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(Quantum) complexity of testing signed graph clusterability

KUO-CHIN CHEN, Hon Hai Quantum Computing Research Center, Taiwan

SIMON APERS, Université de Paris, CNRS, IRIF, France
MIN-HSIU HSIEH, Hon Hai Quantum Computing Research Center, Taiwan

This study examines clusterability testing for a signed graph in the bounded-degree model. Our contributions

are two-fold. First, we provide a quantum algorithm with query complexity 𝑂̃ (𝑁 1/3) for testing clusterability,

which yields a polynomial speedup over the best classical clusterability tester known [1]. Second, we prove an

Ω̃(
√
𝑁 ) classical query lower bound for testing clusterability, which nearly matches the upper bound from [1].

This settles the classical query complexity of clusterability testing, and it shows that our quantum algorithm

has an advantage over any classical algorithm.

1 INTRODUCTION
Property testing [2, 3] deals with the setting where we wish to distinguish between objects,

e.g. functions [4–6] or graphs [7–12], that satisfy a predetermined property and those that are

far from satisfying this property. For certain properties, this relaxed setting allows for algorithms

to query only a small part of (sometimes huge) data sets. Indeed, the goal in property testing

is to design so-called property testers to solve a property testing problem within sublinear time

complexity. Property testing has been studied in many settings, such as computational learning

theory [13–18], quantum information theory [19–24], coding theory [25–31], and so on. This

witnesses the significant attention that property testing has drawn from the academic community.

An interesting setting is that of graph property testing. In the dense graph model, it was shown
that a constant number of queries are needed to test a wide range graph partition properties [13],

including 𝑘-colorability, 𝜌-clique, and 𝜌-cut for any fixed 𝑘 ≥ 2 and 𝜌 > 0. For comparison, in the

bounded-degree model [32] similar graph properties such as bipartiteness and expansion testing

require sublinear Θ̃(
√
𝑁 ) classical queries. Moreover, some graph properties even have a (trivial)

Ω(𝑁 ) query complexity, as Ref. [33] showed for 3-colorability in the bounded-degree model. While

there have been numerous studies on testing graph properties, there has been little work on testing

the properties of signed graphs.

A signed graph is a graph where each edge is assigned a positive or a negative label. They

can be applied to model a variety of problems including correlation clustering problems [14, 34],

modeling the ground state energy of Ising models [35], and social network problems [36–38]. Signed

graphs have different properties than unsigned graphs. One of these is the important property of

clusterability, which was introduced by Davis [39] to describe the correlation clustering problem.

We call a signed graph clusterable if it can be decomposed into several components such that (1)

the edges in each component are all positive, and (2) the edges connecting the vertices belonging to

different components are all negative. This property is equivalent to not having a “bad cycle”, which

is a cycle with exactly one negative edge [39]. An algorithm for testing clusterability in the bounded-

degree model with only 𝑂̃ (
√
𝑁 ) was proposed in [1]. The optimality of this clusterability tester

was left as an open question. Here, we prove that any classical algorithm requires at least Ω̃(
√
𝑁 )

queries to test clusterability, showing that the tester from [1] is nearly-optimal.

As a natural extension of past studies, we are interested in whether quantum computing can

provide any advantages in testing clusterability for signed graphs. To the best of our knowledge,

we are not aware of any previous work on the quantum advantage for testing the properties of
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signed graphs. However, in work by Ambainis, Childs and Liu [40], a quantum speedup for testing

bipartiteness and expansion of bounded-degree graphs was shown. We adopt these techniques to

obtain a quantum algorithm for testing clusterability in signed graphs. More specifically, we combine

their quantum approach with the classical property testing techniques provided by Adriaens and

Apers [1] to obtain a quantum algorithm for testing the clusterability of bounded-degree graphs in

time 𝑂̃ (𝑁 1/3). This outperforms the 𝑂̃ (
√
𝑁 ) query complexity of the classical tester in [1] (which is

optimal by our lower bound). We leave optimality of the quantum algorithm for testing clusterability

as an open question. Indeed, settling the quantum query complexity of property testing in the

bounded-degree graph model has been a long open question, and even for the well-studied problem

of bipartiteness testing no matching lower bound is known [40].

1.1 Overview of Main Results
Here we formally state our main results (precise definitions are deferred to Section 2). First, we

prove a lower bound on the classical query complexity of clusterability testing for a signed graph.

Theorem 3.1 (Restated). Any classical clusterability tester with error parameter 𝜖 = 0.01 must
make at least

√
𝑁 /10 queries.

Up to polylogarithmic factors this matches the upper bound from [1], thus proving that their

clusterability tester is optimal in the classical computing regime. However, taking inspiration from

this classical clusterability tester, we reduce the clusterability testing problem to a collision finding

problem which can be solved faster by quantum computing. As a result, we propose a quantum

clusterability tester with a query complexity 𝑂̃ (𝑁 1/3).

Theorem 3.5 (Restated). Wepropose a quantum clusterability tester with query complexity 𝑂̃ (𝑁 1/3).

This improves over the classical lower bound, implying a quantum advantage over classical algo-

rithms for testing clusterability.

1.2 Technical contributions
A sketch of the proof of our two results is given in this section. The first result is the classical query

lower bound for testing clusterability. While the bound follows the blueprint of the lower bound

for bipartiteness testing by Goldreich and Ron [32], we have to deal with a number of additional

complications in the signed graph setting.

The main idea of the lower bound is to show that, with less than

√
𝑁 /10 queries, we cannot

distinguish two families of graphs: one family G𝑁
1

that is 𝜖-far from clusterable, and another family

G𝑁
2

that is clusterable. The design of these two families of graphs must take into account two

constraints. The first constraint is that the graphs in G𝑁
2

cannot contain a bad cycle, while those

in G𝑁
1

must have at least one bad cycle, even if we remove 𝜖𝑁𝑑 edges of the graph. This ensures

that G𝑁
2

is clusterable, while G𝑁
1

is far from clusterable. The second constraint relates to the fact

that both graph should be locally indistinguishable. This requires for instance that vertices in each

graph in both families are incident to the same number of positive and negative edges. If in addition

we can ensure that each cycle in these graphs contains many edges with a constant probability,

then we can use this to show that no algorithm can distinguish the graphs in these two families

with 𝑜 (
√
𝑁 ) queries. Indeed, we show that these two families of graphs are indistinguishable

with less than

√
𝑁 /10 queries as follows. First, we propose two random processes 𝑃1 and 𝑃2, one

generates a uniformly random graph in G𝑁
1
, and the other generates a uniformly random graph in

G𝑁
2
. Specifically, 𝑃𝛼 for 𝛼 ∈ {1, 2} takes a query given from an algorithm as input and returns a

vertex while “on-the-fly” or “lazily” constructing a graph from G𝑁
𝛼 . In other words, 𝑃𝛼 simulates



(Quantum) complexity of testing signed graph clusterability 3

how an algorithm interacts with a graph sampled uniformly in G𝑁
𝛼 . We observe that these random

processes are statistically identical if the answer to each query is not found in the past answers or

queries, which is equivalent to not finding a cycle when exploring a graph. Second, we demonstrate

that the probability of these random processes being statistically identical is greater than 1/4 within√
𝑁 /10 queries. In other words, no classical algorithm can distinguish between these two families

with a probability exceeding 3/4 within
√
𝑁 /10 queries to the input graph.

