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Abstract

In this paper, we present a probabilistic numerical method for a class of forward

utilities in a stochastic factor model. For this purpose, we use the representation of

dynamic consistent utilities with mean of ergodic Backward Stochastic Differential

Equations (eBSDEs) introduced by Liang and Zariphopoulou in [27]. We establish a

connection between the solution of the ergodic BSDE and the solution of an associ-

ated BSDE with random terminal time τ , defined as the hitting time of the positive

recurrent stochastic factor V . The viewpoint based on BSDEs with random horizon

yields a new characterization of the ergodic cost λ which is a part of the solution

of the eBSDEs. In particular, for a certain class of eBSDEs with quadratic genera-

tor, the Cole-Hopf transform leads to a semi-explicit representation of the solution

as well as a new expression of the ergodic cost λ. The latter can be estimated with

Monte Carlo methods. We also propose two new deep learning numerical schemes for

eBSDEs, where the ergodic cost λ is optimized according to a loss function at the

random horizon τ or taking into account the whole trajectory. Finally, we present

numerical results for different examples of eBSDEs and forward utilities along with

the associated investment strategies.
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Introduction

In this paper, we are interested in the numerical approximation of certain classes of forward perfor-
mance/utility processes (or consistent dynamic utilities), and their associated optimal decision crite-
rion. Introduced by [31], consistent dynamic utilities offer an interesting alternative to the classical
setting of expected utility maximization at a terminal time. This forward-looking approach enables the
dynamic adjustment of the decision criteria, starting from preferences which are known at an initial
time, rather than imposing a potentially distant and arbitrary time horizon. The preferences of an
agent are thus described by a (random) dynamic utility (U(t, ·)). The decision criterion maintains
time consistency within the given investment or decision-making context, in the sens that if Xπ

t is the
observable process Xπ

t (typically the wealth) a resulting from the admissible decision/strategy π, then
the preference process U(t,Xπ

t ) is a supermartingale, and here exists an optimal strategy such that
the preference process is a martingale. In particular, all dynamic utilities U are not necessarily time
consistent.

Since their introduction, there has been tremendous theoretical developments in the field. In a
general setting, [15] established a sufficient condition for time-consistency when the dynamic utility
is an Itô random field. The consistent dynamic utility verifies a non linear SPDE of HJB type. This
work has been extended to consistent utility of investment and consumption in [13], and has been
applied, for instance, to derive consistent utilities in stochastic factor market models (see e.g. [32], [1]).
Consistent dynamic utilities have found diverse applications over recent years, including but not limited
to option valuation, insurance, mean field games ([26], [11]), long term interest rate modeling ([14]),
risk measures ([9] or more recently pension design ([21],[33]). Surprisingly, the subject of numerical
methods for dynamic utilities remains largely unexplored, despite its critical importance for practical
applications. In [18], a general approach is proposed using strong approximations of compounds of
random maps. In this paper, we take a different approach to introduce new numerical schemes for
the class of so-called homothetic dynamic utilities, taking advantage of the representation of these
processes using ergodic BSDEs, introduced in [27].

We investigate the representation of an agent’s preferences investing in an incomplete financial
market, where stock price dynamics are driven by a stochastic factor (Vt)t≥0. Homothetic dynamic
utilities are expressed as separable functionals, denoted by U(t, x) = u(x)ef(t,Vt), where u is a standard
exponential or power utility function (the expression is additive in the logarithmic case). The main
result of [27] provides a representation of the function f with mean of the unique Markovian solution
of a related ergodic BSDE.

Ergodic BSDEs have first been introduced in [16], with the aim to study an optimal ergodic control
problem, expressed as the minimization of an averaged cost function over an infinite time horizon.
Formally, the solution of an ergodic BSDE, which is an infinite horizon BSDE, is a triplet (Y,Z, λ),
where Y and Z are adapted processes and λ is a real number, which solves:

Yt = YT +

∫ T

t
(F (Vs, Zs)− λ)ds−

∫ T

t
Z⊤
t dWt, ∀ 0 ≤ t ≤ T < +∞. (0.1)

In [16], this equation is studied under Lipschitz assumptions on the driver, for a stochastic factor V
with constant volatility and drift that satisfy a dissipative condition. The dissipativity assumption
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has been relaxed in [10] for stochastic factors with constant volatility in general Hilbert spaces and for
non constant and possibly unbounded volatility in [22]. In the constant volatility framework, the com-
ponent Z of the ergodic BSDE solution is bounded, allowing [27] to obtain existence and uniqueness
results of Markovian solutions (y(Vt), z(Vt), λ)t≥0, for drivers F which are only locally Lipschitz in z.

In this paper, we develop numerical schemes for approximation Markovian solution of the general
class of ergodic BSDEs introduced in [27], which includes the ergodic BSDEs used in the representation
of homothetic utilities. There are two main challenges in the simulation of such equations:

1. There is an additional real unknown λ. This makes the usual backward discretization equation
for Y coupled with λ.

2. This is an infinite horizon BSDE, which has to stand for all T > 0, for all 0 ≤ t ≤ T . Thus, there
is no ’terminal condition’ as for the simulation of finite horizon BSDE.

The unkwown ergodic cost λ can be interpreted in several ways. First, it is the long term growth rate
of an associated risk sensitive control problem, as mentioned in [27]. It can also be represented as the
linear growth rate of the initial value of the solution of an analogue finite horizon BSDE with respect
to the terminal time T when the latter goes to infinity, see [22]. However, numerical schemes for the
simulation of BSDEs become unstable for large horizon, so that this representation cannot be used for
the numerical approximation of the ergodic cost.

Over the past few years, machine learning algorithms have been extensively studied for their ability
to solve high dimensional non-linear PDEs, based on the BSDE representation of their solution (see
e.g. [19], [7], [24], [17], [25]). Two main types of neural network algorithm have been developed. The
first relies on a global loss function for solving BSDEs and was initially proposed in [19]. The Deep
BSDE solver consists in the training of as many neural networks as time steps to approximate the
component Z of the solution. Y is computed with a forward discretization starting from Y0.Then, Y0
and the neural networks parameters are optimized according to a loss function on the terminal value
of the discretized scheme. A convergence study of the Deep BSDE is developped in [20] and [7] shows
that sharing one neural network across all time steps is more efficient. The second class of algorithms
relies on a local approach and consists in solving local optimization problems at each time steps. First
introduced in [17], [25], those methods use two neural networks to approximate both processes Y and
Z. Local loss functions are constructed based on the iteration of time discretization of BSDEs with
the terminal condition.

In this paper, we take advantage of the recurrence property of the stochastic factor V in order
to provide an horizon as well as a terminal condition to the problem of simulating the solution of an
ergodic BSDE. In the case of ergodic BSDEs derived from forward utilities, an initial condition Y0 is
naturally given since the initial agent’s utility u0 is known. This allows to introduce a random horizon
τ to the ergodic BSDE when V is one dimensional, defined as a return time the diffusion V to V0.
Under the dissipativity assumption, this stopping time is almost surely finite and Yτ = Y0. Then the
solution of the ergodic BSDE (0.1) is also solution of an ‘ergodic’ BSDE with random terminal time
τ and fixed initial condition. Under additional integrability assumptions on τ , we actually prove that
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it is the only solution of the ‘ergodic’ BSDE with random terminal time, using uniqueness result from
[34] and the fact that the unknown λ is uniquely determined by the fixed initial.

This new representation of ergodic BSDEs is particularly useful in order to design numerical
schemes. When the driver F is linear in Z, the representation result for linear BSDE leads to a
semi-explicit representation of the solution as well as a new characterization of the ergodic cost λ,
depending on the random horizon τ . This can be applied to obtained an expression for the ergodic
cost linked with exponential forward utilities when there is no constraint on the portfolio. By applying
the Cole-Hopf transform, this last result can be extended for purely quadratic drivers, as it is the case
for power utility with no constraints on the portfolio. For these examples, regression and Monte Carlo
methods can be used to simulate the solution of the associated ergodic BSDEs.

For the approximation, we introduce the Euler discretizaion of the stochastic factor V and the
associated estimation of the horizon time τ . Results from [4] related to the Euler estimation of the
exit time of a diffusion from a smooth domain apply in our setting and provide a bound on the error in
L1 of the approximation error on τ . We then present a backward scheme for ergodic BSDE using the
correspondence with BSDE with random terminal time (see e.g [3], [5]) and establish a bound for the
related discrete-time approximation error in terms of the quantities R(Z)πH2 ,

∣∣λ− λ̄
∣∣ and E[|τ − τ̄ |].

Compared to [5], the error bound does not depend on R(Y )πS2 since the generator of ergodic BSDEs
we consider is independent of y. However, we get an additional term depending on the estimation of
the ergodic cost λ.

We also present two deep-learning based methods for the simulation of ergodic BSDEs, which allow
to tackle simultaneously the approximation of the ergodic cost λ and the usual unknown processes Y
and Z. In the context of ergodic BSDEs, the initial value Y0 is known and will thus not be learned.
We use a forward a discretization starting from Y0 = y0, and instead approximate λ as a trainable
parameter of the model. We first present a global solver denoted GeBSDE, approximating Z with
one neural network common across all time steps. The optimization is performed according to a loss
function at the random horizon τ , the output aiming to match the terminal value Yτ = Y0. We then
present a second algorithm denoted LAeBSDE, based on a local approach, approximating Y and Z

with two distinct neural networks. The optimization is then performed according to the aggregation of
local loss functions at each time steps. We provide some numerical tests to evaluate the performance
of both algorithms. We investigate two examples with explicit solutions, taken from [22], and two
examples adapted from [27], with a driver representing power forward utilities. In the latter case, our
algorithm also allows the simulation of the optimal strategy.

The paper is organized as follows. In Section 1, we briefly recall the stochastic factor model of [27],
as well as the class of homothetic forward utilities and their link with ergodic BSDEs. In Section 2,
we show some recurrence properties of the stochastic factor V , and then introduce the ergodic BSDE
with random terminal time τ , with fixed initial and terminal condition. We show that the solutions of
such equation coincides with the Markovian solution of the ergodic BSDE. Using this representation,
we first study in Section 3 a backward discretization and the associated error estimate. Finally we
present the deep-learning algorithms for ergodic BSDE and gather our numerical results in Section 4.
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Notations:
All stochastic processes in the sequel are defined on a standard probability space (Ω,F,F ,P), where
the filtration F = (Ft)t≥0 is the natural filtration generated by a d-dimensional Brownian motion W ,
and is assumed right continuous and complete. For x ∈ Rd, we denote x⊤ the transpose of vector x,
∥.∥ the usual norm ∥x∥ = Tr(xx⊤)

1
2 and dist(x,Π) the distance function of x to a closed convex subset

Π ⊂ Rd. We denote L2 the space of square integrable random variables and also introduce the usual
space of solution for γ ∈ R and τ a F stopping time:

S2(γ, τ) =

{
(φt)t≥0, real valued progressively measurable process s.t. E

[
sup

0≤s≤τ
eγs|φs|2

]
<∞.

