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Abstract
Video anomaly detection in real-world scenarios is chal-

lenging due to the complex temporal blending of long and
short-length anomalies with normal ones. Further, it is
more difficult to detect those due to : (i) Distinctive features
characterizing the short and long anomalies with sharp and
progressive temporal cues respectively; (ii) Lack of pre-
cise temporal information (i.e. weak-supervision) limits
the temporal dynamics modeling of anomalies from nor-
mal events. In this paper, we propose a novel ‘tempo-
ral transformer’ framework for weakly-supervised anomaly
detection: OE-CTST†. The proposed framework has two
major components: (i) Outlier Embedder (OE) and (ii)
Cross Temporal Scale Transformer (CTST). First, OE gen-
erates anomaly-aware temporal position encoding to allow
the transformer to effectively model the temporal dynam-
ics among the anomalies and normal events. Second, CTST
encodes the cross-correlation between multi-temporal scale
features to benefit short and long length anomalies by mod-
eling the global temporal relations. The proposed OE-CTST
is validated on three publicly available datasets i.e. UCF-
Crime, XD-Violence, and IITB-Corridor, outperforming re-
cently reported state-of-the-art approaches.

1. Introduction

Anomaly detection in real-world untrimmed videos is a
prominent and active computer vision task, thanks to its in-
herent applications in smart surveillance systems empow-
ering timely anomaly prevention and investigation. Re-
cently, video anomaly detection has become a demanding
task to detect complex and diversified categories of real-
world anomalies. Further, the inability to temporally an-
notate a large amount of untrimmed videos through human
effort makes the task more challenging. There exist pub-
lic datasets [19, 33] which depict the above challenges. In
order to address this, recent popular methods [33, 39, 45]
adopt a weakly-supervised paradigm which enables supe-
rior generalization capabilities than unsupervised uni-class

†Code & Models: https://github.com/snehashismajhi/OECTST
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Figure 1. Visualization of distinctive motion cues in short and
long-length anomalies. Short anomalies (left) e.g. explosions,
road accidents contain sharp changes that can easily be captured
by temporal convolution with smaller receptive fields (RFs), but
long anomalies (right) e.g. robbery, shoplifting has progressive
changes that need relation modeling with smaller and larger RFs
to capture the start and continuity of abnormality respectively.

methods [1, 7] to detect real-world video anomalies.
Despite the prosperity in mainstream weakly-supervised

video anomaly detection (WSVAD) approaches [33, 39, 45,
47], their performance is still limited due to the difficul-
ties in detecting both short and long-length anomalies w.r.t.
the normal counterparts. Here, by short and long-length
anomalies, we mean ones that last below and above a thresh-
old duration (typically 2 seconds). From initial analysis, we
found that in UCF-Crime [33] (i.e. a popular dataset in
close proximity to real-world scenarios), out of 128 hrs of
videos nearly 33.4 hrs and 17.8 hrs of untrimmed anomaly
videos contain long and short length anomaly instances re-
spectively. Further, in real-world, short and long-length
anomalies are characterized by divergent temporal cues: i.e.
short anomalies have distinctive appearance and sharp mo-
tion cues which are relatively easy to detect, whereas long
anomalies are characterized by subtle and progressive mo-
tion cues similar to many normal scenarios as shown in Fig-
ure 1. For this, it is more difficult to detect long anoma-
lies than short ones and it requires robust methods to handle
them.

To address the above challenges, previous popular meth-
ods [33, 39] adopt conventional temporal modeling net-
works like TCN [13], LSTM [24] to discriminate short
anomalies from normal events. Since TCNs are based on
1D Convolutional kernel, they can mostly capture the sharp
changes among the temporal neighborhood segments (i.e.

https://github.com/snehashismajhi/OECTST


a set of consecutive frames) and not the temporally dis-
tant ones. Thus, such methods fail to detect long anoma-
lies as they do not capture the long-range temporal de-
pendencies. With the recent success of transformers in
computer vision which are empowered by multi-head self-
attention [9], many popular methods in fully-supervised
action detection [17, 40] and classification have leveraged
temporal transformers for effective global temporal rela-
tion encoding. However, weakly-supervised anomaly de-
tection tasks can not get direct benefits from the current
temporal transformers, due to (i) conventional positional
encoding: unlike fully-supervised settings, where the tem-
poral positions have a one-to-one correspondence with the
anomaly instances for superior global temporal relation en-
coding, the weakly-supervised methods do not have such
correspondences due to the unavailability of the instance la-
bels; (ii) naive tokenization scheme: existing methods fol-
low a fixed-scale tokenization scheme regardless of the ac-
tion duration, as a result these methods can not accumulate
local contextual information for long anomalies. Therefore,
we argue that a distinctive design of temporal transformers
is necessary for weakly-supervised settings.