Our second result is a quantum algorithm for clusterability testing with a better query complexity.

To this end, we reduce the main procedure in the algorithm proposed by Adriaens and Apers [1] to

a collision finding algorithm. This collision finding problem can then be solved using the quantum

collision finding algorithm, similar to [40]. The main idea is that if we implement several random

walks on the positive edges of a graph that is far from clusterable, then there exists a negative

edge between the vertices belonging to distinct random walks with a constant probability. We

define finding such a negative edge between random walks as finding a collision, a process that

can be solved by using a quantum collision finding algorithm. This yields a quantum speedup for

clusterability testing.

2 PRELIMINARIES
This section contains two parts. Section 2.1 defines some of the basic terminology associated with

the graphs used in this paper. In Section 2.2, we introduce the graph clusterability testing problem.

2.1 Terminology
A graph 𝐺 = (𝑉 , 𝐸) is a pair of sets. The elements in 𝑉 = [𝑁 ] are vertices, and the elements in 𝐸,

denoted by edges, are paired vertices. The vertices 𝑣 ∈ 𝑉 and 𝑢 ∈ 𝑉 of an edge (𝑣,𝑢) ∈ 𝐸 are the

endpoints of (𝑣,𝑢), and (𝑣,𝑢) is incident to 𝑢 and 𝑣 . The vertices 𝑢 and 𝑣 are adjacent if there exist

an edge (𝑣,𝑢) ∈ 𝐸. The number of edges incident with 𝑣 , denoted by 𝑑 (𝑣), is the degree of a vertex,
and the maximum degree among the vertices in 𝐺 is the degree of the graph 𝐺 (𝑉 , 𝐸).
Given a graph𝐺 = (𝑉 , 𝐸), a walk is a sequence of edges ((𝑣1, 𝑣2), (𝑣2, 𝑣3), · · · , (𝑣 𝐽 −1, 𝑣 𝐽 )) where
(𝑣 𝑗 , 𝑣 𝑗+1) ∈ 𝐸 for all 1 ≤ 𝑗 ≤ 𝐽 − 1 and 𝑣 𝑗 ∈ 𝑉 for all 1 ≤ 𝑗 ≤ 𝐽 . This walk can also be denoted as

a sequence of vertices (𝑣1, 𝑣2, . . . , 𝑣 𝐽 ). A trail is a walk in which all edges are distinct. A cycle is a

non-empty trail in which only the first and last vertices are equal. A Hamiltonian cycle is a cycle of

a graph in which every vertex is visited exactly once.

A signed graph𝐺 = (𝑉 , 𝐸, Σ) consists of the vertex set𝑉 , the edge set 𝐸 ⊆ 𝑉 ×𝑉 , and a mapping

Σ : 𝐸 → {+,−} that indicates the sign of each edge. We say that a signed graph 𝐺 = (𝑉 , 𝐸, Σ) is
clusterable if we can partition vertices into components such that (i) every edge that connects

two vertices in the same components is positive, and (ii) every edge that connects two vertices in

different components is negative.

2.2 Clusterability testing for signed graphs
We can easily modify the usual graph query model to signed graphs. Given a signed graph 𝐺 with

maximum degree 𝑑 , the bounded-degree graph model is defined as follows. A query is a tuple (𝑣, 𝑖)
where 𝑣 ∈ [𝑁 ] is a vertex in the graph and 𝑖 ∈ [𝑑]. The oracle answers this query with (i) the 𝑖th

neighbor of the vertex 𝑣 if the degree of 𝑣 is larger than 𝑖 (otherwise it returns an error symbol),

and (ii) the sign of the corresponding edge.

Property testing in the bounded-degree model is described as follows. Given oracle access to a

graph 𝐺 with degree bound 𝑑 and |𝑉 | = 𝑁 , we wish to distinguish whether the graph 𝐺 satisfies a

certain property, or whether it is 𝜖-far from any graph having that property, where 𝜖 ∈ (0, 1] is an
error parameter. Here we say that two graphs𝐺 and𝐺 ′ are 𝜖-far from each other if we have to add
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or remove at least 𝜖𝑁𝑑 edges to turn𝐺 into𝐺 ′. The specific case of clusterability testing is defined

formally as follows.

Definition 2.1. A clusterability testing algorithm is a randomized algorithm that has query access

to a signed graph 𝐺 (𝑉 , 𝐸, Σ) with |𝑉 | = 𝑁 and maximum degrees 𝑑 . Given an error parameter 𝜖 ,

the algorithm behaves as follows:

• If 𝐺 is clusterable, then the algorithm should accept with probability at least 2/3.
• If 𝐺 is 𝜖-far from clusterable, then the algorithm rejects with probability at least 2/3.

3 MAIN RESULTS AND PROOFS
In this section, we give the formal statements and proofs of our two main results – a classical

query lower bound for clusterability testing and a quantum clusterability tester. In Section 3.1, we

first give the classical query lower bound of Ω(
√
𝑁 ) for clusterability testing. This result claims

the optimality of the classical clusterability tester in [1]. In Section 3.2, we provide a quantum

clusterability tester with query complexity 𝑂̃ (𝑁 1/3) which outperforms the classical clusterability

tester in [1].

3.1 Classical query lower bound for testing clusterability
In this section, we derive a classical query lower bound for the clusterability testing problem.

Specifically, we show that testing the clusterability of a signed graph with 𝑁 vertices requires at

least

√
𝑁 /10 queries.

Theorem 3.1. Given a signed graph 𝐺 with 𝑁 vertices, testing clusterability of 𝐺 with error
parameter 𝜖 = 0.01 requires at least

√
𝑁 /10 queries.

Proof. The proof consists of three main steps. First, we construct two families of graphs denoted

as G𝑁
1
and G𝑁

2
, each possessing specific desirable properties. In particular, we require that most

graphs withinG𝑁
1
are at least 0.01-far from being clusterable, while graphs withinG𝑁

2
are inherently

clusterable. The construction and analysis of these families is deferred to Section 4.1.

