFIFI forest, although shallower than the classical isolation trees,
are still deeper than those of the forests built on the other data sets (Table 7).435

This is explained by the fact that in D5, each cluster ”exists” in only two of
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(a) D1 (b) D2 (c) D3

(d) D4 (e) D5

Figure 7: Euclidean distance vs inseparability index

the three dimensions. However, the isolation process continues by separating
the points on the third dimension, where they are distributed almost uniformly.
The depth limit is not a function of the number of dimensions. However, as the
dimension of the data set increases, there are more options for the split choice.440

As a result, the depth limit is more often reached. Increasing the depth limit
taking into account the dimensionality mitigates the aforementioned problem.
For example, by using a depth limit of 15 for D5, the percentage of DLN leaves
decreases to 33.27± 2.47.

Data Point Proximity445

This part intends to check if RIFIFI preserves the proximity between the data
points. This proximity is measured in the original data space by the Euclidean
distance and in RIFIFI by the inseparability index (Eq. 4). For each pair of
points in the data set, the Euclidean distance between them is calculated, as
well as the inseparability index. Both values are min-max scaled. The results450

are displayed for each data set on Figure 7: for each pair of points, on the x-axis
the inseparability index and on the y-axis the Euclidean distance.

Two seemingly counter-intuitive phenomena are observed when analyzing
these results, but can be explained as follows. First, some data points, despite
being close in Euclidean space (small Euclidean distance), are rarely found in455

the same leaf (inseparability index close to 0). This occurs when the two points,
although close in the Euclidean space, are separable and thus belong to different
clusters, for example the instances (14.22,−0.70) and (8.59,−0.89) in D3. It
is especially the case when they have similar values on some dimensions. A
separation between these two points could be kept if their neighborhood is not460

dense. The aforementioned situation also occurs when one of the two points is
very close to the cluster containing the other point, without being part of it, or
when one of the two points is located at the border of the cluster and is therefore
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Average distance within leaves Average distance between leaves
IF RIFIFI IF RIFIFI

D1 0.102 ± 0.002 0.163 ± 0.002 1.684 ± 0.007 2.523 ± 0.033
D2 0.233 ± 0.004 0.507 ± 0.012 4.114 ± 0.034 5.230 ± 0.040
D3 1.142 ± 0.037 1.465 ± 0.055 13.250 ± 0.182 19.070 ± 0.253
D4 0.117 ± 0.004 0.237 ± 0.005 1.256 ± 0.006 1.474 ± 0.012
D5 0.341 ± 0.008 0.299 ± 0.014 1.419 ± 0.009 1.598 ± 0.027

Table 9: Average distances within and between leaves, means and standard deviations across
10 runs

often separated from the others (e.g. points (−7.10; 4.57) and (−6.03; 3.16)
in D2).465

It can also be observed that some data points distant in the Euclidean space
are sometimes found in the same leaves. This occurs when the two points,
although distant in Euclidean space, are part of the same cluster, for example
when the cluster is stretched. This phenomenon frequently occurs in the data
set D5 where all the four clusters are stretched.470

This analysis suggests that three random points x1 and x2 then x1 and
x3 can be located at the same Euclidean distance, but, using the information
provided by the RIFIFI forest, x1 and x2 are part of the same cluster, and x3

is not, because many splits separate x1 and x3. The local density evaluation
during the split selection therefore brings an additional knowledge useful for475

clustering.

Average Distances within and between Leaves

This section of the experiments aims at checking whether RIFIFI’s leaves are
portions of clusters containing close points which are separable from other leaves
not part of the same cluster. To verify that, the average Euclidean distance480

between the points of each leaf and the center of the leaf is calculated for both
forest types. It is the average distance within leaves. The average Euclidean
distance between the centers of the leaves is also computed. The results are
reported in Table 9.

The average distance within leaves is larger in RIFIFI in almost all datasets,485

which is understandable because classical isolation leaves contain less points as
seen earlier in the experiments, and these data points are close. RIFIFI’s leaves
in contrast contain larger groups of close data points. On D5, the average
distance within leaves is larger in IF: for data points belonging to two clusters
located in different subspaces, the distance is much larger. On the other hand,490

the distance between leaves is systematically larger in RIFIFI, which reflects the
fact that there is a better separability between leaves on RIFIFI, in comparison
to IF.
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Data set Inseparability index Euclidean distance
D1 1.0 1.0
D2 0.953 0.957
D3 0.958 0.429
D4 0.645 0.387
D5 0.855 0.588

Table 10: AHC on the data sets using inseparability index vs Euclidean distance: Adjusted
Rand Indexes

Inseparability Index and Clustering

The purpose of this experiment is to verify whether, when two points have495

a low inseparability index, they indeed belong to the same cluster.
For each data set, a RIFIFI forest is built and anomalies are identified. The

anomaly score threshold is set to 0.903. Then, the inseparability index between
each pair of points is computed and an Agglomerative Hierarchical Clustering
using average linkage is performed on the obtained similarity matrix. As the500

number k of clusters in the data set is known, the AHC is stopped when k
groups are constructed.