}

1 Forward utilities and ergodic BSDEs

The aim of this paper is to investigate the numerical approximation of different classes of time consistent
homothetic forward (or dynamic) utilities, as introduced in [27], which allow the modelling of an agent’s
dynamic preferences as she invests in a stochastic factor financial market.
We start this section by introducing the setting and some useful results of [27]. In particular, we
are interested in the representation of consistent homothetic forward utilities involving the unique
Markovian solution of some ergodic BSDEs. This representation motivates our study of numerical
approximations for ergodic BSDEs.

1.1 Consistent dynamic utilities and link with ergodic BSDEs

Forward utilities generalize the notion of utility function. Formally, a dynamic utility U = (t, x, ω) ∈
R+ × R+ × Ω → R is a collection of random utility functions such that:

- For all t ≥ 0, for all x ∈ R+, U(t, x) is Ft-measurable.

- The functions x ∈ R+ 7→ U(t, x, ω) are nonnegative, strictly concave increasing functions of class
C2 on ]0,∞[, (ω, t) a.s.

- u0 := U(0, ·) is a standard (deterministic) utility function.

Homothetic forward utilities, introduced in [27], are functions of the agent’s wealth x and are
characterized by one of the following forward utilities:

- Logarithmic case U(t, x) = ln(x) + f(Vt, t), (1.1)

- Exponential case U(t, x) = −e−γx+f(Vt,t), γ ∈ (0, 1), (1.2)

- Power case U(t, x) =
xδ

δ
ef(Vt,t), δ ∈ (0, 1), (1.3)

where f is a deterministic function that will be specified hereafter, and V is a d′-dimensional diffusion
process with local characteristics µ : Rd′ → Rd′ and constant volatility matrix κ defined as:

dV i
t = µi(Vt)dt+

d∑
j=1

κijdW j
t , V i

0 ∈ R. (1.4)
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The agent invests in an incomplete market consisting in one riskless bond and n stocks. Assuming
the numeraire to be the bond, the stock prices dynamics discounted by the interest rate are given for
i = 1, ..., n, by:

dSi
t = Si

t

bi(Vt)dt+ d∑
j=1

σij(Vt)dW
j
t

, (1.5)

where the local characteristics are driven by the d′-dimensional stochastic factor V given by (1.4), and
verify the following assumption:

Assumption 1.1. 1. The functions b = (bi)1≤i≤n and σ = (σij) 1≤i≤n
1≤j≤d

are uniformly bounded and

for all v ∈ Rd′ , the matrix σ(v) has full row rank n.

2. The risk premium vector θ = σ⊤(σσ⊤)−1b is a uniformly bounded and Lipschitz continuous
function.

The agent invests a proportion π̄ =
(
π̄1, ..., π̄n

)⊤ of her wealth Xπ in the the n risky assets. For
an initial value Xπ

0 = x0 ∈ R+, assuming the self-financing condition holds and rescaling the strategy
vector by the volatility, the dynamic of the wealth process X can be written as:

dXπ
t = Xπ

t πt · (θ(Vt)dt+ dWt), πt = σ(Vt)
⊤π̄t ∈ Rd. (1.6)

For each t ≥ 0, the strategy (πt)t≥0 is assumed to be in a closed and convex set Π ⊂ Rd. Admissible
strategies are also required to be BMO. We refer to [27] for further details.

Remark 1.1. For exponential performance process, it is more convenient to use the discounted amount
of wealth invested in the stock αt = Xπ

t πt as control variable, leading to the following wealth process
dynamics:

dXα
t = α⊤

t (θ(Vt)dt+ dWt). (1.7)

A forward utility is said to be consistent if it is a supermartingale along the wealth process for any
admissible control π and a martingale along the optimal wealth process. The optimal strategy thus
gives maximal satisfaction to the agent, which is preserved at all times in the future. This additional
time consistency property makes the notion of forward utilities coherent with the dynamic programming
principle.

Definition 1.1 (Consistent dynamic utility / forward utility). A forward utility is a dynamic utility
U satisfying the time consistency property:

- For any admissible strategy π, U(t,Xπ
t ) is a supermartingale.

- There exists an admissible strategy π∗ such that U(t,Xπ∗
t ) is a martingale.

When U is an Itô-random field with sufficient regularity conditions on its local characteristics, El
Karoui and Mrad obtained in [15] a sufficient consistency condition of HJB type characterizing the
drift of consistent utilities, as well as the optimal strategy under this condition. In particular, U is
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solution of a non-linear HJB-SPDE under this sufficient assumption for consistency. In the case of
the homothetic forward utilities (1.1)-(1.3) with stochastic factor, the HJB-SPDE on U is equivalent
to a PDE for the deterministic function f (see [27]). As pointed out by the authors, the problem is
ill posed. However, a characterisation of f with mean of the Markovian solution of a related ergodic
BSDE is given in [27], which allows us to develop numerical schemes for homothetic dynamic utilities.

Homothetic forward utility and ergodic BSDE Informally, an ergodic BSDE with generator F
is a backward stochastic differential equation on an infinite horizon, whose solution is a triplet (Y,Z, λ)
where Y,Z are adapted processes and λ ∈ R, and satisfies for any T > 0, P-a.s for any 0 ≤ t ≤ T :

Yt = YT +

∫ T

t
F (Vs, Zs)ds− λ(T − t)−

∫ T

t
Z⊤
s dWs (1.8)

dV i
t = µi(Vt)dt+

d∑
j=1

κijdW j
t , V i

0 ∈ R, 1 ≤ i ≤ d
′
. (1.9)

This class of ergodic BDSE was first introduced in [16]. Existence and uniqueness results in our
framework are recalled in Section 1.2 below. Note that the infinite horizon is coherent with the
willingness to adapt dynamically the utility as time passes.

Let us introduce the generators associated with the different homothetic dynamic utilities defined
in (1.1), (1.2), (1.3).

- Logarithmic case: for v ∈ Rd′ :

Flog(v) = −1

2
dist2 (Π, θ(v)) +

1

2
∥θ(v)∥2. (1.10)

- Exponential case: for (v, z) ∈ Rd′ × Rd:

Fexp(v, z) =
1

2
γ2 dist2

(
Π,

z + θ(v)

γ

)
− 1

2
∥z + θ(v)∥2 + 1

2
∥z∥2. (1.11)

- Power case: for (v, z) ∈ Rd′ × Rd:

F δ(v, z) =
δ(δ − 1)

2
dist2

(
Π,

θ(v) + z

1− δ

)
+

δ

2(1− δ)
∥θ(v) + z∥2 + 1

2
∥z∥2, (1.12)

Provided that equation (1.8) with one of the above generator admits a Markovian solution (y(Vt), z(Vt), λ)t≥0,
one can show using Ito’s formula that the homothetic forward utilities U defined by (1.1)-(1.3), with

f(v, t) = y(v)− λt,

are time consistent homothetic dynamic utilities, as defined in Definition 1.1. We summarize these
results in the following proposition, while existence and uniqueness results of Markovian solutions to
(1.8) are recalled the next section.

Proposition 1.1 (Theorem 3.2 and 4.2, [27]). Let (y(Vt), z(Vt), λ)t≥0 be a Markovian solution of the
ergodic BSDE (1.8) with driver F given by (1.10) (resp. (1.11), (1.12)).
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Then, the associated logarithmic (resp. exponential, power) forward utility U (1.1) (resp. (1.2), (1.3))
with f(., t) = y(.)− λt is consistent. Furthermore, the optimal strategy is given by:

Logarithmic case π∗t = ProjΠ
(
θ(Vt)

)
. (1.13)

Exponential case α∗
t = ProjΠ

(z(Vt) + θ(Vt)

γ

)
. (1.14)

Power case π∗t = ProjΠ
(z(Vt) + θ(Vt)

1− δ

)
. (1.15)

Motivated by this representation, the aim of this paper is to propose numerical methods for the
simulation of Markovian solutions of ergodic BSDEs that allow us to approximate utilities ((1.1)-(1.3))
and their optimal strategies. We actually study a larger class of ergodic BSDE, introduced below.

1.2 Markovian solution of ergodic BSDEs

Ergodic BSDEs have first been studied in [16] under a dissipativity assumption on the stochastic factor
V to solve an ergodic stochastic control problem. The assumption on the stochastic factor have been
relaxed in [10] with a weak dissipative condition and in [22] for non constant and possibly unbounded
volatility. Ergodic BSDEs are usually studied under Lipschitz condition on the generator F . When the
stochastic factor’s volatility is constant, the component Z of the solution to the eBSDE is bounded,
which allows the driver to only be locally Lipschitz in z. We will work within the framework of [27] with
a stochastic factor satisfying a strong dissipativity assumption and constant volatility. This framework
leads to the existence of a Markovian solution to the ergodic BSDE (1.8) such that Z is bounded, and
thus allows the generator to have quadratic growth in z.

Assumption 1.2. There exists a constant Cµ > 0 such that for any v, v̄ ∈ Rd:

(µ(v)− µ(v̄))⊤(v − v̄) ≤ −Cµ∥v − v̄∥2. (1.16)

The volatility matrix κ = (κij)1≤i≤d′
1≤j≤d

is such that κκ⊤ is positive definite.

Under Assumption 1.2, from a direct application of Gronwall’s lemma, the diffusion V is exponen-
tially ergodic. The authors in [22] generalized this result under a weak dissipative assumption. This
properties are essential for the correspondence with random time horizon BSDE and the algorithm we
present in the sequel.

Assumption 1.3. • There exists a positive constant K such that ∀v ∈ Rd′, |F (v, 0)| ≤ K.

• There exists positive constants Cv and Cz such that ∀v, v̄ ∈ Rd′, ∀z, z̄ ∈ Rd:

|F (v, z)− F (v̄, z)| ≤ Cv(1 + ∥z∥)∥v − v̄∥, (1.17)

|F (v, z)− F (v, z̄)| ≤ Cz(1 + ∥z∥+ ∥z̄∥)∥z − z̄∥. (1.18)

Moreover, we require that Cv < Cµ.

Note that under Assumption 1.1 indicating that the market price of risk θ is bounded and Lip-
schitz, every generator (1.10), (1.11) and (1.12) introduced in the previous section satisfy the above
assumption. We recall the existence result for eBSDE studied in [27].
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Proposition 1.2 (Existence - [27]). Under Assumption 1.2 and 1.3, the ergodic BSDE (1.8) admits
a Markovian solution (y(Vt), z(Vt), λ)t≥0 such that y(.) is sub-linear and z(.) is bounded by Zmax =

∥κ∥ Cv

Cµ − Cv
.