To prove Theorem 3.1, we illustrate the interaction between an arbitrary 𝑇 -query clusterability

testing algorithm A and a graph 𝑔 uniformly sampled from G𝑁
𝛼 as follows:

For all 𝑡 ≤ 𝑇 , each query 𝑞𝑡 is represented as a tuple (𝑣𝑡 , 𝑖𝑡 ), and the answer to 𝑞𝑡 is de-

noted as 𝑎𝑡 , where 𝑣𝑡 , 𝑎𝑡 ∈ [𝑁 ] and 𝑖𝑡 ∈ [6]. It is crucial to note that each query 𝑞𝑡 corre-

sponds to an edge in 𝑔, specifically the edge (𝑣𝑡 , 𝑎𝑡 ). We additionally denote a list of tuples

ℎ = [(𝑞1, 𝑎1), (𝑞2, 𝑎2), . . . , (𝑞𝑡 , 𝑎𝑡 )] as the query-answer history. This history is generated by the in-

teraction betweenA and𝑔 in the following manner: For each 𝑡 ≤ 𝑇 ,A mapsℎ to𝑞𝑡+1 and ultimately

to either accept or reject for 𝑡 = 𝑇 . For a given history ℎ = [(𝑞1 = (𝑣1, 𝑖1), 𝑎1), . . . , (𝑞𝑡 = (𝑣𝑡 , 𝑖𝑡 ), 𝑎𝑡 )],
we say that a vertex 𝑢 is in ℎ if 𝑢 = 𝑣𝑡 ′ or 𝑢 = 𝑎𝑡 ′ for some 𝑡 ′ ∈ [𝑡].

Secondly, we introduce two processes, denoted as 𝑃𝛼 for 𝛼 ∈ {1, 2}, which simulate how an

algorithm A interacts with a graph sampled uniformly from G𝑁
𝛼 . To be more specific, we consider

that A interacts with a graph 𝑔 sampled from G𝑁
𝛼 and generates the query-answer history ℎ.

We must have that the graph 𝑔 is uniformly distributed in G𝑁
𝛼,ℎ
⊆ G𝑁

𝛼 , where G𝑁
𝛼,ℎ

includes all

graphs that produce the query-answer history ℎ during interactions with A. Therefore, if A
makes a query 𝑞𝑡+1 ∉ {𝑞𝑖 }𝑡𝑖=1 to a graph uniformly sampled from G𝑁

𝛼,ℎ
, we can determine that

the answer corresponds to a certain vertex 𝑢 ∈ [𝑁 ] with a specific probability denoted as p𝑢 .

The random processes 𝑃𝛼 are precisely defined to return the answer 𝑢 with the corresponding

probability p𝑢 when responding to the query 𝑞𝑡+1 (initiated byA) and considering the history ℎ. As

a result, these two random processes, 𝑃𝛼 , interact withA, providing responses toA’s queries while
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simultaneously constructing a graph uniformly distributed in G𝑁
𝛼 . The description and analysis of

these random processes are deferred to Section 4.2.

In the third part, we demonstrate that no algorithm can with high probability differentiate

between query-answer histories generated during the interactions of A with 𝑃1 and 𝑃2 while

making less than

√
𝑁 /10 queries. To prove such indistinguishability, we examine the distribution of

query-answer histories of length𝑇 denoted as DA𝛼 , where each element in DA𝛼 is generated through

the interactions of A and 𝑃𝛼 . The statistical difference between DA
1

and DA
2

is defined as follows:

1

2

·
∑︁
𝑥

��
Prob

[
DA
1

= 𝑥
]
− Prob

[
DA
2

= 𝑥
] �� ,

where 𝑥 is some query-answer history of length 𝑇 . We then provide an upper bound on this

statistical difference in the following lemma. The proof of this lemma is a modification of the proof

of Lemma 7.4 in [32], and we defer its proof to Section 4.3.

Lemma 3.2 (based on [32], Lemma 7.4)). Let 𝛿 < 1

2
,𝑇 ≤ 𝛿

√
𝑁 and 𝑁 ≥ 40𝑇 . For every algorithm

A that uses 𝑇 queries, the statistical distance between DA
1

and DA
2

is at most 10𝛿2.

Finally, we establish Theorem 3.1 through a proof by contradiction. Let us assume the existence

of a clusterability tester A that requires only

√
𝑁 /10 queries. Consequently, we can infer that

the probability of A accepting a graph from G𝑁
2

is at least 2/3. By referring to Lemma 3.2, we

determine that the statistical difference between DA
1

and DA
2

is at most 10𝛿2 = 1/10 where 𝛿 is set

1/10 for a
√
𝑁 /10-query algorithm. Hence, A accepts a graph distributed uniformly in G𝑁

1
with a

probability of at least 2/3 − 1/10 > 0.4.

Furthermore, as indicated by Proposition 4.1, more than 99% of the graphs in G𝑁
1

are at least

0.01-far from being clusterable. Consequently, by the definition of a clusterability tester, we can

conclude that A accepts a graph distributed uniformly in G𝑁
1

at most 0.99 · 1/3 + 0.01 < 0.35.

This contradicts the earlier finding that A accepts a graph distributed uniformly in G𝑁
1

with a

probability of at least 0.4. Hence, we can deduce that there does not exist a clusterability tester

capable of distinguishing between a graph sampled from G𝑁
1

and G𝑁
2

using only

√
𝑁 /10 queries,

and the theorem follows. □

3.2 Quantum clusterability tester
In this section, we present our second result: a quantum clusterability tester (Algorithm 1) with a

query complexity of 𝑂
(
𝑁 1/3

poly (log𝑁 /𝜖)
)
. We begin by introducing the quantum clusterability

tester, followed by the proof of its correctness in Theorem 3.5.

Algorithm 1 takes a signed graph 𝐺 (𝑉 , 𝐸, Σ) with 𝑁 vertices and a bound on the maximum

degree 𝑑 , along with an accuracy parameter 𝜖 ∈ (0, 1], as input. The goal is to determine whether

𝐺 (𝑉 , 𝐸, Σ) is clusterable or 𝜖-far from clusterable. The algorithm consists of four major steps.

First, Algorithm 1 randomly selects a vertex 𝑠 ∈ 𝑉 . Second, it constructs random variables that

determine the direction of movement in each step of these random walks. To achieve this, we

need to prepare 𝑂 (𝐾 · 𝐿) random variables (𝐾 and 𝐿 are defined in Algorithm 1); however, we can

derandomize and reduce the number of random bits from 𝑂 (𝐾 · 𝐿) to 𝑂 (𝐿) because Algorithm 1

only depends on each pair of walks that are selected from𝐾 random walks. Therefore, it is sufficient

to construct 𝑘-wise independent random variables 𝑏𝑖 𝑗 mapping to [2𝑑] for 𝑖 ∈ [𝐾] and 𝑗 ∈ [𝐿],
where 𝑘 = Θ(𝐿). This construction can be realized by the following proposition.

