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Abstract

Action anticipation involves forecasting future actions by
connecting past events to future ones. However, this reason-
ing ignores the real-life hierarchy of events which is con-
sidered to be composed of three main parts: past, present,
and future. We argue that considering these three main
parts and their dependencies could improve performance.
On the other hand, online action detection is the task of
predicting actions in a streaming manner. In this case,
one has access only to the past and present information.
Therefore, in online action detection (OAD) the existing ap-
proaches miss semantics or future information which limits
their performance. To sum up, for both of these tasks, the
complete set of knowledge (past-present-future) is missing,
which makes it challenging to infer action dependencies,
therefore having low performances. To address this limi-
tation, we propose to fuse both tasks into a single uniform
architecture. By combining action anticipation and online
action detection, our approach can cover the missing de-
pendencies of future information in online action detection.
This method referred to as JOADAA, presents a uniform
model that jointly performs action anticipation and online
action detection. We validate our proposed model on three
challenging datasets: THUMOS’14, which is a sparsely an-
notated dataset with one action per time step, CHARADES,
and Multi-THUMOS, two densely annotated datasets with
more complex scenarios. JOADAA achieves SOTA results
on these benchmarks for both tasks.

1. Introduction

Envisioning upcoming occurrences plays a vital role in
human intelligence as it aids in making choices while en-
gaging with the surroundings. Humans possess an inherent
skill to predict future happenings in diverse situations in-
volving interactions with the environment. Likewise, the
capacity to anticipate events is imperative for advanced AI

systems operating in intricate settings, including interac-
tions with other agents or individuals. The goal of online
action detection (OAD) is to accurately pinpoint ongoing
actions in streaming media, by predicting impending events.
While action anticipation advances OAD and imitates the
capacity of human cognition to anticipate events before they
occur. Therefore, OAD and action anticipation are two im-
portant areas of research in computer vision, which have
numerous applications in security surveillance, home-care,
sports analysis, self-driving cars, and online danger detec-
tion. Human perception of actions can be viewed as a con-
tinuous cycle in which prior knowledge is used to forecast
future behavior, and then present knowledge is used to re-
vise and update future predictions. To tackle action detec-
tion, we propose a unified framework of action anticipa-
tion and online action detection. Our predictions are in two
steps, first we anticipate up-coming actions based on past
information. Second, we update the anticipation by intro-
ducing the present information. By doing so, we gain in the
online action detection by introducing the anticipated ac-
tions as pseudo-future information. In addition, it improves
the action anticipation by comparing the prediction to the
present information, thus combining them to improve both
tasks.

Transformer networks such as [1, 19, 26] have had a sig-
nificant impact on computer vision and video understand-
ing. This is due to their ability to capture long-range depen-
dencies. LSTR [31], TesTra [35], or FUTR [13] have bene-
fited from the transformer backbones to address the tasks of
OAD and AA. However, OAD and AA (action anticipation)
tasks suffer from limited information as they don’t have
access to future information and global knowledge of the
scene. This limited information restricts the ability of trans-
formers to capture long-range dependencies and to learn
significant relations between events. This can be demon-
strated by comparing the effectiveness of models for offline
action detection with online action detection. Offline, one
has access to all pieces of information and a clear knowl-
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Figure 1. An example of human non-sequential dependencies. For instance, the actions RUN and OneHanded Catch are highly correlated
but distant. Also the same start action RUN can lead to many different actions and scenarios. Therefore, it is very hard for online action
detection or action anticipation to detect such relations without access to the future. In JOADAA, we propose to tackle this limitation by
introducing a pseudo-future information by combining action anticipation and online action detection in the same task.

edge of the past, present, and future. Furthermore, complex
densely annotated datasets (such as Multi-THUMOS [32])
have not been explored for online action detection and an-
ticipation. It is challenging to recognize and foresee activi-
ties in such datasets. Most OAD architectures are only val-
idated on sparsely-annotated activity datasets. Such simple
annotated datasets are less challenging. First, these datasets
do not have co-occurring actions. Second, they rarely have
dependencies between actions in distant time steps. Fur-
thermore, actions in densely annotated datasets have many
possible outcomes. An example of these complex depen-
dencies is given in Figure 1. Due to these challenges, OAD
methods are only validated on simple datasets. Therefore,
even with the help of transformers, it is difficult to build
knowledge of these long-range dependencies without hav-
ing access to complete information.