Assumptions 1.2 and 1.3 thus provide the existence of a Markovian solution (y(Vt), z(Vt), λ)t≥0

to (1.8) where z(.) is bounded, which is particularly convenient to apply our work to ergodic BSDE
with quadratic driver F as for example to simulate exponential and power dynamic utilities. In fact,
working with the truncated driver F ◦ φZmax where φZmax is the projection on the centered ball of Rd

of radius Zmax, the application F ◦ φZmax is then Lispchitz in v and z, namely:

|F ◦ φZmax(v, z)− F ◦ φZmax(v̄, z)| ≤ Cv(1 + Zmax)∥v − v̄∥, (1.19)

|F ◦ φZmax(v, z)− F ◦ φZmax(v, z̄)| ≤ Cz(1 + 2Zmax)∥z − z̄∥. (1.20)

The uniqueness of the Markovian solution to (1.8) is usually stated up to a constant, by fixing one
point of the solution, typically y(0) = 0. The proof follows the arguments from [10] and [16] when the
driver is Lipschitz.

Theorem 1.3. [Uniqueness - [27]] Assume that Assumptions 1.2 and 1.3 hold true. Let (y, z), (ỹ, z̃),
two couple of functions such that:

• y and ỹ : Rd → R are continuous, sub-linear and y(0) = ỹ(0).

• z and z̃ : Rd → (Rd)∗ are measurable and bounded by Zmax.

Also assume that for some constants λ, λ̃ and for all v ∈ Rd′, the triplets (y(V v
t ), z(V

v
t ), λ)t≥0 and(

ỹ(V v
t ), z̃(V

v
t ), λ̃

)
t≥0

satisfy the ergodic BSDE (1.8).

Then λ = λ̃, y(V v
t ) = ỹ(V v

t ) and z(V v
t ) = z̃(V v

t ) P-a.s and for a.e t ≥ 0.

Initial condition In the case of ergodic BSDEs derived from forward utilities, an initial condition
Y0 = y0 for the process Y is naturally fixed since the initial agent’s utility and wealth u0(x0) is known.
For instance in the case of power dynamic utilities (1.3), we have

y0 = log(δu0(x0))− δ log(x0).

We are thus interested in solutions of the ergodic BSDE (1.8) with fixed initial condition:

Yt = YT +

∫ T

t
F (Vs, Zs)ds− λ(T − t)−

∫ T

t
Z⊤
s dWs, ∀ 0 ≤ t ≤ T.

Y0 = y0. (1.21)

Using notations of Theorem 1.3, let (y(Vt), z(Vt), λ)t≥0 be the unique solution of (1.8), such that
y(0) = 0. Then, (Y, Z, λ), with

Yt = y(Vt) + y0 − y(V0), Zt = z(Vt) ∀ t ≥ 0, (1.22)

is a solution of (1.21). Note that the solution is not Markovian anymore, since Y depend on the
stochastic factor initial condition V0. In the following, we define the unique solution of the ergodic
BSDE (1.21) with fixed initial condition as the triplet (Y, Z, λ)t≥0, with (Y,Z) verifying (1.22). With
some abuse of language, with sometimes refer to this solution as the unique "Markovian" solution.
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2 Connection with BSDE with random terminal time

Simulating the ergodic BSDE (1.21) presents several additional challenges, in comparison with the
simulation of standard BSDEs with finite time horizons. In particular:

1. There is an additional unknown λ ∈ R, which controls the time growth of the component Y .

2. It is an infinite horizon backward stochastic differential equation, which means that the equality

Yt = YT +

∫ T

t
(F (Vs, Zs)− λ)ds−

∫ T

t
Z⊤
s dWs,

for any T > 0, for all 0 ≤ t ≤ T. Thus, there is no known terminal condition YTH
as in usual

numerical schemes for BSDEs with backward time discretization.

However, we may take advantage of recurrence properties of the stochastic factor V to establish a
connection between the ergodic BSDE and a BSDE with random terminal time, thus introducing a
terminal condition. More precisely, when the stochatic factor V is one dimensional (d′ = 1), knowing
the initial condition Y0 of the ergodic BSDE allows us to introduce an analogous “ergodic BSDE with
random time horizon” τ . The infinite time horizon is replaced by τ , the first return time after a minimal
horizon TH of the diffusion V to the initial point V0. With this choice of random terminal time, the
associated BSDE with random horizon has a known terminal condition Yτ = Y0, and hence can be
approximated numerically.

2.1 First return time of the stochastic factor V

Unless stated otherwise, we assume in the following that the stochastic factor V is one dimensional
(d′ = 1). Let us fix a minimal horizon TH and start with some properties of the first return time after
TH of the diffusion V to its initial value denoted by v0 ∈ R:

τ = inf {t > TH , Vt = v0}. (2.1)

We require that the hitting time τ to have some exponential integrability properties in order to study
the “ergodic BSDE with random horizon" introduced in the next section. Theorem 1.1 in [28] provides
sufficient conditions for exponential integrability of hitting time for continuous Markov processes. More
precisely, the authors obtain a lower bound for the greatest order of exponential moment of τ in terms
of the scale function and the speed measure, uniformly with respect to the initial condition. We adapt
this result to our framework:

Lemma 2.1. Let s(x) = exp

(
−2

∫ x

0

µ(u)

∥κ∥2
du

)
, and

B+
v0 := sup

x≥v0

(∫ x

v0

s(u)du

∫ +∞

x

2

∥κ∥2s(u)
du

)
, (2.2)

B−
v0 := sup

x≤v0

(∫ v0

x
s(u)du

∫ x

−∞

2

∥κ∥2s(u)
du

)
. (2.3)

Denoting Kz = Cz(1+2Zmax) the Lipschitz constant with respect to z of the truncated driver F ◦ϕZmax

given in (1.20), assume that K2
z <

1

4max
(
B−

v0 , B
+
v0

) . Then, ∃ γ > K2
z such that

E[exp(γτ)] <∞. (2.4)

10



Proof. Let λ ≤ 1

4max
(
B−

v0 , B
+
v0

) , and µ the unique invariant measure of V . Recall that τ ≥ TH , and

let W (v) = E[exp(λτ)|VTH
= v]. By the Markov property,

E[exp(λτ)] = E[W (VTH
)].

First, by Theorem 1.1 in [28], we have

W (v) <∞, ∀ v ∈ R,

and equivalently, µ(W )

∫ +∞

−∞
W (v)µ(dv) <∞ (see e.g. Proposition 1.2 in [28]).

It remains to prove that E[W (VTH
)] < ∞. Since the diffusion coefficient of the stochastic factor V

is constant, V is a uniformly elliptic diffusion, and it follows that W is Lyapunov function for the
diffusion V (see e.g. Theorem 2.3 in [6]).
Using similar arguments as in the proof of Theorem 7 in [22], the hypothesis of Theorem A.2 in [37]
are verified, with V =W . By applying the result to f =W , we obtain that:

E[W (VTH
)] ≤ |E[W (VTH

)]− µ(W )|+ µ(W )

≤ 2Be−rTH + µ(W ) <∞.

Remark 2.1. In higher dimensions, results on positive recurrence of continuous time Markov chain
associated to a stochastic differential equation stands for hitting time of any non empty open set in
Rd. Working with τ ϵ the first hitting time of the Euclidean ball of Rd of center v0 and radius ϵ, we
may only expect the value y(Vτϵ) to be close to y(v0), by continuity of the Markovian solution y. We
can thus only hope to obtain an approximation of the solution of the ergodic BSDE, by investigating
stability results for ergodic BSDE with perturbed terminal condition. This is left for future work.

2.2 BSDE with random terminal time

Under Assumptions 1.2 and 1.3, there exists a unique solution (y(Vt) + y0 − y(V0), z(Vt), λ)t≥0 to the
ergodic BSDE (1.21) such that Y0 = y0, y is sub-linear with respect to v, and z is bounded by Zmax. By
construction, (Yt, Zt, λ)t≥0 is also solution of the following “ergodic" BSDE with random time horizon
and fixed initial condition:

Y r
t = Y r

τ +

∫ τ

t
F (Vs, Z

r
s )ds− λ(τ − t)−

∫ τ

t
Zr⊤
s dWs, (2.5)

Y r
τ = Y r

0 = y0,

with τ the return time defined in (2.1).
Reciprocally, solutions (Y r, Zr, λ) of (2.5) can be studied directly. Theorem 2.2 provides sufficient

conditions, under which solutions of (2.5) coincides with the solution of the ergodic BSDE (1.21). The
setting is slightly different from usual BSDEs with random time horizon, since we have an additional
unknown λ ∈ R and both the terminal and initial conditions are fixed. However, we can show that this
constant is uniquely determined by the fixed initial and terminal conditions Y r

τ = Y r
0 = y0. Once λ

11



is known, the uniqueness of the solution to this BSDE with generator F (v, z)− λ can be obtained as
a consequence of standard results for BSDEs with random terminal time. We apply here the general
result Theorem 3.2 from [34], which requires integrability conditions for the stopping time τ .

Theorem 2.2. Assume that Assumption 1.2 and 1.3 are verified and that K2
z <

1

4max
(
B−

v0 , B
+
v0

) .
Then, the ergodic BSDE with random time horizon (2.5) and fixed initial condition admits a unique

solution (Y,Z, λ), such that Y ∈ S2(γ, τ) for all K2
z < γ ≤ 1

4max(B−
v0 , B

+
v0)

and Z is bounded.

In particular, (Y,Z, λ) coincides on [0, τ ] with the unique solution (y(Vt) + y0 − y(V0), z(Vt), λ)t≥0 of
the ergodic BSDE (1.21) such that Y0 = y0, y is sub-linear, and z is bounded.

Proof. The proof is done in three steps. First we show that the existence of such a solution to (2.5) is
obtained straightforwardly from the existence of a solution to the eBSDE (1.21). Secondly, we show
the uniqueness of the parameter λ, using a linearisation technique. The uniqueness of (Y,Z) is then
obtained by applying Theorem 3.2 from [34].
Existence - By construction, the unique solution (y(Vt)−y0+y(V0), z(Vt), λ)t≥0 of the ergodic BSDE
(1.21) is also solution of the BSDE with random terminal time (2.5). By construction, Z is bounded
by Zmax and thanks to Theorem 3.2 in [34] we deduce that Y ∈ S2(γ, τ) .
Uniqueness of λ - Let (Y r, Zr, λ) and (Ȳ r, Z̄r, λ̄) be two solutions of the ergodic BSDE with random
terminal time (2.5) such that Zr and Z̄r are bounded. Denote ∆Yt = Y r

t − Ȳ r
t , ∆Zt = Zr

t − Z̄r
t and

∆λ = λ− λ̄. The initial and terminal values of those two solution being equal to y0, ∆Y r
0 = ∆Y r

τ = 0.