To this end, we propose a novel transformer frame-
work that comprises an outlier embedder (OE) and a cross-
temporal scale transformer (CTST). Unlike conventional
position embedding, the proposed outlier embedder gener-
ates anomaly-aware temporal position encoding which en-
ables the transformer to better encode global temporal rela-
tions among the normal and abnormal segments (i.e. tempo-
ral tokens). The anomaly-aware positions are generated by
learning the temporal features of a uni-class distribution and
treating the outlier as an anomaly. Then, the anomaly-aware
position encodings are infused with the temporal tokens
and processed by the CTST. The proposed CTST ensures
a superior global temporal relation encoding among normal
events and anomalies (i.e. both long and short) thanks to its
two key components: multi-stage design choice, and Cross
Temporal Field Attention block (CTFA). The multi-stage
design choice allows the CTST to analyze the anomaly-
aware position-infused input tokens at different scales by
multi-scale tokenization. By this, the transformer encodes
the fine-grained temporal relations for the short anomalies
at the lower stage and coarse contextual relations for long
anomalies at the higher stages. Further, each stage has a
CTFA block to effectively encode the correlations between
the temporal neighbor and distant tokens, where a stronger
neighbor and distant correlations are encoded for short and
long anomalies respectively. The main contributions of the
work are as follows:

• An Outlier Embedded Cross Temporal Scale Trans-
former (OE-CTST) to effectively detect long and short
anomalies in untrimmed videos.

• A new manner to learn anomaly-aware position em-
bedding to guide the transformer in better global tem-

poral modeling under weak supervision.
• An exhaustive experimental analysis to corroborate

the robustness of OE-CTST on three competitive
datasets UCF-Crime [33], XD-Violence [39] and
IITB-Corridor [30] datasets, outperforming previous
approaches.

2. Related Work
Video anomaly detection (VAD) is a prominent com-

puter vision task and popular methods either adopt un-
supervised (training with only normal videos) or weakly-
supervised learning (training using both normal and
anomaly videos with video-level labels). As unsupervised
methods [1, 7, 12, 12, 16, 20, 28, 34, 44] assume the avail-
ability of all possible normal videos for training and as it
is quite difficult to collect in one dataset, these methods
produce high false alarm in complex real-world environ-
ments. In contrast, recent weakly-supervised VAD meth-
ods [15,23–27,33,37,39,41,43,45,47] overcome the draw-
back of unsupervised counterparts and ensure greater gener-
alization for real-world settings. Inspired by this, we adopt
weakly-supervised settings in our work.

Multiple instance learning (MIL) and self training
based methods are two majorly adopted paradigms in
weakly-supervised VAD. MIL was first introduced in [33]
and has become a main stream paradigm for VAD. It trains
a segment level anomaly detector that inputs the global
scene based pre-computed deep features and optimized with
a classical maximum score based ranking loss. Authors
in [43,47] extend the notion of score based optimization and
proposed inner bag loss and motion aware loss to enhance
the class separability. As these methods rely on a few high-
level segment regression scores, they overlook the low-level
feature boundary. For this, Tian et al. [36] propose a global
temporal feature magnitude-based learning paradigm for
better separability between normal and anomaly segments
with minimum and maximum feature magnitudes. Follow-
ing [36], Chen et al. [4] enhanced the feature based opti-
mization with contrastive loss. However, the feature magni-
tudes are influenced by only strong spatio-temporal change
across temporal segments leading to ineffective separability
for subtle and local anomalies. On the other hand, the Self
training based method in VAD aims to iteratively generate
pseudo labels for unlabelled data and optimizes a classifier
for detection. Zhong et al. [45] capture the temporal consis-
tency in a GCN and Feng et al. [10] use a deep MIL ranker
module to generate pseudo labels and trains a 3D ConvNet
with the pseudo labels. Further to enhance its ability authors
in [14, 42] aims to refine the pseudo labels iteratively and
utilize the uncertainty to reduce the effect of noisy pseudo
labels in a multi-stage training paradigm. However, due to
the complexity involved in a multi-stage iterative training
scheme, Majhi et al. [22] recently proposed a MIL based
one-step optimization that not only generates pseudo labels
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Figure 2. Outlier-Embedded Cross Temporal Scale Transformer (OE-CTST): It comprises four major building blocks i.e. (A) Visual
Encoder, (B) Outlier Embedder, (C) Cross Temporal Scale Transformer, and (D) Detector to detect long and short length anomalies. OE-
CTST inputs two dissociative event distributions (i.e. (i) one-class, (ii) mixed) during training. However, during inference, the model can
correctly detect anomalies for a given untrimmed video. Here, FO= feature map of one-class, FM = feature map of mixed distribution,
FT = input feature map to temporal regularity module and FT ∈ {FO, FM}, F+

T = time-shifted video feature map of FT , ∆FT = output
feature map of temporal regularity module and ∆FT ∈ {∆FO,∆FM}, CTFA = Cross Temporal Field Attention.

but also refines them in an end-to-end manner. Inspired by
this, we adopt Majhi et al. [22] optimization in our work for
anomaly detection.

