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Abstract:  
 
 
 
Background: Children who have been treated for a medulloblastoma often suffer 
long term cognitive impairments that often negatively affect their academic 
performance and quality of life. In this article we will review the neuropsychological 
consequences of childhood medulloblastoma and discuss the risk factors known to 
influence the presence and severity of these cognitive impairments and possible 
interventions to improve their quality of life. 
 
Methods: This narrative review was based on electronic searches of PubMed to 

identify all relevant studies. 
  
Results: Although many types of cognitive impairments often emerge during a child’s 
subsequent development, the core cognitive domains that are most often affected in 
children treated for a medulloblastoma are processing speed, attention and working 
memory. The emergence and magnitude of these deficits varies greatly among 
patients. They are influenced by demographic (age at diagnosis, parental education), 
medical and treatment-related factors (peri-operative complications, including 
posterior fossa syndrome, radiation therapy dose, etc.), and the quality of 
interventions such as school adaptations provided to the child or rehabilitation 
programs that focus on cognitive skills, behavior and psychosocial functioning. 
 
Conclusion: These patients require specialized and coordinated multidisciplinary 
rehabilitation follow-up that provides timely and adapted assessments and 
culminates in personalized intervention goals being set with the patient and the 
family. Follow-up should be continued until referral to adult services. 
 
 
Key words: childhood; medulloblastoma; cognitive impairments; risk factors; interventions 

 

 

 

 

 

 

 

 

 

  



 
 

 

 

 

Résumé :  

 

Introduction : Les enfants qui ont été traités pour un médulloblastome souffrent 
souvent de troubles cognitifs qui impactent leur autonomie, leur réussite scolaire et 
leur qualité de vie. Cet article a pour objectif de passer en revue les domaines 
cognitifs qui sont souvent affectés chez les enfants traités pour un médulloblastome 
et les facteurs de risque pouvant influencer leur présence et leur sévérité, ainsi que 
les interventions possibles permettant d’améliorer la qualité de vie de ces patients. 
 

Méthodologie : La bibliographie de cette revue a été réalisée avec l’interface 
d’accès PubMed afin d'identifier les études et revues les plus pertinents.  
 
Résultats : Bien qu’une variété de difficultés cognitives soit rapportée chez les 

enfants traités pour un médulloblastome, les domaines cognitifs les plus souvent 
touchés sont la vitesse de traitement, l'attention et la mémoire de travail. 
L'émergence et la sévérité de ces déficits sont très variables chez les patients, et 
sont influencées par de nombreux facteurs tels que des facteurs démographiques 
(âge au diagnostic, éducation parentale), les facteurs liés au traitement 
(complications périopératoires, y compris le syndrome de la fosse postérieure, la 
dose de radiothérapie, etc.), mais également la qualité des interventions telles que 
les adaptations scolaires ou les programmes de réadaptation axés sur les habiletés 
cognitives, le comportement et le fonctionnement psychosocial de l’enfant. 
 
Conclusion : Ces patients ont besoin d’une prise en charge multidisciplinaire 
spécialisée et coordonnée, offrant des évaluations adaptées, menant à des objectifs 
d'intervention personnalisés décidés avec le patient et la famille. La prise en charge 
doit être poursuivie jusqu'à l'orientation vers les services pour adultes. 
 

Mots clés : pédiatrie ; médulloblastome ; troubles cognitifs ; facteurs de risque ; interventions 

 

 



 
 

 

 

Medulloblastoma is one of the most common malignant childhood brain tumors, 

arising in the posterior fossa. As a result of improved treatment, event-free survival 

has significantly increased, but this long-term survival has brought to light the 

resulting neurocognitive deficits. Consequently, research in this domain has taken a 

prominent role in pediatric oncology. In this paper, we will review the 

neuropsychological consequences of childhood medulloblastoma, discuss the risk 

factors known to influence the presence and severity of these cognitive impairments 

and describe interventions that have been developed to improve the patients’ quality 

of life. 