Let T > 0. The difference between those two equations between 0 and T ∧ τ thus leads:

(T ∧ τ)∆λ = ∆YT∧τ +

∫ T∧τ

0
∆Z⊤

s (γsds− dWs), (2.6)

where γs =


F (Vs, Z

r
s )− F (Vs, Zr

s )∣∣Zr
s − Zr

s

∣∣2 (
Zr
s − Zr

s

)
if
∣∣Zr

s − Zr
s

∣∣ ̸= 0

0 otherwise,

(2.7)

Since Zr and Z̄r are bounded and by Assumption (1.3), the process γ is bounded. Then according to the
Girsanov Theorem, there exists a probability measure P̃ under which the process W̄t = −

∫ t
0 γsds+Wt,

is a Brownian motion. The stopped process Mt∧T :=
∫ t∧T
0 ∆Z⊤

s dW̄s is a martingale under P̃ so that
taking expectation of (2.6) leads:

Ẽ[(T ∧ τ)∆λ] = Ẽ[∆YT∧τ ] = Ẽ[∆Yτ1τ≤T ] + Ẽ[∆YT1τ>T ].

The first expectation on the right is zero since ∆Yτ = 0, by definition of the stopping time τ . For the
second term, using the sub-linearity property of Y and Ȳ :

Ẽ[∆YT1τ>T ] ≤ Ẽ
[
∆Y 2

T

]
P̃(τ > T )

≤ C(1 + Ẽ
[
|VT |2

]
)P̃(τ > T ). (2.8)

By Proposition 5 in [22], sup
T≥0

Ẽ
[
|VT |2

]
<∞. Moreover, τ is almost surely finite under P so that is also

almost surely finite under the equivalent probability measure P̃. Then, taking the limit of (2.8) as T
goes to infinity leads ∆λ = 0. Hence, ∆λ = 0 and the component λ of the solution of (2.5) is thus
necessarily equal to the λ solution of the ergodic BSDE (1.21).
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Uniqueness - Consider the BSDE with random terminal time τ , terminal condition Y r
τ = y0 and

generator F ◦ϕZmax(v, z)−λ, where λ is fixed. The uniqueness can be obtained applying Theorem 3.1

in [34].

The solution of the ergodic BSDE (1.21) thus coincides with the solution (Y r, Zr, λ) of the ergodic
BSDE with random time horizon and fixed initial condition (2.5) on [0, τ ]. We will omit the subscript
r in the sequel. This point of view provides our simulation problem with a random horizon τ and
a terminal condition Yτ = y0. This allows us to adapt to our framework numerical schemes for the
simulation of BSDEs with random time horizon, such as those introduced in [3] and [5] (see Section
3). Furthermore, using this representation of the ergodic BSDE, a new representation of the ergodic
cost λ can be obtained under some additional assumption of the driver F .

2.3 Characterization of the ergodic cost λ for a class of eBSDEs

The ergodic cost λ can be interpreted in several ways. As mentioned in [27], it is the long term growth

rate of a risk sensitive control problem. It can also be estimated by
Y T
0

T
when T → ∞, with Y T

0 the
initial value of the solution of a BSDE with finite horizon T (Theorem 21 in [22]). However, numerical
schemes for the simulation of BSDEs are known to be unstable for large horizon, which can lead to
asignificant error when using this approach to approximate λ.

The viewpoint of ergodic BSDE up to a random horizon, with fixed initial and terminal values offers
a new characterization of the ergodic cost λ. In fact, considering it as a parameter in the generator of
a classical BSDE with random terminal time, it can be understand as the solution of an optimization
problem on the initial value y0. This is also the idea behind the deep-learning algorithms we present
in Section 4. The adaptation of Proposition 1.3 from [12] for linear BSDEs leads to a semi-explicit
expression of the solution of (2.5) as well as an expression of the ergodic cost λ as the ratio of two
expectations that can be computed numerically. We investigate separately the case of linear ergodic
BSDEs, and the one of ergodic BSDE with purely quadratic generator which first requires to apply
the Cole-Hopf transform.

Let’s first consider a random time horizon ergodic BSDE as (2.5) with driver F only depending on
the stochastic factor V . This is the framework for the representation of logarithmic dynamic utilities
(1.1), associated with driver F defined by (1.10). When F does not depend on z, taking the conditional
expectation of (2.5) with respect to Ft, and evaluating this expression at time 0, together with the
fixed initial condition Y0 = y0 leads to the following characterization of the ergodic cost.

Lemma 2.3. Let (Y,Z, λ) be the unique solution of equation (2.5), as defined in Theorem 2.2, and
with a driver F only depending on V . Then the ergodic cost λ admits the following representation:

λ =
E
[∫ τ

0 F (Vs)ds
]

E[τ ]
. (2.9)

Exponential forward utility without constraints When there are no constraints on the portfolio
that is Π = Rd, the driver Fexp defined by (1.11) and associated with exponential utilities, is linear in
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z and given by:

Fexp(v, z) = −θ(v)⊤z − 1

2
∥θ(v)∥2. (2.10)

The representation result for linear BSDEs can be adapted to our framework in order to obtain a
representation of the ergodic cost in this case. Note that the following result can be generalized to any
linear generator F .

Proposition 2.4. Assuming there are no constraint on the portfolio, the unique solution of the ergodic
BSDE with random terminal time (2.5), as defined in Theorem 2.2, and with generator Fexp given by
(1.11) is given for all t ≥ 0 by:

Yt = E

[
y0Γt,τ −

∫ τ

t
Γt,s

(
1

2
∥θ(Vs)∥2 + λ

)
ds|Ft

]
, a.s, (2.11)

where:

dΓt,s = −Γt,sθ(Vs)
⊤dWs (2.12)

Γt,t = 1.

The ergodic cost λ satisfies:

λ =
1

E
[∫ τ

0 Γ0,sds
](E

[
y0Γ0,τ −

1

2

∫ τ

0
Γ0,s∥θ(Vs)∥2ds

]
− y0

)
. (2.13)

Proof. The representation theorem for linear BSDEs ([12]) can be extended to BSDE with random
terminal time. Consider (Y, Z) the unique Markovian solution to (2.5) in the sense of Theorem 2.2
and define the stopped process (M τ

s )s≥t as:

M τ
s = Ys∧τΓt,s∧τ −

1

2

∫ s∧τ

t
Γt,u

(
∥θ(Vu)∥2 + λ

)
du. (2.14)

An application of Ito’s formula to the product Ys∧τΓt,s∧τ shows that (M τ
s )s≥t is a local martingale.

Moreover, sup
0≤s≤τ

Ys∧τ and sup
0≤s≤τ

Γt,s∧τ belong to L2 so that the product sup
0≤s≤τ

Ys∧τ × sup
0≤s≤τ

Γt,s∧τ is

integrable. The martingale (M τ
s )s≥t is thus uniformly integrable, and its value at time t equals the

conditional expectation of its terminal value with respect to Ft, from which follows (2.11).
The true value of λ to recover the solution to the ergodic BSDE with random time horizon (2.5)

with generator Fexp is then uniquely determined from the initial condition Y0 = y0. Evaluating (2.11)
at time t = 0 leads to the ergodic cost (2.13), which concludes the proof.

Power forward utility without constraints For ergodic BSDEs with random terminal time and
quadratic generator of the following form:

F (v, z) = l(v) + a(v)⊤z +
β

2
∥z∥2, (2.15)

the Cole-Hopf transform can be used to come back to the linear case to provide a representation of the
ergodic cost.
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Proposition 2.5. Consider the ergodic BSDE with random terminal time (2.5) with generator F given
by (2.15) such that l and a are bounded. This equation admits a unique Markovian solution (y, z, λ)

such that y is sublinear, z is bounded and Y0 = y0, which is given for all t ≥ 0, by:

Yt =
1

β
lnE

[
eβy0Γt,τ |Ft

]
, a.s, (2.16)

where:

dΓt,s = Γt,s

(
β(l(Vs)− λ)ds+ a(Vs)

⊤dWs

)
Γt,t = 1.

Moreover, the ergodic cost λ is characterized as:

λ = argmin
λ∈R

|E[Γ0,τ ]− 1|. (2.17)

Proof. Let’s consider (Y,Z, λ) the solution of the ergodic BSDE with generator F given by (2.15) such
that Yt = y(Vt) + y0 − y(V0), with y is sublinear and y(0) = 0, and Z is bounded. Let Ps = eβYs and
Qs = βPsZs. An application of Ito formula leads to:

Pt = Pτ +

∫ τ

t

[
βPs(l(Vs)− λ) + a(Vs)

⊤Qs

]
ds−

∫ τ

t
Q⊤

s dWs. (2.18)

For any fixed λ ∈ R, similarly as in the proof of Proposition 2.4, the representation theorem for linear
BSDEs ensures that the above equation with terminal condition Pτ = eβy0 admits a unique solution
(P,Q) ∈ S2(γ, τ)×H2(γ, τ), such that for all t ≥ 0,

Pt = E
[
eβy0Γt,τ |Ft

]
, a.s, (2.19)

where:

dΓt,s = Γt,s

(
β(l(Vs)− λ)ds+ a(Vs)

⊤dWs

)
Γt,t = 1.

Equation (2.19) at time zero leads E[Γ0,τ ] = 1. The map λ 7→ E[Γ0,τ ] being strictly monotonic, the
ergodic cost λ is characterized as:

λ = argmin
λ∈R

|E[Γ0,τ ]− 1|. (2.20)

By construction, the ergodic cost verifies |λ| ≤ K with K given in Assumption 1.3 (see the proof
of Proposition 3.1 in [27]). Hence, the minimum in the above result must be reached in the interval
[−K,K]. Proposition 2.5 can be applied in order to obtain a representation for the ergodic cost λ in
the case of power forward utilities, with generator F given by (1.12) when there are no constraints on
the portfolio.
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Corollary 2.6. The unique Markovian solution to the ergodic BSDE with random time horizon (2.5)
with generator F given by:

F (Vt, Zt) =
1

2

δ

1− δ
∥Zt + θ(Vt)∥2 +

1

2
∥Zt∥2. (2.21)

is given for all t ≥ 0 by:

Yt = y0 + (1− δ) lnE[Γt,τ |Ft], a.s, (2.22)

where Γt,τ is the value in τ of the unique solution of the forward equation:

dΓt,s = Γt,s

(
1

1− δ
(

δ

2(1− δ)
∥θ(Vs)∥2 − λ)ds+

δ

1− δ
θ(Vs)

⊤dWs

)
(2.23)

Γt,t = 1.