In the past, OAD and action anticipation have been
treated as separate tasks. However, to tackle the above chal-
lenges, we propose JOADAA (Joint Online Action Detec-
tion and Action Anticipation) to tackle OAD and AA to-
gether. We create a pseudo-future when performing online
action detection. By leveraging cross-attention between the
real frame features and the anticipated frames, we enhance
the quality of the features, thus improving the accuracy of
the predictions by making the present aware of a pseudo-
future. Next, we propose to extract two types of informa-
tion from these updated features: Local dependencies using
TCNs (temporal convolution networks) and global depen-
dencies using MHA (multi-head attention). Finally, we fuse
both pieces of information to make online action detection
predictions.

In this paper, following previous work, we extract fea-
tures from video clips using 3D convolution neural net-
works (3D CNNs). We use I3D [3] as a pre-trained back-

bone on the Kinetics dataset [16]. We store these extracted
features in a memory bank. JOADAA consists of three main
parts i) Past Processing Block, ii) Anticipation prediction
Block, and iii) Online action prediction Block. First, we
capture past information using a transformer encoder. The
encoder output is first passed through a classification layer,
which helps improve the quality of the embedding by mak-
ing it class-dependent. Next, in the anticipation prediction
part, we assume that we have not yet got the current frame.
A transformer decoder is employed to learn from the last
layer of the past embeddings to anticipate the upcoming ac-
tions in the next frame. This is carried out by introducing a
set of learnable queries, called anticipation queries. Finally,
the online action prediction part uses anticipation embed-
ding and current frame features to enhance the quality of
the current frame. The new enhanced present frame fea-
tures are fused with past features. Finally, global and local
information is extracted using MHA and TCN layers, re-
spectively, achieving a new enhanced feature map. Based
on the challenges discussed, we propose the following main
contributions:

• We propose a new architecture JOADDA, to jointly
perform online action detection and action anticipa-
tion.

• We tackle both tasks for two different types of datasets,
a densely annotated dataset and a simple activity
dataset.

• We validate our proposed method on three benchmark
datasets and achieve new SOTA results for online ac-
tion detection and action anticipation.
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2. Related work

Online Action Detection is the task of localizing
action instances in time steps. We distinguish two types
of action detection i.e., offline and online. In off-line
action detection, the model has access to the entire
video [7, 22, 24, 29, 36]. Online action detection, on the
other hand, occurs in real-time and has access to the past
and the present only. RED [9] uses reinforcement loss to
encourage early recognition of activities. IDN [8] learns
discriminative features and stores only knowledge that
is relevant in the present. To achieve optimal features,
LAP-Net [21] presents an adaptive sampling technique.
PKD [34] uses curriculum learning to transfer information
from offline to online models. Shou et al. [23], similar to
early action detection, focus on online detection of action
start (ODAS). StartNet [10] divides ODAS into two stages
and learns using a policy gradient. WOAD [11] employs
video-level labeling and weakly-supervised learning.
LSTR [31] uses a set of encoder-decoder architectures to
capture the relations between long-term and short-term
actions. They achieve state-of-the-art results on sparsely-
annotated datasets but perform poorly on densely labeled
datasets such as Multi-Thumas [32].

Action Anticipation is the task of predicting future ac-
tions given the limited observation of a video. In the past,
many strategies have been proposed to solve the next action
anticipation, forecasting a single future action in a matter
of seconds. Recently, the idea of anticipating long-term ac-
tivities from a long-range video has been put out. Girdhar
and Grauman [12] introduced the anticipative video trans-
former (AVT), which anticipates the following action us-
ing a self-attention decoder, which was further improved by
FUTR [13] for minutes-long future actions. However, their
architecture is suitable only for simple activities and simple
datasets, which is not applicable to real-world scenarios that
have multiple actions occurring at the same time.