Temporal modeling is another crucial aspect in real-
world VAD to learn discriminative features for normal and
anomaly segments. As a classical approach, authors in [43]
and [47] utilize TCN [13] and optical flow motion [35] cues
respectively to capture the short-term sharp temporal vari-
ations to aid only short anomalies. In contrast, authors in
[36] proposed a multi-scale temporal convolution network
(MTN) for global temporal dependency modeling between
normal and anomaly segments. Recently, Zhou et al. [46]
and Chen et al. [4] adopt transformer-based global-local
and focus-glance blocks respectively to capture long and
short-term temporal dependencies in normal and anoma-
lous videos. However, as these methods [4, 36, 46] follow
a magnitude-based optimization, they only encourage the
sharp abnormal cues of short anomalies to take part in tem-
poral modeling. Thus, they tend to overlook the subtle cues
present at the beginning of long anomalies and hence fail
to detect them with tight boundaries. Motivated by this, we
propose a Outlier-Embedded Cross Temporal Scale Trans-
former (OE-CTST) that first generates anomaly-aware tem-
poral information for both long and short anomalies and
hence allows the transformer to effectively model the global
temporal relation among the normal and anomalies.

3. Outlier-Embedded Cross Temporal Scale
Transformer (OE-CTST)

Our novel outlier embedded cross-temporal scale trans-
former (OE-CTST) delineated in Figure 2 aims to tempo-
rally detect normal and anomaly segments using weakly-
labelled training videos. In this setting, a set of untrimmed
videos V with only video-level labels Y is given for train-

ing where a video Vi is marked as normal Yi = 0 (i.e. one-
class) if it has no anomaly and to be anomaly Yi = 1 (i.e.
mixed) if it contains at least one abnormal clip. OE-CTST
has four key building blocks: (A) Visual Encoder that
extracts initial spatio-temporal representation, (B) Outlier
Embedder (OE) that learns representations from normal
segments and can generate anomaly-aware pseudo temporal
position embeddings for long untrimmed anomaly videos,
(C) Cross Temporal Scale Transformer (CTST) that en-
sures better global temporal relation modeling by encod-
ing the stronger correlations between the temporally neigh-
bor and distant tokens, (D) Detector that estimates anomaly
scores for each temporal token to finally detect the anoma-
lies. A concise description of each building block of OE-
CTST is given in the following subsections.

3.1. Visual Encoder
Primarily, the objective of visual encoder is to extract

off-the-shelf spatio-temporal features from long untrimmed
videos. At first, the input video V is divided into T non-
overlapping contiguous temporal segments, where a seg-
ment has a set of consecutive frames. For a given segment,
we consider a Video-swin [18] transformer to extract a fea-
ture map of dimension c × D, where c is the number of
16-frame clips present inside a segment. Since multiple
16-frame clips can be present inside a segment, we take a
max-pooling operation along c, to get a 1×D dimension
segment-level feature per segment. Each of the segment-
level feature can be seen as a temporal token and for a given
V with T segments, the visual encoder results in a video
feature map of dimension T × D. During training, the vi-
sual encoder outputs two batches (i.e. each from one-class
and mixed distribution) of video feature maps i.e. FO and
FM to be processed by OE and CTST respectively.



3.2. Outlier Embedder (OE)
In order to generate anomaly-aware pseudo-temporal po-

sition embedding for anomaly events in untrimmed videos,
it is necessary to learn the normal segment-level representa-
tions so that a temporal segment that deviates largely from
the learned normal patterns is treated as an outlier (i.e.
anomaly). For such a case, it is intuitive to learn the spatio-
temporal cues of videos pertaining to one-class (i.e. normal)
distribution which is extensively adopted in unsupervised
approaches [29,31,32], but never used in weakly-supervised
video anomaly detection. This is due to the existence of a
large intra-class variance in spatio-temporal cues of the nor-
mal distribution that makes one-class methods ineffective.
For this, we propose an outlier embedder that learns the
temporal regularity rather than appearance cues in normal
videos. The outlier embedder has two functional blocks:
i.e. (i) Temporal regularity module, (ii) One-class learner
as illustrated in Figure 2.

3.2.1 Temporal Regularity Module
The temporal regularity module (TRM) aims at comput-
ing the temporal changes among consecutive temporal seg-
ments. It is assumed that the temporal regularities for nor-
mal videos are consistent whereas their anomaly counter-
parts are relatively inconsistent. TRM inputs the T × D
dimensional video feature maps FT ∈ {FO, FM} obtained
from the visual encoder for temporal regularity computa-
tion. At first, it applies a temporal shift operation
to FT that principally moves the temporal tokens along
the temporal dimension. The outcome of the temporal
shift operator is also a T × D dimensional video fea-
ture map F+

T where the first and last temporal tokens are
respectively padded and truncated. Then, an absolute dif-
ference between FT and F+

T is computed to denote the tem-
poral regularity ∆FT . This operation enables to capture
the amount of change between consecutive segments. TRM
outputs two T × D dimensional temporal regularity fea-
ture maps i.e. ∆FO, ∆FM for its corresponding input FO,
FM . Then, ∆FO is fed to the one-class learner for normal-
ity learning and ∆FM fed to trained one-class learner for
computing the anomaly-aware temporal positions.