The obtained clusters are compared to the expected ones using the Adjusted
Rand Index (ARI), that equals 1 if the two partitions are identical. Table 10
shows the maximum ARI obtained on each data set, compared with the maxi-505

mum ARI obtained when using the Euclidean distance as the distance measure
for the AHC. In the ARI calculation, anomalies are considered as part of an
isolated cluster.

Except on data sets D1 and D2, the ARI is higher when using the insepara-
bility index. On D3, the separability information conveyed by the inseparability510

index allows to reconstruct the three regular clusters, where the Euclidean dis-
tance combines the upper-half of the biggest cluster to the cluster at the top
left (Fig. 8a).

As DN leaves are either elliptic clusters or parts of clusters, their combination
(in the case of cluster parts) can lead to the discovery of non elliptic clusters.515

This is observed on data set D4. The performance on this data set is nevertheless
limited because of the value of η: some splits group together a part of the lower
half-moon and the portion of the upper half-moon located in the cavity of the
first mentioned (Fig. 9b). As a result, these upper half-moon points are assigned
to the same cluster as the lower half-moon points (Fig. 9c). When the density520

condition is relaxed, with η = 1, the ARI reaches 0.95 (Fig. 9d).
On D5, the clusters are stretched and located in different subspaces. Conse-

quently, and as observed on Figure 7e, points belonging to the same cluster may

3In practical anomaly detection, the user can either choose a threshold or consider as ab-
normal the p instances which receive the highest anomaly score, where p is a small percentage
of the data set.
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(a) Euclidean distance (b) Inseparability index

Figure 8: AHC on D3: Euclidean distance vs inseparability index

be far away from each other when considering the Euclidean distance. The in-
separability index however is not tricked by that subtlety of the data set because525

the instances are frequently located in the same DN leaves. On the other hand,
points belonging to different clusters are sometimes close because the clusters
are located in the same subspace. Again, where the combination Euclidean dis-
tance + AHC merges those two clusters, the inseparability index is able to keep
them separated. Figure 10 illustrates these results.530

5. Conclusion and perspectives

In a data to knowledge translation process, providing users with informative
explanations about the dataset inner structure and the presence of anomalies is
an ultimate goal. This work makes a step towards this objective targeting the
specific task of differentiating global and local anomalies. Whereas explaining535

the reason why a point constitutes a global anomaly is not that difficult, it is
generally due to the existence of unseen extreme values the point possessed on
a subset of attributes, local anomalies requires a better understanding of the
data set. An anomaly is said to be local to a group of regular points if it shares
some characteristic values of these regular points but also possesses values not540

observed in this group. This distinction between global and local anomalies
cannot be made without knowing the data inner structure.

This paper proposes a variant of the isolation forest algorithm called RIFIFI
with the objective of preserving the clusters located in the data set. For this
purpose, a new criterion for the selection of separations has been introduced,545

based on the analysis of the neighborhood of the separations. The first carried
out experiments show that the proximity between points belonging to the same
group of data can be preserved, and that the reconstitution of a partition of
the data set is thus possible by carrying out an Agglomerative Hierarchical
Clustering step on a similarity matrix based on the number of times that the550

pairs of points are found in the same leaf.
This work is a first step towards a unified approach for extracting contextual

explanations of anomalies. Indeed, the ideal setting would be to use directly the
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(a) Euclidean distance + AHC (b) Separations of a specific tree, η = 0.5

(c) Inseparability index + AHC, η = 0.5 (d) Inseparability index + AHC, η = 1.0

Figure 9: AHC on D4 and impact of η: (top left) reference result obtained with the Euclidean
distance, (top right) example of a tree for η = 0.5, (bottom left) partition obtained with the
inseparability index with η = 0.5, (bottom right) partition obtained with the inseparability
index with η = 1.

information contained in the leaves, without computing the distances (Euclidean
or not) between pairs of points, since isolation forests do not require these555

calculations. To do so, an aggregation of the leaves similar to clustering methods
of the type grid-based could be explored: each leaf of significant cardinality
delimits a subspace, and the different subspaces can be combined to reconstitute
a partition of the data set. Having the anomalies on one side, and this partition
on the other, it would become possible to extract contrastive explanations of560

anomalies using a unified method, without relying on a pipeline.
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