Moreover, the ergodic cost λ satisfies:

λ = argmin
λ∈[−K,K]

|E[Γ0,τ (λ)]− 1| (2.24)

3 Approximation of the ergodic BSDE

In this section, we introduce the Euler approximation for the stochastic factor V , with the estimation
of the horizon time τ using this continuous approximation. We then present a backward scheme for
ergodic BSDE using the representation introduced in Section 2 and investigate the associated discrete-
time approximation error.

3.1 Euler scheme approximation of the stochastic factor

First, the integral form of the stochastic factor process (1.4) reads as:

Vt = v0 +

∫ t

0
µ(Vs)ds+

∫ t

0
κdWs, t ≥ 0. (3.1)

Consider a discretization of R+ with constant time step h, generating a grid π = {t0 = 0, t1, ... }. De-
noting ∆Wi =Wti+1−Wti the Brownian increments between times ti and ti+1, the Euler discretization
of V on the time grid π is given for all i ≥ 0:

V ti+1 = V ti + µ(V ti)h+ κ∆Wi, (3.2)

V 0 = v0.

In the sequel, we will consider the continuous Euler scheme associated to (3.2) on grid π, defined by:

Vt = v0 +

∫ t

0
µ(V s−)ds+

∫ t

0
κdWs, t ≥ 0, (3.3)

where s− = max {ti ∈ π, ti ≤ s}.
We approximate the stopping time τ from the continuous Euler approximation of V as:

τ = inf
{
t ≥ TH , V t = v0

}
. (3.4)
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This stopping time is well defined since the Euler discretization (Vt)t≥0 is also ergodic, see [36], [30].
The horizon τ̄ defined by (3.4) we consider can be written as an exit time of the diffusion of a smooth
domain. In fact:

τ̄ = inf
{
t ≥ TH , V t /∈ ]−∞, v0[

}
1VTH

<v0 + inf
{
t ≥ TH , V t /∈ ]v0,+∞[

}
1VTH

>v0 , Pa.s. (3.5)

Results from [4] and [29] related to the estimation of τ with an Euler scheme can be applied in our
setting. We recall the following result from Theorem 3.9 [4].

Proposition 3.1. Let Assumption 1.2 hold and assume that there exists 4 ≤ q < ∞ such that under
the notation of Lemma 2.1, q

q−16Cµ <
1

4B+ ∧ 1
4B− . Then there exists a constant C > 0 such that the

error in L1 of the approximation of the return time τ with the continuous Euler scheme is:

E[|τ − τ̄ |] ≤ Ch1/2. (3.6)

Proof. Let β ∈ R be such that q
q−16Cµ < β < 1

4B+ ∧ 1
4B− . Under this assumption, Lemma 2.1 ensures

that the random time τ admits exponential moment of order β. An application of Markov’s inequality
then gives, for any k ∈ N:

P(τ ≥ k) ≤ E
[
eβτ
]
e−βk. (3.7)

Theorem 3.9 from [4] applies and leads the desired result.

3.2 Discrete-time approximation error

In the following, we recall the usual time discretization of BSDEs, applied to the ergodic BSDE with
random time horizon (2.5). Consider a time discretization π = {0 = t0, t1, ...} of R+, with time step
h and the forward Euler scheme V for the stochastic factor V defined by (3.3). Let λ̄ denote an
approximation of the ergodic cost λ. It can be estimated either by a Monte Carlo approximation or
as a trainable parameter of the deep learning algorithm developped in the next section. Then starting
from Y τ̄ = y0, we define the discrete time process (Y , Z) on π, for i < τ̄

h :

Zti =
1

h
E
[
Y ti+1∆Wti |Fti

]
(3.8)

Y ti = E
[
Y ti+1 |Fti

]
+ 1ti≤τ̄h

[
F (V ti , Zti)− λ

]
, (3.9)

One can check under Assumption 1.2 that for all i, (Y ti , Zti) ∈ L2. Moreover, as the process Z is
bounded, we will equivalently work with a Lipschitz driver F ◦φZmax , where φZmax is the projection on
the centered ball of Rd of radius Zmax. As mentioned in [8], [2], this can leads to numerical difficulties
if this bound Zmax is too large.

For the following, it will be convenient to work with a continuous extension of Y in S2. This is
possible since from the martingale representation theorem, there exists a process Z̃ ∈ H2 such that:

Y ti+1 − E
[
Y ti+1 |Fti

]
=

∫ ti+1

ti

Z̃⊤
s dWs, (3.10)

which allows to consider the continuous extension of (Yti)i< τ̄
h

on [0, τ̄ ]:

Y t = Y τ̄ +

∫ τ̄

t
F (V s− , Zs−)ds− (τ̄ − t)λ−

∫ τ̄

t
Z̃⊤
s dWs. (3.11)
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Finally, we will also consider the best approximation in L2 of Z by a process constant on each time
interval [ti, ti+1], defined by:

Ẑti =
1

h
E

[∫ ti+1

ti

Zsds|Fti

]
. (3.12)

Remark 3.1. From Ito’s isometry and (3.10) we have for all i ≥ 0:

Zti =
1

h
E

[∫ ti+1

ti

Z̃sds|Fti

]
. (3.13)

Now, we will provide a bound for the square of the discrete time approximation error, up to a
stopping time θ:

Err(h)2θ = max
i

E

[
sup

t∈[ti,ti+1]
1t≤θ

∣∣Yt − Y ti

∣∣2]+ E

[∫ θ

0

∥∥Zt − Zt−
∥∥2dt], (3.14)

where t− = sup {s ∈ π, s ≤ t}. We will control this error through this error quantity:

R(Z)πH2 = E

[∫ τ

0

∥∥∥Zt − Ẑt−

∥∥∥2dt]. (3.15)

From now on, C denotes a generic constant whose value may change from line to line, which depends
on V0, Cv and Cz.

Remark 3.2. 1. Let θ be an Ft stopping time in the grid π. We will control the error term

E

[∫ θ
0

∥∥∥Zs − Z̃s

∥∥∥2ds] which will provide the desired bound on Err(h). In fact, using Jensen’s

inequality, one can show (see [5]) that for any stopping time θ in the time grid π:

E

[∫ θ

0

∥∥Zs − Zs−
∥∥2ds] ≤ C

(
E

[∫ θ

0

∥∥∥Zs − Z̃s

∥∥∥2ds]+ E

[∫ θ

0

∥∥∥Zs − Ẑs−

∥∥∥2ds]). (3.16)

2. We can adapt the proof of Theorem 3.2 in [3] to the case of unbounded time horizon to show
that

R(Z)πH2 ≤ Ch. (3.17)

In fact, this bound can be obtained for any stopping time τ ∧T , then thanks to the boundedness
of Z, we can pass to the limit in T to deduce (3.17).

Controlling the above error implies that we control the error in S2 × H2 of the discrete time
approximation (Y ti , Zti) for all i. We provide a bound for the discretization error of a backward
scheme for ergodic BSDE in terms of the quantities R(Z)πH2 ,

∣∣λ− λ̄
∣∣ and |τ − τ̄ |. We refer to [5],

whose results apply for our stopping time τ .

Proposition 3.2. Suppose that Assumption 1.2 and 1.3 are verified. Also assume that the condition
of Proposition 3.1 is satisfied and that K2

z <
1

4max
(
B−

v0 , B
+
v0

) . Then there exist a constant C > 0

such that:

Err(h)2τ∨τ̄ ≤ Err(h)2τ+∨τ̄+ ≤ C
(
h1/2 +

∣∣λ− λ̄
∣∣2) . (3.18)

where τ+ is the next time after τ in the grid π: τ+ := inf{t ∈ π : τ ≤ t}.
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Additionally to the usual spatial error for discretization scheme for finite horizon BSDE, we get
here a term related to the estimation of the return time τ with the Euler approximation V as well as
an error term related to the estimation of the ergodic constant λ.

Proof. We follow the arguments described in [5], and add the error term specific to our ergodic equation∣∣λ− λ̄
∣∣ in the calculation. Let θ be an Ft stopping time in the grid π. Applying Ito’s lemma to (Y −Y )2

between t ∧ θ and ti+1 ∧ θ, for a time t ∈ [ti, ti+1]:

Err
ti+1∧θ
t∧θ := E

[∣∣Yt∧θ − Y t∧θ
∣∣2 + ∫ ti+1∧θ

t∧θ

∥∥∥Zs − Z̃s

∥∥∥2ds]
= E

[∣∣Yti+1∧θ − Y ti+1∧θ
∣∣2]+ E

[
2

∫ ti+1∧θ

t∧θ
(Ys − Y s)(1s<τ (F (Vs, Zs)− λ)− 1s<τ̄ (F (V s− , Zs−) + λ̄))ds

]
= E

[∣∣Yti+1∧θ − Y ti+1∧θ
∣∣2]+ E

[
2

∫ ti+1∧θ

t∧θ
(Ys − Y s)1s≤τ̄ (F (Vs, Zs)− λ− F (V̄s− , Z̄s−) + λ̄)ds

]
+E

[
2

∫ ti+1∧θ

t∧θ
(Ys − Y s)(1s≤τ − 1s≤τ̄ )(F (Vs, Zs)− λ)ds

]
(3.19)

Using the inequality 2ab ≤ αa2 + 1
αb

2 for a α > 0 to be chosen later, we get:

Err
ti+1∧θ
t∧θ ≤ E

[∣∣Yti+1∧θ − Y ti+1∧θ
∣∣2]+ αE

[∫ ti+1∧θ

t∧θ

∣∣Ys − Y s

∣∣2ds]
+
2

α
E

[∫ ti+1∧θ

t∧θ
1s<τ̄ (F (Vs, Zs)− F (V s− , Zs−))

2ds

]
+

2

α
E

[∫ ti+1∧θ

t∧θ
1s<τ̄

∣∣λ− λ̄
∣∣2ds]

+
2

α
E

[∫ ti+1∧θ

t∧θ
1τ≤s<τ̄ (F (Vs, Zs)− λ)2ds+

∫ ti+1∧θ

t∧θ
1τ̄≤s<τ (F (Vs, Zs)− λ)2ds

]
.

On the event {s > τ}, we have Ys = Yτ so that Zs = 0. Then, using the Lipschitz properties of the
driver F (1.19), (1.20), the boundness of Z, Remark 3.2 and result on the Euler approximation of V
we obtain:

Err
ti+1∧θ
t∧θ ≤ E

[∣∣Yti+1∧θ − Y ti+1∧θ
∣∣2]+ αE

[∫ ti+1∧θ

t∧θ

∣∣Ys − Y s

∣∣2ds]
+
C

α
E

[∫ ti+1∧θ∧τ̄

t∧θ

(
h+

∥∥∥Zs − Ẑs−

∥∥∥2 + ∥∥∥Zs − Z̃s

∥∥∥2)ds]
+
C

α
E

[∫ ti+1∧θ

t∧θ
1τ≤s≤τ̄K

2 + 1τ̄≤s≤τZ
2
max + 1τ∧τ̄≤s≤τ∨τ̄λ

2ds

]
+
2

α
E

[∫ ti+1∧θ∧τ̄

t∧θ

∣∣λ− λ̄
∣∣2ds].