Finally, in the study of mixing action anticipation and
online action prediction, the authors in [35] use the same
architecture for both action anticipation and online action
detection tasks. However, they dissociate these tasks, while
we tackle both tasks jointly to improve both of them. Fur-
thermore, the architecture in [35] is very similar to [31],
therefore, the same limitations apply here as well.

In summary, to have adequate predictions, we need to
build a well-descriptive hierarchy of information consisting
of past, present, and future. Unfortunately, tasks such as on-
line action detection or action anticipation do not have ac-
cess to this global knowledge. In our work, we suggest com-
bining OAD and AA in order to create pseudo-full knowl-
edge that can improve action anticipation accuracy and pro-
duce comparable results for online action detection.

3. Proposed method
The whole architecture consists of three main parts, i)

Past Processing Block, ii) Anticipation prediction Block,
and iii) Online Action Prediction, as shown in Figure 2.
First, a short-term past transformer-encoder enhances fea-
tures. Second, an anticipation transformer-decoder antic-
ipates the upcoming actions in the upcoming frames, us-
ing embedding output from the previous block and a set of
learnable queries, which we call anticipation queries. Fi-
nally, a transformer-decoder uses the anticipation results
and past information to predict the actions for the current
frame (online action detection). Each module is explained
in the following.

3.1. Past Processing Block

To enhance the ongoing action prediction, the initial
stage in our model is to infer prior information. We employ
a transformer encoder that accepts the embedding of previ-
ous frames as input. This enables us to highlight salient and
robust frames by leveraging attention mechanisms, making
our features more descriptive of previous activities (fea-
tures). It can be challenging to identify which activity a
person is performing solely based on the raw embedding or
the current frame. For instance, if the current frame shows
the person holding a bottle, we are not sure if the ongo-
ing action will be picking up the bottle, placing the bottle,
drinking water, or pouring water. However, if we know
from the past that one of the previous actions was opening
the bottle, we can be more confident that the person is more
likely to drink water. These features are later used to an-
ticipate future actions. Following [26], the equations below
sum up the first block of our architecture:

F ′ = ATTENTION(F ) (1)

ATTENTION(F ) = Softmax(QKT /
√

dk)V (2)

Q = Wq ×X,K = Wk ×X,V = Wv ×X (3)

X = F + PE(F ) (4)

PE stands for positional encoding, and F ∈ RT×D are
the extracted features using the pre-trained I3D model [3],
and Wq , Wk and Wv are learnable weights.

Furthermore, we propose different approaches for the
use of past information. Following [31] we use long-term
and short-term past information. Experimentally, the use of
long-term and short-term past information is highly depen-
dent on the type of dataset. The first intuition is that more
information is always good for a neural network as it pro-
vides a more detailed description of events in a video. Es-
pecially with the use of transformers, we can capture long-
range dependencies to learn all the steps that lead to the
current actions. However, in our study, we find that this is
not always true. For instance, the very long-past knowledge
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Figure 2. Proposed JOADAA architecture with three units i) Past processing, ii) Anticipation prediction, and iii) Online Action prediction.
Each stage is highlighted by a color for better understanding. Each block will be explained in details in section 3

may sometimes harm performances, especially for densely
annotated datasets. In scenarios where many actions co-
occur, it is challenging to learn significant long-term rela-
tions, and thus these long-term features may act as noise
to the model. Further experimental details are provided in
Section 4.4.

3.2. Anticipation prediction Block

Inspired by [13], the module takes a feature map F
′

∈ RT×D and a set of anticipation queries (learnable) LQ
∈ RNq×D, as inputs. Here, Nq represents the number
of queries and D is the embedding dimension, which is
the same as the feature map. Action anticipation can be
achieved in two different ways. The first way is to pro-
ceed directly with a transformer encoder and to learn to pre-
dict the future. An encoder sees only a glimpse of the past
and learns to predict the future. On the contrary, another
way is to utilize a transformer decoder. In this approach,
the strength of using learnable queries with a transformer
decoder is that each query learns a specific feature for a
specific frame in the future. The positional encoding indi-
cates to the transformer the order of these learnable queries
and helps the model relate each query to a corresponding

point in the future. Additionally, by having these learnable
queries in our model, it learns to adapt to each clip, since
the queries are based on the past information of each clip.
Therefore, these learnable queries learn to be aware of the
past. JOADAA uses these learnable queries as a link be-
tween past events and possible future ones.