Proposition 3.3. ([41], Proposition 6.5) Let 𝑛 + 1 be a power of 2 and 𝑘 be an odd integer such
that 𝑘 ≤ 𝑛. In this scenario, there exists a uniform probability space denoted as Ω = {0, 1}𝑚 , where
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Algorithm 1 Quantum clusterability tester

Input: Oracle access to a signed graph𝐺 (𝑉 , 𝐸, Σ) with 𝑁 vertices and degree bound 𝑑 ; an accuracy

parameter 𝜖 ∈ (0, 1].
1: for 𝑂 (1/𝜖) times do
2: Pick a vertex 𝑠 ∈ 𝑉 randomly.

3: Let 𝐾 = 𝑂

(√
𝑁 poly(log𝑁 /𝜖)

)
, 𝐿 = poly (log𝑁 /𝜖), 𝑛 = 𝐾𝐿, and 𝑘 = Θ(𝐿).

4: Adopt Proposition 3.3 to construct 𝑘-wise independent random variables 𝑏𝑖 𝑗 taking values

5: in [2𝑑] for 𝑖 ∈ [𝐾] and 𝑗 ∈ [𝐿].
6: Run the quantum collision finding algorithm in Lemma 3.4 with the following setting:

• 𝑋 := [𝐾] × [𝐿]; 𝑌 is the set of tuples (𝑣, 𝑣neb) where 𝑣 ∈ 𝑉 and 𝑣neb is the set of vertices

adjacent to 𝑣 .

• A function 𝑓 that take (𝑖, 𝑗) ∈ 𝑋 as input, and return the endpoint of a random walk that

starts at 𝑠 with random coin flips

(
𝑏𝑖1, . . . , 𝑏𝑖 𝑗

)
.

• Symmetric binary relation 𝑅 ⊆ 𝑌 × 𝑌 defined as follows:(
(𝑣, 𝑣neb), (𝑣 ′, 𝑣 ′neb)

)
∈ 𝑅 iff (𝑣 ∈ 𝑣 ′

neb
and the edge between 𝑣 and 𝑣 ′ is negative).

7: if quantum collision finding algorithm finds a collision then
8: return false

9: end if
10: end for
11: return true

𝑚 = 1 + 1

2
(𝑘 − 1) log

2
(𝑛 + 1). Within this space, there exist 𝑘-wise independent random variables,

represented as 𝜉1, . . . , 𝜉𝑛 over Ω, such that Pr
[
𝜉 𝑗 = 1

]
= Pr

[
𝜉 𝑗 = 0

]
= 1

2
.

Moreover, an algorithm exists that, when provided with 𝑖 ∈ Ω and 1 ≤ 𝑗 ≤ 𝑛, can compute 𝜉 𝑗 (𝑖) in
a computational time of 𝑂 (𝑘 log𝑛).

Third, we define a function 𝑓 that implements randomwalks according to these random variables.

𝑓 returns the endpoint of a random walk and the neighborhood of this endpoint. Specifically, we let

𝑋 = {1, . . . , 𝐾} × {1, . . . , 𝐿}, and 𝑌 be the set of tuples (𝑣, 𝑣neb) where 𝑣 ∈ {1, . . . , 𝑁 } and 𝑣neb is the
set of vertices adjacent to 𝑣 . Then, we define the function 𝑓 as follows. 𝑓 takes (𝑖, 𝑗) ∈ 𝑋 as input,

then it runs a random walk according to the random variables

(
𝑏𝑖1, . . . , 𝑏𝑖 𝑗

)
such that (i) this walk

starts at 𝑠 and (ii) each edge in this walk is positive. The function 𝑓 finally returns a tuple (𝑣, 𝑣neb).
Fourth, we define the symmetric binary relation 𝑅 ⊆ 𝑌 × 𝑌 such that

(
(𝑣, 𝑣neb), (𝑣 ′, 𝑣 ′

neb
)
)
∈ 𝑅 iff

(i) 𝑣 ∈ 𝑣 ′
neb

, and (ii) the edge between 𝑣 and 𝑣 ′ is negative. In other words, detecting a collision is

equivalent to detecting a bad cycle. The last step is to detect two distinct elements 𝑥1, 𝑥2 ∈ 𝑋 such

that (𝑓 (𝑥1), 𝑓 (𝑥2)) satisfies the symmetric binary relation 𝑅. The collision finding problem can be

improved by a quantum collision finding algorithm proposed by Ambainis [40] as follow.

Lemma 3.4. ([40], Theorem 9) Given a function 𝑓 : 𝑋 → 𝑌 , and a symmetric binary relation
𝑅 ⊆ 𝑌 × 𝑌 which can be computed in poly(log |𝑌 |) time steps where 𝑋 and 𝑌 are some finite sets, we
denote a collision by a distinct pair 𝑥, 𝑥 ′ ∈ 𝑋 such that (𝑓 (𝑥), 𝑓 (𝑥 ′)) ∈ 𝑅. There exists a quantum
algorithm that can find a collision with a constant probability when a collision exists, and always
returns false when there does not exist a collision. The running time of the quantum algorithm is
𝑂
(
|𝑋 |2/3 · poly(log |𝑌 |)

)
.

By this lemma we can identify a bad cycle within 𝐾 random walks, with a query complexity

of 𝑂 ( |𝑋 |2/3) = 𝑂 ((𝐾 · 𝐿)2/3) = 𝑂

(
(
√
𝑁 poly(log𝑁 /𝜖))2/3

)
= 𝑂 (𝑁 1/3

poly(log𝑁 /𝜖)). Next, we



(Quantum) complexity of testing signed graph clusterability 7

establish the correctness of this algorithm and present its time complexity in the following theorem.

Theorem 3.5. Algorithm 1 is a quantum algorithm that tests the clusterability of a signed graph
with query complexity and running time 𝑂 (𝑁 1/3

poly(log𝑁 /𝜖)).

Following our first result, we conclude that our quantum clusterability tester outperforms any

classical clusterability tester.

Proof. First we prove that Algorithm 1 is indeed a clusterability tester. When 𝐺 is clusterable,

signifying the absence of one bad cycle, Algorithm 1 fails to discover a collision. Consequently,

it returns true. On the contrary, when 𝐺 is 𝜖-far from clusterable, the assertion in Claim 14 from

[1] suggests that the algorithm can pinpoint a bad cycle within the sampled random walks with a

constant probability. This leads Algorithm 1 to return false with a constant probability.

To bound the time complexity (and hence query complexity), we need to bound the following

quantities:

• The time required to evaluate the 𝑘-wise independent random variables.

• The time required to evaluate 𝑓 .

• The number of queries required to find a collision.