The literature search was performed using the PubMed database with 

combinations of the following keywords: “pediatric oncology”; “medulloblastoma’’; 

“posterior fossa tumor”; “neuropsychological impairments”; “cognitive impairments”; 

“core deficits”; “risk factors”; “radiation therapy”; “chemotherapy”; “surgery”; “posterior 

fossa syndrome”; “rehabilitation program”. Inclusion criteria were articles published in 

a peer-reviewed journal and written in French or English. Articles were screened by 

the relevance of their abstract. The selected ones were read carefully in their entirety. 

  



 
 

 

 

I. Cognitive impairments 

To our knowledge, the first study in this field dates back to 1969, when Bloom 

et al. (1) noted the elevated rate of  “cognitive dementia”  in this population. 

Since then, studies in this domain have proliferated and show that children 

treated for a medulloblastoma (2–4) had a progressive the decrease in their 

intelligence quotient (IQ) over time (2-4 points/year) (5–7). This decline was not due 

to a loss of previously acquired knowledge, but rather to a reduced rate of 

subsequent new learning, compared to healthy same-age peers (8). Those deficits in 

turn impact the patients’ academic performance (e.g. acquisition of reading and 

mathematical skills) (7,9,10)  and more generally, their quality of life (11,12). Several 

authors believe the overall intellectual decline reported in the literature is due to 

alterations of more specific cognitive core components (13), such as processing 

speed, attention and working memory (2,3)  

 Processing speed is characterized by how quick a person can take in, 

process and respond to information. This information can be visual, like symbols (e.g. 

letters, numbers) or auditory (e.g. words). An early decrease of information 

processing speed has frequently been reported in these patients. It is thought to be 

the first difficulty to arise after treatment and seems to be specifically correlated with 

the craniospinal irradiation (CSI) dose (14–17).  

 Attention difficulties are also frequently observed in these children (18–21). 

They probably appear later than processing speed decline (16), and include mainly 

selective and sustained attention difficulties (18,21). These children have difficulty 

focusing on a task/stimulus, while ignoring distractor stimuli, and maintaining their 

vigilance. Interestingly, these attention deficits are associated directly with 

demyelination caused by CSI (16,19). According to one study, 10 years after 



 
 

 

 

treatment that includes CSI, the prevalence of attention difficulties in children with 

posterior fossa tumor (PFT) could be as high as 78% for sustained attention and 90% 

for motor attention tasks (22). 

 Working memory is a memory system allowing temporary maintenance of a 

limited amount of information and its manipulation. Several studies have explored the 

development of this function, which is crucial to the success of many academic tasks 

(arithmetic, reading, listening and taking notes) in children with PFT (23). King et 

al. (24) compared the neuropsychological performance of a group of children treated 

for cerebellar tumors versus children with third ventricular tumors. Unlike the group of 

children with third ventricle tumors, the group with cerebellar tumors had specific 

deficits in working memory and attention. A working memory deficit might emerge 

very early with a continued decline over time. A decline in the working memory index 

of children treated for brain tumors (12/18 were treated for a medulloblastoma) was 

observed very early after the start of their neuropsychological follow-up (16). More 

interestingly, Edelstein et al. 2011 showed that—despite stable IQ scores 20–40 

years after diagnosis—working memory was the only index that continued to decline 

over the long term. 

Other types of cognitive impairments also often emerge during these children’s 

subsequent development in a number of neuropsychological areas, such as 

executive functions, fluency, problem solving, planning (25,26), episodic memory 

(22,27–29) or control and identification of emotions (30). Some of these difficulties 

emerge very early after disease onset, while others emerge much later (several 

years), as deficits become evident when environmental demands increase, and 

cognitive functions fail to develop at the expected rate. The emergence and 

magnitude of these deficits is highly variable within patients. Factors influencing the 

outcome have been summarized in a recent literature review (13). They include 



 
 

 

 

demographic factors (age at diagnosis, parental education and socio-economic 

status, used as proxies for the environment in which the child lives), medical and 

treatment-related factors (peri-operative complications, including posterior fossa 

syndrome, radiation therapy dose, etc.), and interventions and school adaptations 

provided to the child. 