Nq = 1 +Nf (5)

Where in Eq. 5, 1 is for the upcoming frame that repre-
sents the ongoing action (represented in red in the Figure
2). Since we do not have access yet to this frame; thus, it
is also anticipated. Nf is the number of frames to antici-
pate in the future to which we have no access. Information
from the past, present, and future are connected by these
learnable queries to improve both tasks efficiently. Later,
these anticipation queries act as a pseudo-future to do the
prediction of the ongoing action, see Section 3.3.

3.3. Online action prediction Block

At this stage, we feed the features of the current frame
and the previously learned features of potential actions in
the current time step and subsequent time steps into a de-
coder. Our model can classify the current frame more ac-
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curately because it has pseudo-future knowledge. Model-
ing information this way has two effects. The prediction
of the current frame is initially optimized by employing
anticipation queries, and since we can access the current
frame, we can also enhance the learned query on the cur-
rent frame, which benefits our anticipation module. In ad-
dition, our local-to-global layers improve the performance
of JOADAA. Adding a TCN layer (1D temporal convo-
lution) helps the model capture local information. Trans-
formers have proven to be a good tool to capture global
and long-range dependencies. However, as explained ear-
lier, this huge amount of information is not always helpful
and may act as noise. Therefore, by mixing transformers
with TCNs, our model learns complementary information
from an updated feature map that we pass through an FC
(fully connected) layer for classification. Notably, we uti-
lize a Softmax layer for basic datasets with only one action
at a time for validation and a Sigmoid layer for datasets with
co-occurring actions in all categorization layers (past, fu-
ture, and present).
Note that we use three different concatenation layers in our
architecture. The first concatenation is between past frames
features and anticipated frames features, the aim of this con-
catenation is to provide the decoder with a pseudo full in-
formation (past and pseudo future), which is the main idea
of our paper (use AA to enhance OAD). The second con-
catenation is between past frames and the currently updated
feature (since it is now aware of past and possible future ac-
tions). Here we only concatenate past and present because
online action action detection is our main objective, which
is why there is no more need for future information. The
last concatenation is to use both local information learned
through the TCNs and global information from the trans-
former decoder, which allows us to have better predictions
as shown in the ablation studies Table 8.
We also use the same decoder for future frame anticipation
and current frame prediction. Experiments have been con-
ducted that showed that using different decoders does not
improve the accuracy and sometimes leads to a slight de-
crease in accuracy. Hence, to keep the model lighter and
have better prediction we keep the same weights. As for
the encoders, the two of them are different; the last encoder
is part of our proposed classification head, where we use a
TCN to capture local dependencies and a transformer en-
coder to capture long-range dependencies. Therefore, our
intuition was not to share the weights between the encoders
as they have a separate function in our architecture.

4. Experiments
In this section, we discuss experiments carried out for

online action detection and action anticipation tasks on two
different types of datasets. First, we briefly describe the
datasets used and explain the implementation of the experi-

ments carried out. Second, we compare JOADAA with ex-
isting SOTA methods for both online action detection and
action anticipation. Finally, we explore the effectiveness
of each module of our approach by performing an ablation
study. More qualitative results are provided in the supple-
mentary materials.

4.1. Datasets

In this section, we briefly explain the datasets used in
our experiments. We experiment on two types of datasets,
i) sparsely annotated dataset (THUMOS’14 [15]), and
ii) densely annotated datasets (Multi-THUMOS [32] and
CHARADES [33]). Each of them is described below.

.THUMOS’14: contains 413 untrimmed videos with 20
categories of actions. The dataset is divided into two sub-
sets: the validation set and the test set. The validation set
contains 200 videos, and the test set contains 213 videos.
Following common practice, we use the validation set for
training and report the results in the test set. More details
are available in [15].