Then Gronwall’s lemma leads to

E
[∣∣Yt∧θ − Y t∧θ

∣∣2] ≤ Err
ti+1∧θ
t∧θ

≤ (1 + Cαh)E
[∣∣Yti+1∧θ − Y ti+1∧θ

∣∣2]
+

(
Cαh+

C

α

)
E

[∫ ti+1∧θ

t∧θ

(
h+

∥∥∥Zs − Ẑs−

∥∥∥2 + ∥∥∥Zs − Z̃s

∥∥∥2)ds] (3.20)

+

(
Cαh+

C

α

)
E

[∫ ti+1∧θ

t∧θ
1τ∧τ̄≤s≤τ∨τ̄ max(K2, Z2

max, λ
2)ds

]
+

(
Cαh+

2

α

)
E

[∫ ti+1∧θ∧τ̄

t∧θ

∣∣λ− λ̄
∣∣2ds]
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Recall that the ergodic constant λ is bounded, so that the maximum in the third line above is finite.
Substituting t = ti in (3.20), taking α > 0 sufficiently large and the time step h small enough, we get:

E
[∣∣Yti∧θ − Y ti∧θ

∣∣2]+ E

[∫ ti+1∧θ

ti∧θ

∥∥∥Zs − Z̃s

∥∥∥2ds] ≤ (1 + Ch)E
[∣∣Yti+1∧θ − Y ti+1∧θ

∣∣2]
+CE

[∫ ti+1∧θ

ti∧θ

(
h+

∥∥∥Zs − Ẑs−

∥∥∥2 + ∥∥∥Zs − Z̃s

∥∥∥2)ds]
+CE

[∫ ti+1∧θ

ti∧θ
1τ∧τ̄≤s≤τ∨τ̄ds

]
+ CE

[∫ ti+1∧θ∧τ̄

ti∧θ

∣∣λ− λ̄
∣∣2ds].

Summing on i we have

max
i

E
[∣∣Yti∧θ − Y ti∧θ

∣∣2]+ E

[∫ θ

0

∥∥∥Zs − Z̃s

∥∥∥2ds] ≤ C
(

E
[∣∣Yθ − Y θ

∣∣2]+ hE[θ] +R(Z)πH2

+E[|θ ∧ (τ̄ ∨ τ)− τ ∧ τ̄ |] +
∣∣λ− λ̄

∣∣2E[θ ∧ τ̄ ]) .
(3.21)

Then, it follows, by again using Remark 3.2 that

Err(h)2θ ≤ C
(

E
[∣∣Yθ − Y θ

∣∣2]+ hE[θ] +R(Z)πH2 + E[|θ ∧ (τ̄ ∨ τ)− τ ∧ τ̄ |] +
∣∣λ− λ̄

∣∣2E[θ ∧ τ̄ ]) .
(3.22)

For the stopping time θ = τ+ ∨ τ̄+ in the time grid π, one observe that Yτ+∨τ̄+ = Y τ+∨τ̄+ = y0, so
that the first term on the right side above vanishes and we obtain that

Err(h)2τ+∨τ̄+ ≤ C
(
hE
[
τ+ ∨ τ̄+

]
+R(Z)πH2 + E[|τ − τ̄ |] +

∣∣λ− λ̄
∣∣2E[τ̄ ]) .

Finally, combining the estimates (3.17), (3.6) and using the inequalities τ+ ≤ h+ τ , τ̄+ ≤ τ̄ + h, lead
to the desired result.

4 Deep learning algorithms for the simulation of ergodic BSDEs and

forward utilities

In this section, we introduce new deep learning algorithms for the simulation of ergodic BSDEs, based
on the representation (2.5) of markovian solutions using BSDEs with random time horizon. The first
neural network based algorithm for solving BSDEs was initially proposed in [19]. Since then, there
has been a growing interest in developing deep learning algorithms solving BSDEs with finite horizons.
We introduce here two algorithms solving the ergodic BSDE (1.21), which can be seen as ergodic
counterpart of the neural networks algorithms introduced in [19] and [25]. The algorithms introduced
below approximate the “Markovian" solution (y(Vt)+y0−y(V0), z(Vt), λ)t≥0 to the ergodic BSDE with
random time horizon (2.5):

dVt = µ(Vt) + κdWt, V0 = v0,

Yt = Yτ +

∫ τ

t
F (Vs, Zs)ds− λ(τ − t)−

∫ τ

t
Z⊤
s dWs,

Yτ = Y0 = y0,

taking advantage of the specific characteristics of (2.5), namely:
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1. The initial value Y0 is a known quantity, equal to y(v0) = y0. This allows us to use a forward
scheme starting from y0.

2. The recurrence property of the stochastic factor V also provides a known terminal condition to
(2.5). Indeed, by definition of the return time τ , Yτ = Y0. This allows us to define the loss
functions.

3. The functions y and z are only functions of the stochastic factor V , and do not depend on time,
as it is the case for standard BSDEs with fixed time horizon.

4.1 Deep-learning algorithm for the simulation of ergodic BSDE

In this section, we detail our two main algorithms for the simulation of ergodic BSDEs, called GeBSDE
and LAeBSDE. The first neural network based algorithm for solving BSDEs was initially proposed in
[19]. In the context of ergodic BSDEs with random terminal time of type (2.5), the initial value
Y0 = y0 is known and will thus not be learned. We instead approximate the ergodic cost λ as a
trainable parameter of the model. We present two algorithms:

- A global solver GeBSDE which consists in the minimization of a square loss function at the
random horizon τ and which is the counterpart for ergodic BSDEs to the Deep BSDE solver of
[19].

- A locally additive solver LAeBSDE optimized according to the aggregation of local loss functions
up to the random horizon, counterpart to the deep backward multi-step introduced in [17] and
the LaBSDE solver from [25].

Using the same notations as in the previous section, the forward stochastic factor V is approximated
by a Euler discretization on the time grid π. Denoting for all i ≥ 0, ∆Wti =Wti+1 −Wti the Brownian
increment at time ti :

V ti+1 = Vti + µ(V ti)h+ κ∆Wi,

V0 = v0.

We denote by τ̃ the first hitting time in the time grid of V to v0 after TH :

τ̃j = inf
{
ti > TH , ti ∈ π ; (V TH

− v0)(V ti − v0) ≤ 0
}
, (4.1)

assuming for ease of notations that TH ∈ π.

GeBSDE solver Starting from the initial value Y0 = y0, we consider a forward discretization of the
equation on the time grid π with constant time step h. The process Zt = z(Vt) at time ti is represented
by a neural network Zθ : R → Rd, function of Vti and with parameters θ. The approximation Y

θ,λ̄
ti of

Yti depends on the optimisation parameter θ as well as the trainable parameter λ̄ through the following
forward discretization of the ergodic BSDE:

Y
θ,λ̄
ti+1

= Y
θ,λ̄
ti − F (V ti ,Zθ(Vti))h+ λ̄h+ Zθ(Vti)∆Wti . (4.2)
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The output Y θ,λ̄
τ̄ aims to match the terminal value Yτ = y(V0) = y0, by minimizing over parameters

(θ, λ̄) the expected square loss function:

Lg(θ, λ̄) = E

[∣∣∣y0 − Y
θ,λ̄
τ̄

∣∣∣2]. (4.3)

The loss function (4.3) is approximated by the empirical loss function over a batchsize B:

LB
g (θ, λ̄) =

1

B

B∑
j=1

∣∣∣y0 − Y
θ,λ̄,j
τ̃j

∣∣∣2. (4.4)

Finally, we denote M the number of gradient descent performed in the optimization.
Algorithm 1: Global eBSDE Algorithm - (GeBSDE)

Let Zθ be a neural network defined on R, valued in Rd, with parameters θ. Let λ̄0 ∈ R be the
initialisation of the trainable parameter representing the ergodic cost. Define
NTH

= ⌊TH
h ⌋+ 1.

for j = 1, ..., B do
for k ∈ {0, ..., NTH

+ 1}, starting from V
j
0 = v0 do

Sample ∆W j
tk

from a Gaussian vector.
V

j
tk+1

= V
j
tk
+ µ(V

j
tk
)h+ κ⊤∆W j

tk
,

Let Nj = NTH
+ 1.

while (V
j
tNTH

− v0)(V
j
tNj

− v0) > 0 do

Sample ∆W j
tk

from a Gaussian vector.
V

j
tNj+1

= V
j
tNj

+ µ(V
j
tk
)h+ κ⊤∆W j

tk
,

Nj = Nj + 1

Set, hNj = τ̃j .

for m = 0, ..., M do
for j = 1, ..., B do

for k ∈ {0, ..., Nj − 1}, starting from Y
j
0 = y0 do

Y
θm,λ̄m,j
tk+1

= Y
θm,λ̄m,j
tk

− hF (V
j
tk
,Zθm(V

j
tk
)) + λ̄mh+ Zθm(V

j
tk
)⊤∆Wtk ,

Compute LB(θm, λ̄m) = 1
B

∑B
j=1

∣∣∣y0 − Y
θm,λ̄m,j
τ̃j

∣∣∣2.
Update θm+1 = θm − ρm∇θL

B(θm, λ̄m) and λ̄m+1 = λ̄m − ρm∇λ̄L
B(θm, λ̄m).

Based on [19], [7], we use a neural network consisting in 2 hidden layers of 20+d neurons each, where
d is the dimension of the Brownian motion. For the simulation, we use the tanh activation function and
the Adam optimizer with a learning rate ρ0 to update both parameters θm and λ̄m. The learning rate
parameter can be optimized depending on the example as investigated in [7]. However, choosing a large
enough initial learning rate, as well as the Adam optimizer reduce the risk the algorithm gets stuck
in a local minimum. Finally, we use a Glorot normal initialization for the parameters of the neural
network and the trainable parameter λ̄, the latter being constrained to be in the interval [−K,K].

LAeBSDE solver - Some other deep learning algorithms relies on a global optimization involving
local loss function at each time step as studied in [24], [25]. Such algorithms approximate Y with a

22



neural network, while Z can either be computed with automatic differentiation or with another neural
network. Numerical results in [24] reveal that automatic differentiation may lead some additional
errors, so that we will rather use a neural network to approach Z. In the context of ergodic BSDE,
the ergodic cost is again approached as a trainable parameter of the model λ̄ on which will depend the
loss function.