3.2.2 One-class Learner (OC-L)
The purpose of the one-class learner (OC-L) module is to
explicitly learn the normal cues. Thus, our OC-L takes
the architectural configuration of previous popular unsuper-
vised anomaly detection methods (i.e.(i) temporal autoen-
coders [11], (ii) spatiotemporal autoencoders [6], (iii) U-
Net [16]) which learn the normal latent space representa-
tion by feeding and reconstructing the frames pertaining to
the normal scene into an auto-encoder architecture. How-
ever, our configured OC-L learns the normality by recon-
structing the temporal regularity token of one-class distri-
bution i.e ∆FO. Since our OC-L learns the T ×D dimen-
sional temporal regularity video feature map ∆FO instead

of T × H × W × C (as in previous unsupervised meth-
ods), our method is computationally less expensive while
learning the one-class distribution effectively. Further, any
unsupervised encoder-decoder structure can be easily con-
figured and embedded into OC-L in a plug-and-play man-
ner to enhance the normality learning of ∆FO. The OC-L
is optimized with a reconstruction loss for a nor-
mal one-class distribution temporal regularity map (∆FO)
as input, whereas it generates anomaly-aware position em-
beddings (PE) for a mixed distribution temporal regular-
ity map (∆FM ). The PE is obtained by first computing
the temporal token-wise error (ER ∈ RT×1) b/w input
(I) and output (IR) of encoder and decoder respectively;
ER =

∑D
j=1(∥I − IR∥2). Then, to obtain the temporal

PE at ith timestep, the ER are normalized with softmax
activation: PEi =

exp (ER
i )∑T

i=1 exp (ER
i )

. As real-world distribu-
tion has large variance in anomaly types due to the pres-
ence of sharp (e.g. explosion) and subtle (e.g. shoplift)
cues, the token-wise error ER is less salient and leads to
ambiguities between normal events and subtle anomalies.
Hence, softmax normalizes the ER across temporal loca-
tions and assigns a higher likelihood to anomaly temporal
tokens with higher ER w.r.t. normal ones as the position
information. This anomaly-aware PE is infused with the
mixed distribution video feature map FM and fed to cross
temporal scale transformer for global temporal modeling of
long-short anomalies.

3.3. Cross Temporal Scale Transformer (CTST)
The goal of the cross temporal scale transformer (CTST)

is to learn discriminative representations for long-short
length anomalies w.r.t. normal counterparts. Since the short
and long anomalies are characterized by disjoint cues (i.e.
sharp and progressive spatio-temporal cues respectively), it
is beneficial to encode the temporal relations at multiple se-
mantic levels (i.e. temporal scale). For this, as shown in
Figure 2, our CTST follows a multi-level architecture based
on a temporal feature pyramid to benefit both long and short
length anomalies. The lower levels of CTST encode the
fine-grained sharp temporal change for short anomalies and
the higher levels gather the contextual temporal evolution
of long anomalies.

Each level of CTST processes the input video feature
map (FM ) at a particular temporal scale with its three major
components: (i) down scaler performs the temporal down-
sampling for neighborhood context aggregation, (ii) Cross
Temporal Field Attention (CTFA) estimates the pairwise
correlation between temporally neighbor and distant tokens
for enhanced global temporal relation modeling, and (iii)
up scaler performs the temporal upsampling to regain the
original temporal resolution (T ). The temporal down and up
sampling of FM are done with a scaling factor (τ ), where
τ ∈ 0, 1, . . . , n− 1 and n = no. of levels in CTST. Thanks



to the down and up scalers, the CTFA processes the FM

at various temporal semantic levels for superior pairwise
correlation estimation among the temporal tokens. For in-
stance, level-1 of CTST has τ = 0, which implies that
the temporal relation modeling in CTFA takes place at a
semantic-level equivalent to the original temporal resolu-
tion (T ) (i.e. fine-grained), whereas level-n has τ = n− 1,
that implies the coarse level semantic relation building in
CTFA at a temporal resolution of T/2(n−1).
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Figure 3. The Cross Temporal Field Attention (CTFA) encodes
the correlation between the neighborhood and distant temporal to-
ken. Here, TC, k, and d denote 1D convolution, kernel size, and
dilation rate respectively.