Multi-THUMOS: contains dense, multilabel frame-
level action annotations for 30 hours across 400 videos from
the THUMOS’14 [15] action detection dataset. It consists
of 38,690 annotations of 65 action classes, with an average
of 1.5 labels per frame and 10.5 action classes per video.
More details can be found in [32].

CHARADES: is composed of 9,848 videos of daily
indoor activities with an average length of 30 seconds,
involving interactions with 46 object classes in 15 types
of indoor scenes and containing a vocabulary of 30 verbs
leading to 157 action classes. Readers can find more details
in [33].

4.2. Implementation Details

We implement our proposed model in PyTorch [20]. All
experiments are performed on a system with 3 Nvidia V100
graphics cards. For all Transformer units, we set their num-
ber of heads to 16 and hidden units to 1024 dimensions. To
learn the weights of the model, we use Adam Optimizer [18]
with weight decay 5 × 10−5. The learning rate increases
linearly from zero to 5 × 10−5 in the first 40% training it-
erations and then decreases to zero using a cosine warm-
up. Our models are optimized with a batch size of 16, and
trained for 25 epochs. Evaluation protocol: We follow
previous work and use mean average precision per frame
(mAP) to evaluate performances.

4.3. Comparison with the SoTA

4.3.1 OAD Comparison on the simple dataset (THU-
MOS’14)

Table 1 presents the results of online action detection. For
the THUMOS’14 [15] dataset we achieve state-of-the-art
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THUMOS’14 Multi-THUMOS CHARADES
FATS [17] 59.0 - -
IDN [8] 60.3 - -

PKD [34] 64.5 - -
WOAD [11] 67.1 - -

LFB [28] 64.8 - -
TRN [30] 62.1 39.5 18.3
PDAN [7] 62.2 32.6 16.0

MSTCT [6] 70.5 41.4 19.5
LSTR [31] 69.5 43.0 20.0
TesTra [35] 71.2 41.7 19.9

GateHUB [4] 70.7 - -
JOADAA 72.6 45.2 21.5

Table 1. State of the art comparison for OAD on THUMOS’14, Multi-THUMOS, and CHARADES. Due to the lack of available OAD
methods for CHARADES and Multi-THUMOS datasets, we compare also with two off-line methods PDAN and MSTCT, adapted to an
online setting.

THUMOS’14 Multi-THUMOS CHARADES
1 2 4 6 2 4 6 2 4 6

TTM [27] 46.8 45.5 43.6 41.1 - - - - - -
LSTR [31] 60.4 58.6 53.3 48.9 - - - - - -
TesTra [35] 66.2 63.5 57.4 52.6 28.0 22.4 19.8 18.1 13.7 13.5
JOADAA 67.7 63.9 62.9 59.3 42.5 37.7 35.2 20.2 19.5 19.0

Table 2. Comparison with SOTA for the action anticipation task. 1, 2, 4, and 6 represent the number of anticipated frames. We notice that
our method is more robust w.r.t. the number of anticipated frames compared to other methods where accuracy drops dramatically.

Dataset 1 2 4 6
THUMOS’14 70.5 / 67.7 71.5 / 63.9 72.2 / 62.9 72.6 / 59.3
CHARADES 20.0 / 20.7 21.4 / 20.2 21.5 / 19.5 21.4 / 19.0
Multi-THUMOS 44.5 / 42.8 45.2 / 42.5 45.0 / 37.7 45.2 / 35.2

Table 3. Effect of action anticipation prediction and online action
detection using long-short-term knowledge. 1, 2, 4, and 6 are the
number of anticipated frames. Best viewed in color.