The construction of local loss functions relies on the time discretization (4.2). In fact, iterating this
equation with the initial condition Y0 = y0 leads for all i ≥ 1:

Y
θ,λ̄
ti = y0 −

i−1∑
k=0

F (V tk ,Z
θ(Vtk))h+ λ̄h+ Zθ(Vtk)∆Wtk . (4.5)

Then, introducing two neural networks Yθ1 defined on R and valued in R and Zθ2 defined on R valued
in Rd, the local loss function at time ti can be defined as the expected square distance between Yθ1(Vti)

and (4.5), that is:

Lloc,ti(θ1, θ2, λ̄) = E

∣∣∣∣∣Yθ1(Vti) +
i−1∑
k=0

F (V tk ,Z
θ2(Vtk))h− λ̄h−Zθ2(Vtk)∆Wtk − y0

∣∣∣∣∣
2
 (4.6)

The final loss function is then constructed by summing those local loss functions over i. In our
framework, τ is not necessarily bounded so that this sum could have infinitely many terms. However,
when approximating expectations over a batchsize B, one can express this empirical loss function as
a sum up to the time max

j∈B
τ̃j . Note that since the terminal time is random, the local loss function

at time ti (4.6) is computed on the set of trajectories Ti = {j ∈ {1, ..., B} ; τ̃j ≥ ti}, for which the
approximated return time is larger than ti. The empirical version of (4.6) is:

LB
loc,ti

(θ1, θ2, λ̄) =
1

|Ti|
∑
j∈Ti

∣∣∣∣∣Yθ1(V
j
ti) +

i−1∑
k=0

F (V
j
tk
,Zθ2(V

j
tk
))h− λ̄h−Zθ2(V

j
tk
)∆W j

tk
− y0

∣∣∣∣∣
2

, (4.7)

Denoting NB
max = 1

hmax
j∈B

τ̃j , the index in the grid of the greater return time over the fixed amount of

samples B, the empirical locally additive general loss is:

LB
loc(θ1, θ2, λ̄) =

NB
max∑
i=1

LB
loc,ti

(θ1, θ2, λ̄). (4.8)
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Algorithm 2: Locally additive eBSDE Algorithm - (LAeBSDE)
Let Yθ1 be a neural network defined on R, valued in R with parameters θ1 and Zθ2 be a neural
network defined on R, valued in Rd, with parameters θ2. Let λ̄0 ∈ R be the initialisation of
the trainable parameter representing the ergodic cost. Define NTH

= ⌊TH
h ⌋+ 1.

for j = 1, ..., B do
for k ∈ {0, ..., NTH

+ 1}, starting from V
j
0 = v0 do

Sample ∆W j
tk

from a Gaussian vector.
V

j
tk+1

= V
j
tk
+ µ(V

j
tk
)h+ κ⊤∆W j

tk
,

Let Nj = NTH
+ 1.

while (V
j
tNTH

− v0)(V
j
tNj

− v0) > 0 do

Sample ∆W j
tk

from a Gaussian vector.
V

j
tNj+1

= V
j
tNj

+ µ(V
j
tk
)h+ κ⊤∆W j

tk
,

Nj = Nj + 1

Set, hNj = τ̃j .

for m = 0, ..., M do
for j = 1, ..., B do

Set, ϕt−1 = 0.
for k ∈ {0, ..., Nj − 1}, starting from Y

j
0 = y0 do

ψ
θm2 ,λ̄m,j
tk

= hF (V
j
tk
,Zθm(V

j
tk
))− λ̄mh−Zθm(V

j
tk
)⊤∆Wtk ,

ϕ
θm2 ,λ̄m,j
tk

= ϕ
θm2 ,λ̄m,j
tk−1

+ ψ
θm2 ,λ̄m,j
tk

for k ∈ {0, ..., Nj − 1} do
Define the set Tk = {j ∈ {1, ..., B} ; τ̄j+ ≥ tk}.

Compute LB
loc,tk

(θm1 , θ
m
2 , λ̄

m) = 1
|Tk|

∑
j∈Tk

∣∣∣Yθm1 (V
j
tk
) + ϕ

θm2 ,λ̄m,j
tk

− y0

∣∣∣2.
Compute LB

loc(θ
m
1 , θ

m
2 , λ̄

m) =

maxj=1,..,B Nj−1∑
k=1

LB
loc,tk

(θm1 , θ
m
2 , λ̄

m).

Denoting θ = (θ1, θ2, λ̄), update θm+1 = θm − ρm∇θL
B
loc(θ

m).

For the simulation, we consider as before neural networks with 2 hidden layers of 20+d neurons each.
We check that increasing the number of layers or neurons does not improve accuracy in our numerical
tests. The algorithms are implemented in Python with Tensorflow library. Numerical experiments are
conducted using Intel(R) Xeon(R) CPU @ 2.20GHz with 25GB of RAM. The code of both solvers is
available on github : https://github.com/gubrx/Deep-learning-eBSDE.

Remark 4.1. Note that this algorithm can also be used by first approximating the ergodic cost λ with
Monte Carlo methods based on Section 2.3, and plugging this estimator λ̂ in the forward discretization
above. The optimization is then only performed on the parameters of the neural network.

4.2 Toy examples

In this section, we present the numerical results obtained with Algorithm 1 and 2 for two examples
of ergodic BSDE with explicit solutions. We also investigate the approximation of the ergodic cost λ
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with Monte Carlo methods, within the framework of Propositions 2.3 and 2.6. For the numerical tests,
we will consider a stochastic factor V of type Ornstein-Uhlenbeck with dynamics:

dVt = −µVt + κ⊤dWt, V0 = v0. (4.9)

Example 4.1. The ergodic BSDE (1.8) with driver F (v, z) = Cvve
−v2/2 admits a unique Markovian

solution such that y(0) = Cv
µ

√
2π
2 and z is bounded, given by:

(y(v), z(v), λ) =

(
Cv

µ+ 1
2κ

2

∫ v

−∞
e−

y2

2 dy,
Cv

µ+ 1
2κ

2
e−

v2

2 , 0

)
. (4.10)

Consider a discretization with step h = 0.01 and a batchsize B = 64. For the simulation, we choose
v0 = 0, Cv = 1, κ = 0.8, µ = 1.5 and TH = 1. In Figure 1 and 2, we plot the evolution of the empirical
loss function LBϵ given in (4.4) over Bϵ = 100B samples as well as the absolute error on λ̄ through the
number M of gradient descent performed in the algorithm.

Figure 1. Empirical loss function LBϵ . Figure 2. Convergence of λ.

Both algorithms converge in the sense that the loss functions as well as the absolute errors on λ go
to zero as the number of training steps grows. The GeBSDE converges faster, in 4000 gradient descent
to the true value of λ leading to an error of order 10−2. The LAeBSDE estimation of the ergodic cost
converges around 7000 epochs with a final error of order 10−3. In Figure 3, we plot the the mean
relative absolute error on Y at each time steps that is for a sample of size Bϵ = 100B of realizations
of the diffusion and ti ∈ π ∩ [0, TH ]:

ϵti(Y ) =
1

Bϵ

Bϵ∑
j=1

∣∣∣∣∣∣y(V
j
ti
)− Y j

ti

y(V j
ti
)

∣∣∣∣∣∣. (4.11)
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Figure 3. Mean relative error (4.11) on Y for different time
steps.

The error is zero at time 0 and increases on [0, TH ], which is coherent with both schemes, starting
from the known initial value Y0 = y0. The mean relative error also decreases as the time step gets
smaller for both algorithms. Note that the GeBSDE leads a better mean relative error for h = 0.02,
h = 0.01. For smaller time steps, the LAeBSDE algorithm outperforms the GeBSDE and leads a
relative error of 1% at time TH = 1 for h = 0.005.

We also evaluate the error on Y and Z along the trajectories on [0, TH ] through the integral errors:

Ihϵ (Y ) = E

NTH∑
i=1

h
∣∣∣y(V j

ti
)− Y j

ti

∣∣∣
 and Ihϵ (Z) = E

NTH∑
i=1

h
∥∥∥z(V j

ti
)−Zθ(V j

ti
)
∥∥∥2
. (4.12)

The expectations above are computed on a sample of size Bϵ. Moreover, we represent the mean and
95% confidence interval over 5 independent training procedures. The errors are computed for the same
values of time step as in Figure 3.

Figure 4. Integral error (4.12) on Y over
[0, TH ].

Figure 5. Integral error (4.12) on Z over
[0, TH ].
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The GeBSDE algorithm leads to a smaller integral error on Z for every time steps. However, we
again observe that the integral error on Y for the LAeBSDE decreases rapidly with the time step and
outperforms the global algorithm for h = 0.005. Both algorithm provides a good approximation of the
trajectory of the solution over the random interval [0, τ ], as displayed in Figure 6.

Figure 6. Example of trajectory of Y over [0, τ ]

with h = 0.01.

Example 4.2 (with non-zero ergodic cost λ). We generalize a second example presented in [23].
Consider the ergodic BSDE (1.8) with driver F (v, z) = Cv|v|e−v2/2. For the following, let’s denote Φ

the cumulative distribution function of the standard normal distribution: Φ(x) = 1√
2π

∫ x
−∞ e−

y2

2 dy.

Lemma 4.3. The eBSDE (1.8) with generator F (v, z) = Cv|v|e−v2/2 admits unique Markovian solution
satisfying y(0) = 0 and such that z is bounded, given by the following triplet (y(.), z(.), λ):

y(v) = 1{v≥0}

∫ v

0
e

y2

2

(
Cv

κ2
e−y2 + 2

Cv

κ2
(Φ(y)− 1)

)
dy + 1{v<0}

∫ v

0
e

y2

2

(
−Cv

κ2
e−y2 + 2

Cv

κ2
Φ(y)

)
dy

z(v) = 1{v≥0}κe
v2

2

(
Cv

κ2
e−v2 + 2

Cv

κ2
(Φ(v)− 1)

)
+ 1{v<0}κe

v2

2

(
−Cv

κ2
e−v2 + 2

Cv

κ2
Φ(v)

)
λ =

Cv√
2π
. (4.13)

Proof. We look for a triplet (y(.), z(.), λ) solution of the ergodic BSDE (1.8) with generator F (v, z) =
Cv|v|e−v2/2, of the form:

y(v) = 1{v≥0}

∫ v

0
e

y2

2

(
A1e

−y2 +A2(Φ(y)− 1)
)
dy + 1{v<0}

∫ v

0
e

y2

2

(
−A1e

−y2 +A2Φ(y)
)
dy(4.14)

z(v) = 1{v≥0}κe
v2

2

(
A1e

−v2 +A2(Φ(v)− 1)
)
+ 1{v<0}κe

v2

2

(
−A1e

−v2 +A2Φ(v)
)

(4.15)

λ =
κ2A2

2
√
2π
, (4.16)

where Φ the cumulative distribution function of the standard normal distribution: Φ(x) = 1√
2π

∫ x
−∞ e−

y2

2 dy

27



and A1, A2 are real parameters to be determined. An application of Ito formula leads:

dy(Vt) = eV
2
t /2
[
A1e

−V 2
t +A2(Φ(Vt)− 1)

]
(−µVtdt+ κdWt)

+
1

2
κ2
(
Vte

V 2
t /2
[
A1e

−V 2
t +A2(Φ(Vt)− 1)

]
+ eV

2
t /2

[
−2VtA1e

−V 2
t +

A2√
2π
e−V 2

t /2

])
dt

= Vte
V 2
t /2
[
A1e

−V 2
t +A2(Φ(Vt)− 1)

](1

2
κ2 − µ

)
dt

−κ2A1Vte
−V 2

t /2dt+
A2κ

2

2
√
2π
dt+ κeV

2
t /2
[
A1e

−V 2
t +A2(Φ(Vt)− 1)

]
dWt.