 

II. Risk factors known to influence the presence and severity of 

cognitive impairments 

In the literature, several factors have been identified as predictive of the risk of late 

cognitive impairments. The first is related to the disease—the tumor location and the 

age at diagnosis. The second factor is related to the treatment used—surgery, peri-

operative complications, chemotherapy and radiation therapy. The third factor is the 

environment the child grows up in, and particularly the family’s influence. 

 

A. Disease-related risk factors 

1) Tumor location 

The anatomical location of these tumors—inside and/or adjacent to the cerebellum— 

puts the cerebellar pathways and cerebellar functions at risk during the surgical 

procedure (4). The cerebellum is composed of three parts: the vermis and two 

cerebellar hemispheres (one on each side). It plays an important role in sensory-

motor functions, balance control and vestibulo-ocular reflex (31), but also in a wide 

range of cognitive functions, including language, processing speed, memory and 

executive functions (32–35). Laterally located in the hemisphere, the serrated nuclei, 

which are the most voluminous deep nuclei, have been described as central relays in 

the anatomical pathways connecting the cerebellum with the non-motor cerebral 



 
 

 

 

cortex (36). 

Today, it is an accepted fact that a lesion in the cerebellum causes 

neurocognitive deficits. However, the relationship between the lesion’s location, type 

and severity of deficits remains unclear. Vermis injuries are associated with a higher 

risk of cognitive and affective impairments (37–40). The type of deficits and lesion 

lateralization were also correlated in children treated for medulloblastoma. A tumor in 

the right cerebellar hemisphere is associated mainly with linguistic and logical 

reasoning deficits, whereas a left hemisphere lesion induces attentional and visual 

spatial deficits (37,41). In children with PFT, lesions to the dentate nuclei on 

postoperative imaging were associated with lower IQ and more severe motor 

dexterity difficulties (40). 

 

2) Age at diagnosis 

Young age at diagnosis of medulloblastoma is a risk factor for long-term cognitive 

impairments (7,8,42,43). In a longitudinal study (3 years post-diagnosis), Ris et al. (5) 

showed that children treated before the age of 7 had greater cognitive decline than in 

those treated at a later age.  This effect is mainly due to CSI (42). Younger patients 

treated with CSI with or without chemotherapy have more deficient myelination and a 

greater loss of white matter over time, leading to greater cognitive deficits. However, 

no association between age at diagnosis and cognitive impairments has been found 

in several studies (17,44,45). In other studies, an effect of age at diagnosis was 

found only for certain cognitive measures (42,46), suggesting that the occurrence of 

impairments is multifactorial. For example, in the study by George et al. (46), the 

average verbal, performance and full-scale IQ were significantly higher in children 

with PFT diagnosed at 6 years or later than in younger children. On the other hand, 

their average performance on memory assessments (WRAML) was similar. Palmer 



 
 

 

 

et al. (6) provided an alternative explanation for these discrepancies. Age at 

diagnosis influences the speed of cognitive decline more than its intensity. In the 

youngest children, cognitive decline begins on average 2 years after diagnosis and 

then stabilizes. On the other hand, the greatest cognitive difficulties begin to emerge 

later after the diagnosis. According to Palmer et al. (6), the decrease in IQ over time 

between younger and older patients is comparable 6 or 7 years post-diagnosis. 

Future studies should use multivariate analyses to take into account not only age at 

diagnosis, but also other treatment-related factors (peri-operative complications and 

radiation therapy dose), as well as environmental factors such as socio-economic 

status, which are strong moderators of a number of outcomes in children treated for 

medulloblastoma (13). 