Dataset 2 4 6
THUMOS’14 70.6 / 64.4 70.0 / 63.0 70.6 / 58.2
CHARADES 21.8 / 20.4 21.4 / 19.5 21.3 / 19.0
Multi-THUMOS 45.1 / 36.9 45.3 / 39.2 45.1 / 37.3

Table 4. Results of using only short-term past information on mul-
tiple datasets for online action detection and action anticipation. 2,
4, and 6 are the number of anticipated frames.

results by a margin of 1.4%. GateHUB [4] was SoTA
results for OAD on the THUMOS’14 dataset. However,
they provide two results on this dataset, one with TSN as
the backbone feature extractor and one with Timesformer
[2]. Upon careful examination, we noticed the following

Dataset long term past + short term past short term past
LSTR JOADAA LSTR JOADAA

THUMOS’14 69.5 72.6 65.4 70.6
Multi-THUMOS 42.0 45.2 40.0 45.1
CHARADES 20.0 21.4 19.8 21.3

Table 5. Comparison of JOADAA with LSTR method using long-
past information. JOADAA is more robust to utilize long-past in-
formation.

points: 1) Our accuracy still surpasses theirs. 2) The Gate-
HUB method was not compared with TesTra, which demon-
strated better accuracy with the same settings. 3) GateHUB
achieves SOTA results only when TimeSformer [2] is used
as an RGB feature extractor, making it difficult to determine
whether the results are due to the extractor or to their pro-
posed solution. In conclusion, while the GateHUB paper
argues for capturing relevant information from the past to
the present, our JOADAA method, which employs a simple
implementation of transformers, outperforms it along with
TesTra [35].
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4.3.2 OAD comparison on densely annotated datasets

We evaluate JOADAA on more complex datasets such as
Multi-THUMOS [32] and CHARADES [33]. We utilize
LSTR [31], TesTra [35], and TRN [30] to train on these
datasets to build baseline methods, as there are no validated
online methods to compare JOADAA to these datasets.
JOADAA improves the baselines by 1.5% on CHARADES
[33] and 2.2% on Multi-THUMOS [32] dataset. The main
difference between our approach and baseline methods [31]
and [35], is the introduction of pseudo-future knowledge
to our online action prediction. It helps make more precise
predictions by having a knowledge of different possible out-
comes.

4.3.3 OAD comparison using off-line methods

For further comparison, we adapt offline methods to online
settings. We use PDAN [7] and MSTCT [6] two SoTA
methods on CHARADES and Multi-THUMOS in off-line
action detection. We outperform these two methods on all
three datasets THUMOS’14, Multi-THUMOS, and CHA-
RADES.

4.3.4 AA SoTA comparison

Similarly, our model achieves SOTA results on action antic-
ipation as noted in Table 2. When Increasing the anticipated
frames from 1 to 6, TesTra’s [35] accuracy drops by 13.6%
on the THUMOS’14 dataset, whereas our model decreases
by only 8.4%, which showcases robustness of our proposed
solution. Also, JOADAA performs much better in more
complex datasets (CHARADES and Multi-THUMOS).

In Table 3, we demonstrate how far we can foresee the
future. We notice that, in general, the further we anticipate,
the better the accuracy of the online action detection (blue)
until it reaches a level where the accuracy stops increasing.
Such a behavior makes sense because the model can learn
more action dependencies by inferring more information
about upcoming events. On the other hand, action antici-
pation results (red) decrease when the anticipation period
increases, because the model has more space to explore.

4.4. Ablation study

In this section, we discuss how the different modules
contribute to JOADAA.

4.4.1 Ablation on the past processing block

First, we analyze the use of long-range past features on dif-
ferent datasets. As discussed in Section 3, past information
can be used in two manners, either using only short-term
past (32 frames) or long-short-term past (512+32 frames).
This past information is used to infer the pseudo-future

Module THUMOS’14
Transformer encoder 71.5

LSTM+Conv 54.2

Table 6. Comparing two techniques for past information process-
ing. We use a transformer encoder and a set of LSTM blocks with
a convolution layer.

in our approach. In Tables 4 and 5, we observe that
our model is more robust when it comes to using only
short-term past information (decreases by 2%) on the
THUMOS’14 [15], unlike LSTR [31] where the accuracy
decreases by 4.1%. One important result of our study is
that long-past knowledge is more important for simple
actions (single-action datasets) than for complex actions
(densely annotated datasets). This is because numerous
actions may occur simultaneously without being connected
in densely annotated datasets, making it more challenging
to infer relations from them. As a result, including in-
formation from the distant past can skew model predictions.