Cross Temporal Field Attention (CTFA): In each level
of CTST, the cross-temporal field attention (CTFA) block
(shown in Figure 3) inputs the T/2τ × D video feature
map (X) generated by down scaler for capturing the se-
mantic correlation between temporally neighbor and dis-
tant tokens. While vanilla transformers typically use self-
similarity, wherein query, key, and value are based on the
same temporal semantics, we extend this notion through the
concept of cross-temporal semantic similarities. First, the
input video feature map is projected into three parallel tem-
poral convolutions (TC) layers, each has m conv filters with
kernel size k ∈ {3} and dilation rate d ∈ {1, 2, 3} respec-
tively to capture the short-term temporal consistency among
neighbor (TC with d=1) and distant (TC with d=2,3) to-
kens. Similar to [3], these local projections are made to ben-
efit both short and long anomalies by infusing contextual
cues from tokens at distant locations. Second, to model the
global temporal relation, these projections are fed to stan-
dard multi-head attention [9] in terms of K ∈ R(T/2τ )×m,
Q ∈ R(T/2τ )×m, and V ∈ R(T/2τ )×m as shown in Fig-
ure 3. The self-attention map for ith head can be computed
as below:

ATTi(K,Q, V ) = softmax(
QKT

√
mh

)V (1)

where mh = feature dimension in each head. ATTi ∈
R(T/2τ )×m generated from each head can encode the cor-
relation between the neighbor and distant temporal consis-
tency, where a stronger neighbor and distant correlations are
encoded for short and long anomalies respectively. Next,
the attention maps generated from all heads are addedwith
the K, Q, and V through a skip-connection to retain the

video feature map inductive bias. Then, it is projected to a
linear layer for local feature mixing and it is added to
the original inductive bias to locally mix features through a
skip connection. The output of CFTA is a T/2τ ×m dimen-
sional temporally encoded video feature map, which is then
upsampled with the upscaler to retain the original temporal
scale i.e. T . At the end of the cross-temporal scale trans-
former, the T ×m dimensional video feature maps obtained
from n levels are combined by concatenating them along the
m-axis. This results in T × nm dimensional video feature
maps which are fed to the detector for anomaly detection.

3.4. Detector
The detector is a multi-layer perceptron (MLP) with

three fully-connected (FC) layers which input the
T ×nm dimensional video feature maps to assign anomaly
ranks (or scores) to each temporal token. For this, the final
layer of MLP has a single neuron with sigmoid activation to
rank each temporal token independently. Finally, the detec-
tor outputs a score map S of dimension T × 1 to be used in
anomaly detection.

Optimization: The proposed framework containing an
outlier embedder (OE) and a cross temporal scale trans-
former (CTST) with detector is jointly trainable with two
disjoint batches of input video feature maps. Here, similar
to [33, 36], the visual encoder is a pre-trained frozen mod-
ule which is only used for feature extraction. The OE takes
only the normal video feature maps (FO) and is optimized
with reconstruction-loss as shown in (2). CTST
with detector takes both normal and anomaly video feature
maps FM ∈ RT×nm into account to compute the normal
(Sn ∈ RT ) and anomaly (Sa ∈ RT ) temporal token wise
scores and optimizes itself with a self-rectifying
loss proposed by [22] as shown in (3) and (4).

LR(FO) = ∥FO − FR
O ∥2 (2)

LD(Sa, Sn) = λ1 max (0, 1−
T∑

i=1

(Si
a) +

T∑
i=1

(Si
n))

+λ2∥Err(Correct)− Err(Noisy)∥

(3)

Err(X) =



1

T

T∑
i=1

(Si
n − Y i

n)
2

∀i, Y i
n = Normal︸ ︷︷ ︸

MSE(Sn)

, if X = Correct

1

T

T∑
i=1

(Si
a − Y i

a )
2, if X = Noisy

∀i, if Si
a ≤ Sref then Y i

a = Normal,

∀i, if Si
a > Sref then Y i

a = Anomaly︸ ︷︷ ︸
MSE(Sa)

(4)
The self-rectifying loss ensures both video

context level and temporal instance (i.e. token) level score
maximization between normal and anomaly. This is done



by generating a pseudo-temporal annotation (i.e. Yn and Ya

for normal and anomaly respectively) for each token and re-
fining it by minimizing ∥Err(Correct)− Err(Noisy)∥.
Here, Err() is mean-squared-error (MSE). In Sa,
the pseudo temporal labels Y i

a are computed by comparing
their prediction scores (Si

a) to a dynamic reference point
(Sref ), where Sref = (max(Sa) + min(Sa))/2. Where as
in Sn, Yn is always set to 0 (i.e. normal) as it contains no
anomaly. The overall objective function of our OE-CTST is
defined as Ltotal = β1LR(FO) + β2LD(Sa, Sn), where
β1 and β2 are the loss weighting factors. This Ltotal is used
to train our model in an end-to-end manner.