For the first requirement, it takes 𝑂 (poly(log𝑁 /𝜖)) time to evaluate a 𝑘-wise independent

random variable, as indicated by Proposition 3.3. Moving to the second requirement, it is evident that

each evaluation of 𝑓 consumes time poly(log𝑁 /𝜖) since 𝑓 is a procedure implementing a random

walk, and the length of the walk is 𝐿 ∈ poly(log𝑁 /𝜖). Concerning the last requirement, we are

aware that detecting a collision requires 𝑂
(
𝑁 1/3

poly (log𝑁 /𝜖)
)
time, as derived from Lemma 3.4.

In conclusion, the query and time complexity of Algorithm 1 is 𝑂
(
𝑁 1/3

poly (log𝑁 /𝜖)
)
. □

4 PROOF DETAILS
In this section, we detail the construction and lemmas in Theorem 3.1. In Section 4.1, we generate

two distinct families of graphs, each exhibiting different property of clusterability. In Section 4.2, we

introduce two random processes that interact with an arbitrary algorithmA during the generation

of graphs selected uniformly from the aforementioned families. In Section 4.3, we demonstrate that

the statistical difference of query answer histories produced byA and these two random processes

is bounded by the number of queries.

4.1 Graph construction
Here we detail the construction and analysis of the graph families G𝑁

1
and G𝑁

2
.

4.1.1 Construction of two families of signed graphs G𝑁
𝛼 . We detail the construction of two families

of signed graphs denoted as G𝑁
1

and G𝑁
2
. In both families, each signed graph consists of 𝑁 vertices,

where 𝑁 is a multiple of 10. Each vertex 𝑣 is assigned a label 𝑝𝑣 chosen from the set {0, 1, . . . , 9} in
such a way that there are exactly 𝑁 /10 vertices for each possible label.

For the edge set, we embed them in a manner such that each vertex is incident to precisely 6

edges. We construct edge sets based on cycles associated to a permutation 𝜎 = (𝑟1 𝑟2 . . . 𝑟𝐿), where
0 ≤ 𝐿 ≤ 9 and 𝑟𝑙 ∈ {0, 1, . . . , 9} are distinct for 1 ≤ 𝑙 ≤ 𝐿, With some abuse of notation, we also

denote by 𝜎 the bijective function 𝜎 : {𝑟1, 𝑟2, . . . , 𝑟𝐿} → {𝑟1, 𝑟2, . . . , 𝑟𝐿} defined as

𝜎 (𝑟𝑙 ) =
{
𝑟𝑙+1 if 𝑙 < 𝐿.

𝑟1 if 𝑙 = 𝐿.



8 Kuo-Chin Chen, Simon Apers, and Min-Hsiu Hsieh

With this notation, we define a familyD𝜎
such that each member of this family is a union of cycles

satisfying two properties: (i) the union of cycles contains all vertices in [𝑁 ] labeled with values

from 𝑟0 to 𝑟𝐿 , and (ii) for each cycle (𝑣1, 𝑣2, . . . , 𝑣 𝐽 ) in the union of cycles, the label for each vertex

must satisfy 𝑝𝑣𝑗+1 = 𝜎 (𝑝𝑣𝑗 ) for 1 ≤ 𝑗 ≤ 𝐽 (where we set 𝑣 𝐽 +1 = 𝑣1). We then employ these cycles to

define the edge sets for the graphs in the family G𝑁
𝛼 . See Fig. 1 for an illustration for G40

1
.

For G𝑁
1
: Each graph in G𝑁

1
consists of one Hamiltonian cycle and two unions of cycles (we

later comment on the particular choice of 𝜎’s):

• The Hamiltonian cycle ∈ D𝜎1st

with 𝜎1st = (0 1 2 3 4 5 6 7 8 9). We call this the arc

cycle. All of its edges are positive, and we refer to these edges as arc edges.

• One union of cycles ∈ D𝜎2nd

with 𝜎2nd = (2 4 6 0 8 1 3 7 9 5),1 with each of its edges

being positively signed. We call these edges connecting edges.

• A second union of cycles ∈ D𝜎3rd

with 𝜎3rd = (1 6 3 8 5 0 7 2 9 4), and all edges are

negatively signed.

For G𝑁
2
: In the family of graphs G𝑁

2
, each graph contains one Hamiltonian cycle and 12

unions of cycles:

• The Hamiltonian cycle ∈ D𝜎1st

with each of its edges negatively signed.

• There are ten additional unions of cycles ∈ D𝜎𝑠

with 𝜎𝑠 = (𝑠) for 𝑠 taking values in

the set {0, 1, . . . , 9}. These edges are positive.
• The last two unions of cycles are disjoint. One belongs to D𝜎10

with 𝜎10 = (0 2 4 6 8).
The other belongs to D𝜎11

with 𝜎11 = (1 3 5 7 9). These edges are positive.

Fig. 1. An instance of G40
1
. The green lines indicate the edges in one Hamiltonian cycle belonging to D𝜎1st

,

the orange lines indicate the edges in one union of cycles belonging to D𝜎2nd
, and the red lines indicate the

edges in one union of cycles belonging to D𝜎3rd
.

1
The choice of 𝜎2nd

and 𝜎3rd
is not unique; we only require that these edge sets are disjoint when we fix the label of each

vertex. This forbids picking for example 𝜎2nd = (0 2 4 6 8 1 3 5 7 9) , since the edges connecting vertices labeled 9 and 0 can

be found in both D𝜎1st

and D𝜎2nd

, meaning they are not disjoint. However, we could replace 𝜎2nd
with (2 6 4 0 8 1 3 7 9 5) ,

where exchanging 6 and 4 would not violate the disjoint property.
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In every graph within G𝑁
𝛼 , each vertex is incident to precisely six edges, and these edges are

labeled according to the following convention: For a pair of adjacent vertices, represented as 𝑣 𝑗 and

𝑣 𝑗+1 for 1 ≤ 𝑗 ≤ 𝐽 − 1, within any cycle (𝑣1, 𝑣2, . . . , 𝑣 𝐽 ), we label the edge connecting them as 𝑘 for

𝑣𝑚 and as 𝑘 + 1 for 𝑣𝑚+1, for some 𝑘 ∈ N. This labeling effectively associates an orientation to the

cycle. More specifically, in a graph from G𝑁
1
:

• The edges in the Hamiltonian cycle from D𝜎1st

are labeled with 1 and 2.

• For the edges in the union of cycles ∈ D𝜎2nd

, we use labels 3 and 4.

• For the edges in the union of cycles ∈ D𝜎3rd

, we use labels 5 and 6.

In the case of a graph from G𝑁
2
:

• The edges in the Hamiltonian cycle corresponding to D𝜎1st

are labeled as 5 and 6.

• For the edges in the union of cycles within D𝜎𝑠

for 𝑠 ranging from 0 to 9, we assign labels 1

and 2.