 

B. Tumor and treatment-related factors 

1) Post-operative cerebellar mutism 

Cerebellar mutism syndrome is a postoperative clinical entity characterized by 

diminished or absent discourse during a period of time, ataxia, hypotonia and 

emotional lability (47–49). The incidence of cerebellar mutism syndrome  varies 

across studies (8-25%) (50,51). Left-handedness, and disruption of the connection 

between the right cerebellum and  left frontal cortex have been associated with the 

occurrence of cerebellar mutism syndrome. Brain stem infiltration and tumor 

histology (i.e. medulloblastoma) also appear to be frequently associated with the 

development of cerebellar mutism syndrome (52,53). Pre-existing language 

impairment seems to increase the probability of cerebellar mutism (53). On the other 

hand, the hypothesis that the surgical techniques used to reach the fourth ventricle 

(incision of the vermis vs. telovelar approach) could increase its occurrence has not 

been confirmed (54). The neuropsychological impairments following cerebellar 



 
 

 

 

mutism syndrome resulting from posterior fossa tumor surgery are now well known 

(47,50). Despite the disappearance of cerebellar mutism after a few days to one 

month, it remains associated with a high risk of immediate and long-term cognitive 

impairment (53 ,52). 

Symptoms beyond those described in cerebellar mutism syndrome have also been 

reported in these children and are more widely known as the so-called posterior 

fossa syndrome (49,56). In addition to cerebellar mutism, it is characterized by 

behavioral disturbances (personality change, apathy, memory or attention problems), 

language difficulties (agrammatism, word finding difficulties, dysarthria) and motor 

difficulties (initiation of movement, cranial nerves palsies) (47,49,57). Interestingly, 

this combination of symptoms—already described in adults (58)—is known as the 

“cerebellar cognitive affective syndrome”. 

 

2) Hydrocephalus 

The specific effect of hydrocephalus on the functional and academic achievement of 

children with medulloblastoma, or more generally with PFT, remains less clear. 

Controlling for the potential effect of clinical and demographic variables (age at 

diagnosis, radiation therapy, socioeconomic level), Hardy et al. (59) showed that 

children with medulloblastoma treated for hydrocephalus had significantly lower IQ 

and performance in mathematics, writing and visual-motors tasks than those who did 

not require hydrocephalus treatment. While several other studies have corroborated 

these findings and extended them to other cognitive domains (memory, academic 

and social performance, dysarthria and ability to cope with daily tasks, etc.) (45,60–

62), others found no effect of hydrocephalus on cognitive performance (63,64), with 

sometimes contradictory results (65). Finally, other peri-operative or hydrocephalus 

treatment-related complications, such as meningitis or shunt infection have also been 



 
 

 

 

associated with a negative impact on intellectual ability (64). 

 

3) Radiation therapy 

Radiation therapy is now considered to be one of the major factors leading to 

neurocognitive deficits (43,44,66–68). More specifically, craniospinal radiation 

therapy (7,14,44,69), the volume receiving the dose escalation—conventionally 

referred to as “boost” (70)—and the fractionation (67,71) appear to be particularly 

related to the progressive intellectual deterioration reported in children treated for a 

brain tumor. 

 

Impact of craniospinal irradiation on cognitive development 

Grill et al. (44) reported a clear association between craniospinal dose and 

Wechsler-scale performance (72), particularly for full-scale and verbal IQ in 31 

patients treated for ependymoma or medulloblastoma. This effect has been 

replicated many times in children treated for PFT and has also been extended to 

other cognitive functions such as attention, executive functions, visuo-motor 

coordination, emotions or academic skills (reading, mathematics) (7,14,73,74). 

Reducing the dose to the craniospinal axis (25 Gy or 18 Gy)—especially for younger 

children and standard-risk medulloblastoma—appears to help preserve cognitive 

functions. However, a substantial decrease in performance on Wechsler's scales 

seems to persist over the long term (5). 