Recently, transformers have been widely used, since
they outperformed the existing approaches such as 3D-
CNNs and RNNs. In fact, 3D-CNNs are known to be
good general feature extractors as they can capture overall
visual appearances in a video. However, their CNN filters
capture pixel-level information in a local neighborhood but
struggle with long-term dependencies. Therefore, we limit
the use of 3D-CNNs to extract video clip features for our
architecture. Furthermore, action detection tasks require
a strong grasp of long-range temporal dependencies, and
transformers excel at capturing long-term information
compared to RNNs. Therefore, the transformers are the
best choice for OAD and AA tasks. However, most papers
lately use transformers based on the previous intuition
without any justification.

Table 6 presents a comparison study between RNNs
(LSTMs [25]) and transformers. We replace our first en-
coder for past information processing with 3 blocks of
LSTM and a convolution layer to reduce the feature map
size. Results show that transformers are better suited for
capturing long-range dependencies and produce far more
better results which justifies our design choice.

4.4.2 Ablation on the action anticipation module

Another ablation study is done in Table 7. We conduct two
main experiments: one with the full JOADAA model and
the other one without the Action Anticipation (AA) mod-
ule. We can see that the AA module enhances online action
detection, which supports our claim that combining AA and
OAD leads to better results.

6895



Dataset OAD+AA OAD
THUMOS’14 72.6 71.2

Table 7. Analyzing the JOADAA behavior with and without action
anticipation.

4.4.3 Ablation on the OAD prediction layer

Dataset TCN+TR. Encoder FC
THUMOS’14 72.6 69.7

Table 8. Effect of fusing local and global information on OAD. FC
stands for fully-connected layer. As expected capturing different
type of dependencies provides better results.

Table 8 shows the effect of fusing local and global
knowledge, in contrast to using directly the output of the
decoder on the current frame which carries only global in-
formation in it. By doing so, our results increase by 2.9%.
As argued earlier, this is due to the fact that TCNs can ex-
tract local changes and better detect relations in neighboring
frames, whereas baseline transformers capture long-range
dependencies that sometimes are not adapted to predicting
the current frame events.

4.5. Qualitative Analysis

Figure 3. Action anticipation accuracy improvement on six actions
w.r.t. TesTra model. This is performed on the Multi-THUMOS
dataset, using 4 frames as anticipation length.

In this section, we analyze the effectiveness of our
method on densely annotated datasets. We study anticipa-
tion improvement on six different actions, from the Multi-
THUMOS dataset, according to their complexity as shown
in Figure 3. We observe that the gain in some of these ac-
tions can reach 37%, while in some other actions, it is al-
most zero.

In fact, our prediction block anticipates the upcoming
frame alongside future frames. By having access to the cur-
rent frame our model can correlate the anticipated action to
the real action, hence we can learn to better anticipate the
current frame, leading to a better-performing anticipation
module.

Upon closer examination of these actions, we find that
the improvement is particularly important for activities
where there are multiple dependencies, or if the activity is
interconnected with many other actions. The action Run for
instance, has correlations with up to seven other activities,
as illustrated in Figure 1.

The qualitative results in Figure 3 demonstrate the ro-
bustness of JOADAA for complex correlated activities.
This opens doors for future studies to analyze OAD and ac-
tion anticipation on complex dense datasets.

5. Conclusion

Online action detection and anticipation are important
fields in computer vision that have many real-world appli-
cations. These two tasks are highly correlated, and that
is why we design JOADAA to address both tasks jointly,
improving one using the other and vice versa. Furthermore,
we discuss the limitations of OAD and action anticipation
for sparsely and densely annotated datasets.

Our model is limited in terms of effectively using
long-range past features, especially for densely annotated
datasets. Past knowledge undoubtedly adds to current
knowledge and should lead to improvements. However, as
demonstrated in this study, just adding pre-extracted fea-
tures to transformers can also introduce noise. In the future,
we are interested in tackling this limitation by modeling past
features more effectively. One possible solution is to use an
intermediate filter to learn only important features [5] or to
learn the dependencies using a graph model to model only
relevant features following [14].
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