4. Experiments
4.1. Datasets and Evaluation Matrics

The experiments are conducted on three public anomaly
detection datasets which have adequate samples from both
long and short-duration anomalies, namely UCF-Crime
(UCF-C) [33], XD-Violance (XD-V) [39], and IITB-
Corridor (IITB-C) [30]. In this work, we evaluate our
framework in terms of (i) overall and (ii) long-short
anomaly performance. For overall performance, we use
the official test set of UCF-C, XD-V, and IITB-C datasets
given by [33], [39], and [22] respectively. Since the official
test set of UCF-C and IITB-C are biased towards certain ab-
normal categories, we also evaluate the overall performance
in the K-Fold test set of UCF-C and IITB-C datasets for a
robust evaluation. As the temporal annotation of the com-
plete dataset is required in K-fold evaluation, we obtained
it from Wan et al [38]. Similarly, for long-short anomaly
performance, we use K-Fold test set in UCF-C and IITB-
C datasets. However, due to the unavailability of tempo-
ral annotations for the complete XD-V dataset, we evaluate
the long-short anomaly performance in the official test-set
given by [39]. We consider anomalies longer than 2 sec-
onds in duration as long anomalies and others as short ones.
In UCF-C and IITB-C datasets, we use frame-level AUC
as the performance indicator, but for XD-V dataset we fol-
low [39] to use frame-level average precision (AP) as the
performance indicator. In addition, for all K-Fold evalu-
ations, we report the mean AUC (mAUC). Kindly refer
to supplementary material for complete dataset descrip-
tions and implementation details.
4.2. Ablation Study

A detailed study is carried out in this section to quantify
the robustness and novelty of the OE-CTST framework. For
all ablation studies the official test-sets of UCF-C, XD-V
and IITB-C datasets are choosen.

Effectiveness of OE-CTST: In order to show the neces-
sity of key components present in OE-CTST, each compo-
nent is evaluated in terms of anomaly detection performance
as shown in Table 1. First, as a baseline experiment the de-
tector is stacked on top of a visual encoder (video swin) to

Baseline
CTST PE AUC(%) AP(%)

Vanilla CTFA Vanilla OE D1 D3 D2

✓ - - - - 79.21 80.35 73.06

✓ ✓ - - - 81.78 82.89 74.93
✓ - ✓ - - 82.50 87.21 75.42

✓ - ✓ ✓ - 83.79 87.97 76.21
✓ - ✓ - ✓ 86.99 89.26 81.78

Table 1. Ablation to show the impact of each component in OE-
CTST framework on UCF-Crime (D1), XD-Violence (D2), and
IITB-Corridor (D3) datasets.

OC-L
w/o Pre-train w Pre-train

UCF-C XD-V IITB-C UCF-C XD-V IITB-C

T-AE 85.02 81.78 87.62 86.99 80.96 89.04
ST-AE 85.31 81.54 87.79 86.99 80.91 89.26
UNet 85.37 81.31 87.88 86.94 80.62 89.18

Table 2. Ablation to study various one-class learner (OC-L) de-
signs in terms of anomaly detection performance.

report initial detection performance and afterward, the re-
maining components are added. To begin with the tempo-
ral modeling by multi-level design in CTST, we first use a
vanilla transformer [8] block (i.e. K,Q,V from same tempo-
ral token). This significantly improves performance com-
pared to the baseline which shows the need for multi-scale
temporal modeling in anomaly detection. Then, we replace
the vanilla block with CTFA in CTST and found a perfor-
mance gain of +3.29%, +2.36%, +6.86% in UCF-C, XD-
V, IITB-C datasets respectively w.r.t. baseline. This outlines
the superiority of CTFA blocks in temporal modeling com-
pared to vanilla ones. Further, we infuse the vanilla sine-
cosine temporal position embeddings with the input tem-
poral tokens to CTST and we obtain a slight performance
gain. But, when we infuse the position embedding from
OE in place of sine-cosine, a performance gain of +4.49%,
+6.36%, +2.05% is achieved in UCF-C, XD-V, IITB-C
datasets respectively w.r.t. our CTST (row-3). This perfor-
mance boost corroborates the potentiality of OE in gener-
ating anomaly-aware position information to benefit global
temporal modeling in CTST.

Study of Various OC-L: The one-class learner (OC-L)
block in outlier embedder (OE) is flexible to adapt state-
of-the-art unsupervised encoder-decoder approach for en-
hanced normal temporal regularity learning. Here, we study
three popular architectures: (i) temporal autoencoder (T-
AE) [11], (ii) spatio-temporal autoencoder (ST-AE) [6],
(iii) UNet [16] as reported in Table 2 to show the impact of
various design choices in anomaly-aware positions. Further,
we also study the impact of pre-training the OC-L on all
three datasets. From Table 2, it can be observed that all three
design choices achieve similar performance with a marginal
difference. This is due to the learning of more salient fea-
tures (i.e temporal regularities) rather than appearance cues
of raw video frames. Further, it can be seen that pre-training
OC-L (particularly ST-AE) improves the detection perfor-
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Figure 4. Visualization of ground truth (green shed) vs. prediction scores (red shed) for various cases in Row-1. For each plot in Row-1,
the X and Y axis denotes the number of frames and corresponding scores respectively. Row-2 shows the learned anomaly-aware position
embedding by outlier embedder in terms of heatmap, where the lighter region corresponds to an anomaly event.