• For the edges in the union of cycles ∈ D𝜎10

and D𝜎11

, we label them with 3 and 4.

4.1.2 Clusterability of G𝑁
𝛼 . We initially observe that all graphs within G𝑁

2
are clusterable with

the following rationale. All vertices with even (odd, respectively) labeling are interconnected via

positive edges. Consequently, two connected components emerge: one component comprises all

vertices with even labeling, and the other includes all vertices with odd labeling, each with positive

edges. We further note that these two components can only be connected through negative edges.

Hence, any graph within G𝑁
2

satisfies the clusterability definition. As a result, all graphs in the

second family are clusterable.

Regarding the graphs in G𝑁
1
, we will demonstrate that they are at least 0.01-far from being

clusterable with probability at least 1 − exp(−Ω(𝑁 )) in the following Proposition 4.1.

Proposition 4.1. The graphs in G𝑁
1

are 0.01-far from clusterable with probability at least 1 −
exp(−Ω(𝑁 )).

Proof. We commence our proof by providing a description of the random process used to

uniformly generate a graph denoted as 𝑔 from G𝑁
1
. We begin by constructing the set of vertices [𝑁 ]

and refer to the resulting (empty) graph as 𝑠𝑔. The graph 𝑠𝑔 is equipped with its edges set through

a three-step process:

(1) (One Hamiltonian cycle): In the first step, we uniformly select a Hamiltonian cycle from

all possible Hamiltonian cycles on the vertices set [𝑁 ] and assign each vertex a label from

the set {0, 1, . . . , 9}, based on the rule of cycles ∈ D𝜎1st

. All edges constructed in this step

are positive.

(2) (Second edge set from D𝜎2nd ): In the second step, we repeat the following processes 𝑁

times:

(a) Select an arbitrary vertex 𝑢𝑖 that lacks an edge labeled as 3 where the index 𝑖 ∈ [𝑁 ]
represents the label of iteration.

(b) Uniformly select a vertex 𝑣𝑖 from a set that includes all vertices labeled as 𝜎2nd (𝑝𝑢𝑖 )
and that lack an edge labeled as 4.

(c) Add the edge (𝑢𝑖 , 𝑣𝑖 ).
This adds an edge set from D𝜎2nd

. We make these edges positive.

(3) (Third edge set from D𝜎3rd ): Similar to the previous procedure, we add an edge set from

D𝜎3rd

. We make these edges negative.

We call the resulting graph 𝑔, and note that 𝑔 is a uniformly random element from G𝑁
1
. We

proceed to observe that each graph 𝑔 in G𝑁
1

is inherently non-clusterable. Indeed, unless we remove
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arc edges from the Hamiltonian cycle, every negative edge of a cycle in D𝜎3rd

contributes to a

bad cycle. We show that, with high probability over the random graph in G𝑁
1
, removing less than

0.01𝑑𝑁 = 0.06𝑁 edges cannot make the graph clusterable.

More precisely, we will establish that after removing less than 0.06𝑁 arc edges, with high

probability, all vertices remain connected through (positive) connecting edges in D𝜎2nd

, and so

the graph cannot be clustered. To prove this, let us delve into a more detailed description of the

random process used to generate a graph 𝑔.

In the first step, we construct a Hamiltonian cycle and eliminate 𝑥 < 0.06𝑁 arc edges, resulting

in a graph with 𝑥 components. There are 𝐶𝑁
𝑥 =

(
𝑁
𝑥

)
possible possibilities for these 𝑥 components.

During the first iteration of the second step, we select the arbitrary vertex𝑢0 from the component

with the fewest vertices and designate this component as 𝐶 . It becomes evident that, in the first

iteration of step 2(c), the edge (𝑢0, 𝑣0) connects component 𝐶 to another component, with a

probability exceeding 1/2. Consequently, the number of components in the graph 𝑠𝑔 decreases by

1, and the number of vertices in 𝐶 increases with a probability greater than 1/2.
In the subsequent iterations, we select the vertex 𝑢𝑖 for 2 ≤ 𝑖 ≤ 𝑁 based on the following rule: If

the number of vertices labeled as 𝜎2nd (𝑝𝑣𝑖−1 ) and lacking edges labeled as 4 within the component

𝐶 is fewer than the number of vertices labeled as 𝜎2nd (𝑝𝑣𝑖−1 ) not in 𝐶 , then we set the vertex 𝑢𝑖
equal to 𝑣𝑖−1. Subsequently, in 2(b) and 2(c), the process embeds an edge connecting 𝑢𝑖 to some

vertex 𝑣𝑖 that is not a resident in 𝐶 with a probability greater than 1/2. Otherwise, we choose 𝑢𝑖
from any arbitrary vertex labeled as 𝜎2nd (𝑝𝑣𝑖−1 ) and not in 𝐶 . Subsequently, in 2(b), the process

selects 𝑣𝑖 in 𝐶 with a probability greater than 1/2, as 𝐶 has more vertices capable of connecting

with 𝑢𝑖 than the set of vertices not in 𝐶 .

Consequently, the probability of the graph having more than one component can be bounded by

the probability of obtaining fewer than 𝑥 heads when flipping 𝑁 unbiased coins. This probability

can be bounded as follows:

𝑥∑︁
𝑖=2

𝐶𝑁
𝑖

(
1

2

)𝑁−𝑖
< 2

𝑁 ·𝐻 (0.06)
2
−𝑁

2
𝑥 < 2

𝑁 (−1+0.06+𝐻 (0.06) ) ,

where 𝐻 (𝑝) = −𝑝 log(𝑝) − (1 − 𝑝) log(1 − 𝑝) is the (binary) entropy function.

At this point we removed only 𝑥 < 0.06𝑁 edges and we are permitted to remove an additional

0.06𝑁 − 𝑥 connecting edges from 𝑠𝑔. This corresponds to 0.06𝑁 − 𝑥 tests where the coin flips tails

(thus reducing the number of components by 1) can be taken into account for flips resulting in

heads. In other words, the condition of having fewer than 𝑥 heads can be extended to having fewer

than 𝑥 + 0.06𝑁 − 𝑥 heads when flipping 𝑁 unbiased coins. Consequently, the probability that the

resulting graph has more than one component, when 0.06𝑁 − 𝑥 connecting edges are removed,

can be bounded as:

𝑥+(0.06𝑁−𝑥 )∑︁
𝑖=2

𝐶𝑁
𝑖

(
1

2

)𝑁−𝑖
< 2

𝑁 (−1+0.06+𝐻 (0.06) ) .