Imposing A1 = Cv
κ2 and µ = 1

2κ
2, the triple (y, z, Cv√

2π
) given by (4.14) and (4.15) satisfies equation

(1.8). One also has to ensure the Markovian property of the solution (see Proposition 3.4 in [27]),
namely that y is C2 and that z(v) = κ∇y(v), so that z is C1. In particular, z is continuous in 0 which
from (4.15) leads A2 = 2A1 = 2Cv

κ2 . One check that with those parameters, z(.) is indeed bounded by
Zmax = κ Cv

µ−Cv
.

Let v0 = 0, TH = 1, Cv = 0.75, µ = 1, a time step h = 0.01 and the same parameters of the neural
network as in the first example. In this setting, the ergodic cost λ given by (4.13) is 0.299206 and
the trainable parameter λ for both algorithms converge towards this value in around 6000 gradient
steps. Training the model with 10000 gradient descent, the absolute error on λ is of order 10−3. We
illustrate the convergence of the empirical loss functions as well as the convergence of the ergodic cost
estimators.

Figure 7. Empirical loss function LBϵ . Figure 8. Convergence of λ̄.

The shape of the mean absolute error on Y for this example is quite different for the two algorithms.
In fact for the GeBSDE, the solution Y being constructed with a forward iterative scheme (4.2) relying
on the trained neural network Zθ, the error starts from zero and grows then almost linearly according
to Figure 9. On the other hand for the LAeBSDE, the solution Y is the output of the neural network
Yθ1 , optimized according to the aggregation of local loss functions Lloc,ti given in (4.6). We observe
that the mean error is almost constant on the interval [0.2, TH ] for this example.
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Figure 9. Mean relative error (4.11) on Y for different time
steps.

As shown in Figure 10, the integral error on Y is lower and decreases faster for the LAeBSDE,
which is coherent with the mean error result above.

Figure 10. Integral error (4.12) on Y over
[0, TH ].

Figure 11. Integral error (4.12) on Z over
[0, TH ].

Estimation of λ with Monte Carlo methods - Since for the two above examples, the generator
only depends on v, Proposition 2.3 applies and we recall the characterization of the ergodic cost λ
given in (2.9) :

λ =

E

[∫ τ

0
F (Vs)ds

]
E[τ ]

.

We use Monte Carlo methods over M samples to compute both expectations in the above formula.
Approximating V and Γ with an Euler scheme on the time grid π with time step h and the integral
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with a Riemann sum on the time grid π, we consider the estimate:

λ̂ =
1

M∑
m=1

τ̄m

M∑
m=1

τ̄m−1∑
i=0

hF (V m
ti
). (4.17)

We gather the approximation results of the mean absolute error on 100 simulations for the estimation
of the ergodic cost λ̂ for Examples 4.1 and 4.2 in Table 1 and 2 respectively. The simulations are
performed with the following set of parameters : TH = 1, µ = 2, κ = 2, Cv = 1 and v0 = 0.5.

h M=1000 M=10000 M=100000

0.05 0.009743 (4.87e-05) 0.007224 (7.48e-06) 0.005691 (1.37e-06)
0.02 0.009107 (4.66e-05) 0.006597 (4.63e-06) 0.004895 (1.69e-06)
0.01 0.008833 (3.73e-05) 0.005778 (7.85e-06) 0.004374 (9.73e-07)

Table 1: Mean absolute error (variance) on λ̂ for Example 4.1. The exact value of λ is 0.

h M=1000 M=10000 M=100000

0.05 0.002988 (2.86e-06) 0.002955 (2.50e-07) 0.002904 (1.99e-08)
0.02 0.002136 (2.30e-06) 0.001617 (4.98e-07) 0.001528 (1.67e-08)
0.01 0.001637 (1.29e-06) 0.000780 (2.62e-07) 0.000939 (3.55e-08)

Table 2: Mean absolute error (variance) on λ̂ for Example 4.2. The exact value of λ given in (4.13) is
0.398942.

Finally, we display the mean and variance of lambda estimations obtained with Monte Carlo meth-
ods (4.17) using M = 100000 samples with the output of Algorithm 1 and 2 for B = 64 and 10000

gradient descents in Table 3. Statistics are computed over 100 values for the Monte Carlo estimator
and on 10 independent training of our neural network algorithms.

Exact MC GeBSDE LAeBSDE

Example 4.1 0 -0.004374 (9.73e-07) -0.003782 (4.28e-05) -0.004280 (3.07e-05)
Example 4.2 0.398942 0.399882 (3.55e-08) 0.400130 (1.53e-05) 0.397600 (4.63e-05)

Table 3: Comparison of λ approximations for parameters v0 = 0.5,
TH = 1, h = 0.01, κ = 2, µ = 2, Cv = 1.

4.3 Power utility examples

Let’s turn our attention to ergodic BSDEs associated with power forward utilities (1.3). When there
are no constraints on the portfolio, the generator (1.12) rewrites for (v, z) ∈ R × Rd as:

F δ(v, z) =
δ

2(1− δ)
∥θ(v) + z∥2 + 1

2
∥z∥2,

30



Corollary 2.6 gives a characterization of the ergodic cost λ as the solution of the minimization problem
(2.24) that we will use as a benchmark for the ergodic cost. Approximating V and Γ with an Euler
scheme with time step h and the expectation with Monte Carlo method, the map:

λ 7→

∣∣∣∣∣ 1M
M∑

m=1

Γ0,τ̄ − 1

∣∣∣∣∣. (4.18)

admits a global minimum on [−K,K], denoted λ̂ which can be determined using Newton’s method.
For the simulation, we consider a truncated linear price of risk vector θ(v) = φb(θv), as performed

in [35], where φb denotes the projection on the segment[−b, b]. We use the same stochastic factor V of
type Ornstein-Uhlenbeck as in (4.9) and set the parameters µ = 3, κ = 1.3, δ = 0.5, θ = 0.8, b = 3 and
TH = 1. The number of Monte Carlo samples used for the estimation of the ergodic cost with (4.17)
is M = 100000 and we use a time step h = 0.01. Finally, we observe that the bound K is larger for
the following than for the examples from the previous section. Thus we use a higher learning rate of
ρ0 = 0.0007 to ensure a sufficient speed of convergence for λ̄.

Figure 12. Empirical loss function LBϵ . Figure 13. Convergence of λ̄.

The ergodic cost λ̄ computed with Algorithm 1 and 2 and the Monte Carlo approximation λ̂

converge towards the same value. The absolute error between the two types of estimators is of order
10−2. Finally we illustrate the convergence of the estimator given by (4.18) depending on the time
step h and the number of Monte Carlo samples M .

h M=1000 M=10000 M=100000

0.10 0.192683 (3.48e-04) 0.201704 (5.5e-05) 0.206999 (3.9e-05)
0.05 0.187675 (8.03e-04) 0.183987 (2.17e-04) 0.182469 (2.6e-05)
0.02 0.159276 (1.55e-03) 0.173734 (4.17e-04) 0.173557 (1.31e-04)
0.01 0.159119 (1.16e-03) 0.174493 (1.61e-03) 0.169749 (1.8e-04)

Table 4: Mean (variance) on λ̄ on 10 independent runs.

Those Monte Carlo approximations of λ allow to use the semi-explicit representation of Section 2
in order to simulate the solution of the ergodic BSDE (1.8) on [0, τ ]. However, in the general case of
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generator with quadratic growth for which the Cole-Hopf transform does not help to reduce to a linear
BSDE, one need another approximation procedure of the ergodic cost λ,

A two dimensional example - Consider a financial market consisting in one stock, whose price
dynamics is given by :

dSt = St
(
b(Vt)dt+ σ(Vt)dW

1
t

)
,

and where the stochastic factor is given by :

dV 1
t = µ(Vt)dt+ κ1dW

2
t + κ2dW

2
t , dV 2

t = 0.

The admissible set of strategies is thus restricted to Π = R × {0}, so that π2t = 0 and the wealth
equation (1.6) then reduces to :

dXπ
t = Xπ

t π
1
t

(
θ(Vt) + dW 1

t

)
, where θ(Vt) =

b(Vt)

σ(Vt)
.

The generator (1.12) is then given by:

F (Vt, Zt) =
1

2

δ

1− δ

∣∣Z1
t + θ(Vt)

∣∣2 + 1

2
∥Zt∥2. (4.19)

Denoting δ̂ =
1−δ+δ( κ1

∥κ∥ )
2

1−δ and Ỹt = eδ̂(Yt−λt), the authors in [27] show that the function ỹ must satisfy:

ỹt(v, t) +
1

2
(κ21 + κ22)ỹvv(v, t) +

(
µ(v) +

δκ1

1− δ
θ(v)

)
ỹv(v, t) +

δ̂δ

2(1− δ)
θ2(v)ỹ(v, t) = 0. (4.20)

Assuming a linear market price of risk θ(v) = θv and an Ornstein-Uhlenbeck stochastic factor with
µ(v) = −µv and µ > 0, following the methodology of [32], several solutions to this PDE can be derived.

Figure 14. Empirical loss function LBϵ . Figure 15. Convergence of λ̄.

Validation loss functions for both algorithms converge to zero and the trainable parameters λ̄ also
converge towards the same value.
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Finally, let’s come back to our initial objective to simulate homothetic forward progressive utilities
of Section 1. Using one of the two algorithms GeBSDE or LAeBSDE to simulate the solution of eBSDE
(1.8) on [0, TH ], we are now able to plot the corresponding forward utilities. We display the shape of
the approximated random field U given by (1.3) for one realization of the diffusion V . One can also
access the rescaled optimal portfolio π∗t given by (1.15). We plot the example of trajectory associated
to the same realization of this power utility in Figure 19.

Figure 16. Dynamics of approximated utility
U(t, x).

Figure 17. Monotonicity and concavity of
approximated utility U(t, x).

Figure 18. Random field U(t, x). Figure 19. Rescaled optimal strategy π1t .
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