Datasets
Levels (n) in CTST

n=0 n=1 n=2 n=3 n=4

UCF-C 80.42 81.92 84.7 86.99 85.3
XD-V 75.16 78.41 81.78 80.90 80.42
IITB-C 83.35 86.78 89.26 88.64 88.17

Table 3. Ablation to show the upper bound of CTST by increasing
the number of levels (n) in all three datasets

mance in UCF-C and IITB-C datasets by +1.68%, +1.47%
respectively. However, for XD-V datasets, T-AE without
pre-training works well compared to with pre-training. This
is due to the existence of large intra-class variance in the
normal distribution of XD-V dataset.
Upper Bound of CTST: In order to check the sensitivity
of CTST hyper-parameters, we linearly increase the num-
ber of levels (n) and analyze its impact on overall detec-
tion performance as reported in Table 3. It is found that the
performance tends to decline after n = 3, 2, 2 in UCF-C,
XD-V, and IITB-C datasets respectively which denotes the
upper bound. This observation is reasonable as the average
length of videos in XD-V and IITB-C is smaller than that of
UCF-C, so CTST requires less temporal decomposition in
its transformer block w.r.t. the UCF-C counterpart.
4.3. Qualitative Analysis

In Figure 4, we show the anomaly detection performance
of our OE-CTST in terms of prediction scores (Row-1) in
major three cases (case-1: short anomalies, case-2: long
anomalies, and case-3: both long and short anomalies).
For each case, we consider two examples to quantify the ro-
bustness of our method. Further, we show the learned posi-
tion embedding by outlier embedder in terms of heatmap in
Row-2. From Figure 4, it can be observed that our method
is able to effectively detect the short anomalies (case-1) in
both “Explosion-043” (a bomb explodes in a street) and
“RoadAccident-09” (a car runs over a biker) videos by gen-
erating high scores for abnormal segments. Similarly, for
long anomalies (case-2) our model also precisely detects the
abnormality in both “Fighting-33” (people fight in a path-
way) and “Robbery-50” (robbing a car driver). For both
cases, the learned position embedding also corresponds to
the abnormal temporal position which outlines the effec-
tiveness of our method. Further, we analyze our method on

case-3 (i.e. both long and short anomalies). “Shoplift-10”
and “Vandalism-36” videos capture such a situation where
short and long anomalies are paired. In “Shoplift-10”, a girl
tries to steal things from a shop in a repetitive manner. Sim-
ilarly, in “Vandalism-36” a person destroys property inside
a shop. For both examples, our method precisely detects
the long-short anomalies thanks to the anomaly-aware posi-
tion information from OE followed by effective coarse-fine
temporal modeling in CTST.
4.4. State-of-the-art Comparison

In Table 4, we compare our method with the recently
reported competitive methods for UCF-C, XD-V and IITB-
C datasets. The comparison is made upon two indicators
i.e. overall and long-short performance to justify our claim.
For a fair comparison, we use two popular visual encoders
i.e. I3D ResNet50 (I3D-Res) [2] and video-swin trans-
former (V-Swin) [18]. Further, as the K-Fold evaluation in
overall and long-short performance is introduced by us, we
re-implement previous approaches [22, 33, 36, 39] for the
K-fold evaluation.
Overall Performance: The overall performance compar-
ison is made with the official split for the three datasets, and
also with the K-Fold split for two datasets (i.e. UCF-C and
IITB-C, shown in Table 4) to get a better understanding.
The unavailability of temporal annotations in the complete
XD-V dataset, limits the K-fold evaluation. In UCF-C, our
method outperforms the previous I3D-Res based method
Majhi et al. [22] by a +0.92% and +0.42% margin in of-
ficial and K-fold test sets respectively. As [22] has a com-
plex network that considers human trajectories for relation
modeling with the scene, it can not be applied to XD-V
dataset due to the unavailability of human trajectories. Fur-
ther, considering V-Swin as visual encoder, our method has
gained 0.32% and 1.07% performance compared to Chen et
al. [4] in official and K-fold test set of UCF-C dataset. Al-
though authors in [4] utilized transformer blocks to enhance
temporal features, their temporal modeling ability remains
limited due to feature-magnitude based optimization which
overlooks the subtle cues and enhances the sharp cues. Fur-
ther, in overall performance comparison, the performance
gain in K-fold has much more relevance, since it covers



Methods Feature
Overall Performance Long-Short Performance

UCF-C XD-V IITB-C UCF-C (K-Fold) XD-V (Official) IITB-C(K-Fold)
Official K-Fold Official Official K-Fold Long Short Long Short Long Short

Sultani et al. [33] C3D 75.41 - 73.20 - - - - - - - -
I3D-Inc 77.42 78.89 75.68 74.59 65.82 42.31 57.41 68.51 80.06 72.23 76.8