Given that there are 𝐶𝑁
𝑥 < 2

𝑁𝐻 (0.06)
possible ways to construct 𝑥 components in the first step, we

can confidently assert that, after implementing step (2), all vertices in 𝑠𝑔 are interconnected by

positive edges with a probability of at least 1− exp−Ω (𝑁 ) , even in cases where 0.06𝑁 positive edges

(comprising of 𝑥 arc edges and 0.06𝑁 − 𝑥 connecting edges) were removed. The negative edges

are present in the edge set in D𝜎3rd

, and each of them generates a bad cycle under the condition

that only one component (only positive edges inside) is left after completing the second step in
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the process. In other words, under this condition, we must remove all negative edges to make this

graph clusterable. Consequently, the lemma follows. □

4.2 Random processes
Here we construct and analyze the random processes that play a key role in our lower bound.

The first part describes the interaction of a random process 𝑃𝛼 with an algorithm A. The second

part proves that 𝑃𝛼 indeed generates a graph uniformly within G𝑁
𝛼 , as further elucidated in

Proposition 4.2.

We will begin by defining the random process 𝑃1, which involves two stages. The first stage will

explain how 𝑃1 interacts with an arbitrary 𝑇 -query algorithm A. The second stage will elaborate

on how 𝑃1 constructs a graph uniformly sampled from G𝑁
1
.

First stage of 𝑷1: Given a query-answer history ℎ = [(𝑞1, 𝑎1), (𝑞2, 𝑎2), . . . , (𝑞𝑡−1, 𝑎𝑡−1)] for
𝑡 ≤ 𝑇 , we define a set of vertices 𝑋𝑝,𝑖 , which contains all vertices labeled with 𝑝 in the

history and lacking edge 𝑖 . We also use the notation 𝑛𝑝 to represent the count of vertices in

this history that are labeled 𝑝 . For each query 𝑞𝑡 = (𝑣𝑡 , 𝑖𝑡 ) made by A, the actions of 𝑃1 are

defined as follows:

(1) If 𝑣𝑡 is not in ℎ, then 𝑃1 labels 𝑣𝑡 with a number 𝑝 ∈ {0, 1, · · · , 9} with a probability of

(𝑁 /10)−𝑛𝑝
𝑁−

(∑
9

𝑝=0 𝑛𝑝

) . Subsequently, 𝑃1 answers this query as described in (2) below.

(2) If 𝑣𝑡 belongs to ℎ, there are two possible scenarios:

(a) If we can find the edge corresponding to 𝑞𝑡 in ℎ, then 𝑃1 responds with the vertex

connected to this edge. In other words, there exists an edge (𝑣𝑡 , 𝑢) in ℎ such that

(𝑣𝑡 , 𝑢) is labeled as 𝑖𝑡 for vertex 𝑣𝑡 , and 𝑃1 responds with 𝑢. The query-answer

history remains unchanged in this case.

(b) If the edge corresponding to 𝑞𝑡 = (𝑣𝑡 , 𝑖𝑡 ) does not exist in ℎ, we follow these

steps: Suppose, without loss of generality, that 𝑖𝑡 = 1. We set the label 𝜎1st (𝑝𝑣𝑡 )
as 𝑝 and 𝑖 = 𝑖𝑡 + 1 = 2. 𝑃1 decides whether to uniformly select a vertex from

𝑋𝑝,𝑖 by flipping a coin with bias

|𝑋𝑝,𝑖 |
𝑁 /10 − 𝑛𝑝 + |𝑋𝑝,𝑖 |

or to uniformly select a vertex

not present in ℎ, and assigns the label 𝑝 to it. In either case, 𝑃1 responds with

the selected vertex 𝑢, and the edge (𝑣𝑡 , 𝑢) is signed positively. Subsequently, this

edge (𝑣𝑡 , 𝑢) is added to the query-answer history ℎ.

For the other case (𝑖𝑡 = 2, 3, 4, 5, 6), 𝑃1 acts in a similar manner as described above,

except for the assignment for 𝑝 , the assignment for 𝑖 , and the sign of the added

edge. The added edge is positively signed for 𝑖𝑡 = 2, 3, 4, and negatively signed

for 𝑖𝑡 = 5, 6. For 𝑖 , it is set to 𝑖𝑡 + 1 for 𝑖𝑡 = 3, 5 and to 𝑖𝑡 − 1 for 𝑖𝑡 = 2, 4, 6. The

assignment for 𝑝 is as follows:



𝑝 ← (𝜎1st)−1 (𝑝𝑣𝑡 ) for 𝑖𝑡 = 2

𝑝 ← 𝜎2nd (𝑝𝑣𝑡 ) for 𝑖𝑡 = 3

𝑝 ← (𝜎2nd)−1 (𝑝𝑣𝑡 ) for 𝑖𝑡 = 4

𝑝 ← 𝜎3rd (𝑝𝑣𝑡 ) for 𝑖𝑡 = 5

𝑝 ← (𝜎3rd)−1 (𝑝𝑣𝑡 ) for 𝑖𝑡 = 6
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First stage of 𝑷2: 𝑃2 follows a similar process to 𝑃1, with the only differences being the

assignment for 𝑝 as follows:

𝑝 ← 𝑝𝑣𝑡 for 𝑖𝑡 = 1

𝑝 ← 𝑝𝑣𝑡 for 𝑖𝑡 = 2

𝑝 ← 𝑝𝑣𝑡 + 2 (mod 10) for 𝑖𝑡 = 3

𝑝 ← 𝑝𝑣𝑡 − 2 (mod 10) for 𝑖𝑡 = 4

𝑝 ← 𝜎1st (𝑝𝑣𝑡 ) for 𝑖𝑡 = 5

𝑝 ← (𝜎1st)−1 (𝑝𝑣𝑡 ) for 𝑖𝑡 = 6

Second stage of 𝑷1: After answering all of these queries and generating a query-answer

history [(𝑞1, 𝑎1) , . . . , (𝑞𝑇 , 𝑎𝑇 )], 𝑃1 proceeds with the following processes:

(1) Uniformly selecting a feasible way to embed the edges inℎ on a cycle. The embedding of

these edges adhere to the following conditions: Each vertex is assigned a cycle position,

i.e., an integer in {0, . . . , 𝑁 − 1}, in a manner that ensures each vertex labeled with

𝑝 ∈ {0, . . . , 9} is positioned at a position 𝑥 such that 𝑝 ≡ 𝑥 (mod 10). This assignment

implies that all acr edges (labeled 1, 2) are placed on the cycle, and edges labeled 3, 4, 5, 6

are excluded from the cycle.

(2) Randomly positioning all other vertices on the cycle, ensuring that each vertex 𝑣 with

label 𝑝𝑣 is positioned at a position 𝑥 such that 𝑝𝑣 ≡ 𝑥 (mod 10). Subsequently, all cycle

edges are assigned a positive sign.