Wu et al. [39] I3D-Inc 82.44 83.01 75.41 79.46 73.28 48.70 62.38 70.36 83.21 74.19 78.29
Tian et al. [36] I3D-Res 84.30 84.62 77.81 81.12 74.34 49.82 63.22 71.90 85.76 75.33 80.42

Majhi et al. [22] I3D-Inc 84.33 - - 84.12 - - - - - - -
I3D-Res 85.45 86.50 - 86.98 72.40 52.21 63.01 73.22 84.13 74.60 79.60

Chen et al. [4] V-Swin 86.67 86.89 80.11 88.17 77.28 52.16 63.46 73.96 86.62 77.02 81.67

I3D-Res 86.37 86.92 80.56 88.02 77.46 54.79 63.63 74.96 86.13 76.72 81.17Ours V-Swin 86.99 87.96 81.78 89.26 79.22 55.31 64.01 75.32 87.65 78.05 82.14
Table 4. State-of-the-art comparisons in terms of overall and long-short anomaly performance in UCF-C, XD-V, and IITB-C datasets.

the complete dataset with diverse and unbiased categories
of anomalies during evaluation. Unlike [22] and [4], ours
is a generic method and has a more robust temporal relation
modeling ability. Thus, in XD-V dataset our method outper-
forms [36] by a significant (+2.75% and +1.67% margin
in I3D-Res and V-Swin respectively). Further, we achieve
a +1.09% and +1.94% performance boost on offical and
K-fold test set of IITB-C dataset with V-Swin as a visual
encoder. This shows the potentiality of our method in over-
all performance gain.
Long-short Performance: The long-short performance
comparison only includes anomaly videos in the test set and
this is done for the K-fold split of UCF-C, IITB-C datasets.
However, for XD-V dataset, we use the official split by ex-
cluding the normal videos from it. It can be observed from
Table 4 that our method outperforms in long anomalies by
a +3.15%, +1.36% and +1.03% margin in UCF-C, XD-
V, and IITB-C datasets respectively with V-Swin as a vi-
sual encoder. Since UCF-C contains more long anomaly
instances (shoplifting, robbery, fighting, vandalism) com-
pared to the other two datasets, the performance boost for
UCF-C is larger. Similarly, for short anomalies, our method
boosts the performance by +0.55%, +1.03% and +0.47%
on UCF-C, XD-V and IITB-C datasets respectively with V-
Swin as visual encoder. As, XD-V has more short anoma-
lies (accident, explosion), thus it has a higher performance
gain compared to UCF-C and IITB-C datasets. These re-
sults also show that among long and short anomalies, pre-
cisely detecting long anomalies with tight boundaries is
more challenging compared to short anomalies. This is due
to the existence of progressive temporal evolution in long
anomalies that mainly lie in close proximity to many nor-
mal scenarios.

Discussion: Additionally, we found that on official test
sets of D1:UCF-C and D2:XD-V datasets, our method
OE-CTST (D1:86.99, D2:81.78) achieves better over-
all performance compared to other recent state-of-the-
art methods such as MSL [14] (D1:85.30, D2:78.59),
MGFN [4](D1:86.67,D2:80.11), ECU [42] (D1:86.22,
D2:78.74), URDMU (D1:86.97, D2:81.66), UMIL [21]

(D1:86.75, D2:N/A), LAA [5] (D1:86.10, D2:81.30). From
overall and long-short performance comparisons, it can be
seen that in UCF-C dataset there exists a big gap between
long-short and overall performance. Since the overall per-
formance considers both normal and anomaly videos for
evaluation, the performance gets elevated by accurately pre-
dicting many normal videos. As a result, state-of-the-art
methods performing well on overall performance may still
struggle in long-short anomaly detection. For this, we focus
on evaluating methods on long and short anomaly videos.
To perform these comparisons, we have to choose state-of-
the-art methods (e.g. [4])that have sufficient training infor-
mation on the public domain to carry out long-short per-
formance evaluation. The significant performance gain (in
Table 4) and qualitative results (in Figure 4) shown by
our method quantify the robustness towards long anomalies
while improving the short anomalies performance as well.
This is due to the accurate temporal modeling by OE-CTST,
which is missing in previous works.

5. Conclusion

In this work, we propose a novel temporal transformer,
OE-CTST, for weakly-supervised anomaly detection. The
proposed method generates anomaly-aware temporal posi-
tion information thanks to an outlier embedder that enables
the transformer to better model the global temporal rela-
tions between normal and anomaly segments under weak
supervision. Further, the cross-temporal scale transformer
effectively learns the correlation between temporal neigh-
bors and distant tokens to precisely detect long and short
anomalies. From extensive experimentation, we found that
OE-CTST achieves superior performance than the competi-
tive methods on three widely used datasets in terms of over-
all and long-short anomaly performance indicators.
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