(3) In the end, uniformly selecting a feasible way to embed the edges sets in D𝜎2nd

and

D𝜎3rd

. All edges in the edges sets ∈ D𝜎2nd

assigned a positive sign, while all edges in

the edges sets ∈ D𝜎3rd

are assigned a negative sign.

Second stage of 𝑷2: 𝑃2 follows a process similar to that of 𝑃1, with few distinctions: In (2),

we assign each cycle edge a negative sign. In (3), 𝑃2 uniformly selects a feasible way to

embed the edges sets ∈ D𝜎𝑠

for 𝑠 ∈ {0, 1, · · · , 11}, and assigns positive signs to these edges.

We will show that the above two processes uniformly generate a graph in the corresponding family

in the next lemma.

Proposition 4.2. For every algorithm A that uses 𝑇 queries and for each 𝛼 ∈ {1, 2}, the process
𝑃𝛼 uniformly generates graphs in G𝑁

𝛼 when interacting with A.

Proof. We will use induction to prove this lemma. Consider that every probabilistic algorithm

can be viewed as a distribution of deterministic algorithms. Therefore, it is sufficient to prove

this lemma for any deterministic algorithm A. The base case (i.e., 𝑇 = 0) is correct because the

query-answer history is empty, and the second stage in the process 𝑃𝛼 uniformly generates a graph

in G𝑁
𝛼 . We assume that the claim is true for 𝑇 − 1, and we will prove that the claim is also true for

𝑇 . Let A′ be the algorithm defined by stopping A before it asks the 𝑇 𝑡ℎ
query. By the inductive

assumption, we know that 𝑃𝛼 uniformly generates graphs in G𝑁
𝛼 when 𝑃𝛼 interacts with A′. We

will show that after 𝑃𝛼 interacts with A and answers the 𝑇 𝑡ℎ
query, the second stage of 𝑃𝛼 also

uniformly generates graphs in G𝑁
𝛼 .

Assuming, without loss of generality, that the answer to the 𝑇 𝑡ℎ
query cannot be obtained from

the query-answer history because this query does not provide additional information. Denote the

𝑇 𝑡ℎ
query of A as 𝑞𝑇 = (𝑣𝑇 , 𝑖𝑇 ) and consider all actions of the process 𝑃1:

• (Case 1) iT ∈ {3, 4, 5, 6}, and vT in ℎ:

Assume, without loss of generality, that 𝑖𝑇 = 3 and denote 𝑝 = 𝜎2nd (𝑝𝑣𝑇 ). The probability of

𝑃1 connecting 𝑣𝑇 to any vertex is independent of the specific order of vertices on the cycle
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but depends on the labeling of the vertices. After considering all possible connecting edges

carried out in the second stage following the interaction withA′, it becomes evident that the

only vertices in ℎ to which 𝑣𝑇 can connect are those in 𝑋𝑝,4. In any potential arrangement of

the vertices on the cycle, there will be exactly (𝑁 /10) − 𝑛𝑝 vertices labeled 𝑝 and available

for connection to 𝑣𝑇 . This implies that the probability of 𝑣𝑇 being connected to a vertex in

𝑋𝑝,4 is
|𝑋𝑝,4 |

|𝑋𝑝,4 |+(𝑁 /10)−𝑛𝑝 . Furthermore, when 𝑣𝑇 is connected to a vertex in 𝑋𝑝,4, this vertex

is uniformly distributed within 𝑋𝑝,4. Similarly, when connected to a vertex not in ℎ, this

vertex is uniformly distributed among the vertices not in ℎ. These probabilities align with

the definitions in 𝑃1. Therefore, in Case 1, the induction step holds for 𝑃1.

• (Case 2) iT ∈ {1, 2}, and vT in ℎ:
Assume, without loss of generality, that 𝑖𝑇 = 1 and denote 𝑝 as 𝜎1st (𝑝𝑣𝑇 ). In any valid

embedding of the edges in ℎ onto the cycle, it is evident that 𝑣𝑇 can be adjacent with another

vertex 𝑢 in ℎ only if 𝑢 belongs to 𝑋𝑝,2. Moreover, when 𝑣𝑇 is adjacent to a vertex in ℎ, this

vertex is uniformly distributed within 𝑋𝑝,2. If 𝑣𝑇 is adjacency with another vertex 𝑢 not in ℎ,

it is evident that the number of vertices labeled 𝑝 but not in ℎ is (𝑁 /10) −𝑛𝑝 . Consequently,
the probability of 𝑣𝑇 being adjacent to some 𝑢 ∈ 𝑋𝑝,2 is

|𝑋𝑝,2 |
|𝑋𝑝,2 |+(𝑁 /10)−𝑛𝑝 , and the probability

of it being adjacent to a vertex not in ℎ is

(𝑁 /10)−𝑛𝑝
|𝑋𝑝,2 |+(𝑁 /10)−𝑛𝑝 . These probabilities align with

the definitions in 𝑃1. Therefore, in this case, the induction step holds for 𝑃1.

• (Case 3) vT is not in ℎ:
We can reduce this case to case 1 and 2, provided that the label of 𝑣𝑇 is selected with the

appropriate probability. In the second stage, each vertex is randomly assigned label based on

the proportion of missing vertices with that label. This essentially follows the assignment

rule outlined in case (1) in the first stage of 𝑃1.

For 𝑃2, we omit the proof since it is similar to the argument in 𝑃1, and this lemma follows.

□

4.3 Proof of Lemma 3.2
We may assume that A does not make a query whose answer can be obtained from its query

answer history ℎ since such a query does not update the ℎ. Then, we begin the proof by proving

the following proposition.

Proposition 4.3. ([32], Claim in lemma 7.4) Both in DA
1

and in DA
2
, the total probability mass

assigned to query-answer histories in which for some 𝑡 ≤ 𝑇 a vertex in ℎ is returned as an answer to
the 𝑡 th query is at most 10𝛿2.

Proof. We begin the proof by claiming that the probability of the event that the answer in the

𝑡 th query is a vertex in ℎ is at most 20(𝑡 − 1)/𝑁 for every 𝑡 ≤ 𝑇 . The statement can be derived by

observing that there are at most 2(𝑡 − 1) vertices in ℎ, and uses the definition of both processes.

Then, the probability that the event occurs in an arbitrary query-answer history of length 𝑇 is at

most

∑𝛿
√
𝑁

𝑡=1

20(𝑡−1)
𝑁

< 10𝛿2. The proposition follows. □

From the proposition, we know that the edges in ℎ will not form a cycle with probability at

least 1 − 10𝛿2. This event implies that for each query, these two processes pick a random vertex

uniformly among the vertices, not in ℎ. In addition, A’s queries can only depend on the previous

query-answer histories. Therefore, the distributions of the query-answer histories for these two

processes are identical, except if we found a cycle, which happens with probability at most 10𝛿2.

Lemma 3.2 follows.
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