 

Impact of the boost on cognitive development 

Another attempt to better preserve cognitive performance of children with 

medulloblastoma has been to reduce the volume receiving the boost (i.e., posterior 

fossa). Even if the dose reduction on the craniospinal axis decreases the doses 



 
 

 

 

delivered to the brain as a whole, the boost on the entire posterior fossa produces 

higher doses in adjacent regions such as the temporal lobes, hippocampus, 

brainstem or hypothalamus (20,70). Reducing the volume of the posterior fossa 

boost to the tumor bed could significantly decrease the volume of healthy tissue 

receiving the highest dose. Recently, Moxon-Emre et al. (75) confirmed this 

hypothesis by showing that children treated for medulloblastoma whose craniospinal 

radiation dose and dose escalation volume had been reduced maintained a stable IQ 

over time. In contrast, those who had only the dose reduced on the craniospinal axis 

or the volume receiving dose escalation had a performance decrease over time. 

 

Regional effect of radiation therapy on cognitive functions 

Several recent studies have focused on the specific effect of irradiation in certain 

brain regions on the cognitive performance of children treated for a medulloblastoma 

(7,70,76). Armstrong et al. (76) used a self-administered questionnaire to study the 

relationships between the maximum doses received in different brain regions 

(temporal, frontal, parieto-occipital) and cognitive complaints in the last 6 months in 

patients treated for a childhood brain tumor. In patients treated for a 

medulloblastoma, they found a strong association between the maximum dose 

received in the temporal lobes and the presence of attention, information-processing 

(task efficiency) and planning (organizational) difficulties. In a similar way, Doger de 

Speville et al. (77) found an association between processing speed decline and the 

high dose delivered to the temporal lobes and posterior fossa. In contrast, working 

memory decline seemed to be related more to the dose delivered to the orbitofrontal 

regions. 

With regards to overall intellectual functioning, Merchant, et al., (7) analyzed 

the impact of the mean doses in several regions (i.e. whole brain, temporal lobe, 



 
 

 

 

hippocampus and posterior fossa) on IQ change over time in children treated for a 

medulloblastoma. They concluded that among the areas evaluated, the posterior 

fossa appeared to be the most tolerant to radiation therapy, followed by the temporal 

lobes, the hippocampus and finally the supratentorial region (i.e. the brain). However, 

the inverse pattern was observed in children treated for an ependymoma (78). In fact, 

there was an association between the mean dose delivered to the posterior fossa 

and the IQ decrease over time, whereas this association was not found for the 

supratentorial region. According to the authors, this lack of association is not related 

to a lower average dose being delivered (≈ 14 Gy) to the brain compared to the 

posterior fossa. The deleterious effects on IQ of whole brain irradiation have already 

been observed in patients with similar doses (69) or much lower doses (79,80). The 

authors attributed these differences to the methodology: the use of a dose index (i.e. 

average dose in the region) versus the percentage of volume receiving dose range 

(i.e. 0–5 Gy). 

 

4) Chemotherapy 

Chemotherapy has also been implicated in the emergence of cognitive difficulties in 

children treated for a medulloblastoma or more generally for a brain tumor (45,81). 

However, its specific contribution remains highly debated. In a study looking at 52 

children treated for malignant and benign brain tumors, those who received 

chemotherapy had lower IQs than who did not (45). However, the authors of this 

study did not appear to take into account important factors such as benign/malignant 

tumors vs. presence/absence of radiation therapy. Chemotherapy has also been 

associated with immediate and long-term memory impairment in patients with 

childhood brain tumors (82). According to the authors, chemotherapy could be a risk 

factor for future academic difficulties. However, other studies have shown no 



 
 

 

 

significant adverse effects of chemotherapy on cognitive development when 

compared to radiation therapy (6,73,83,84). 

One reason for these disparities is probably the fact that certain types of 

chemotherapy have unequal long-term consequences, some of which are more toxic, 

such as methotrexate. The administration of methotrexate significantly increases the 

occurrence of cognitive difficulties in children, compared to other drugs (81). The 

authors showed that groups treated with radiation therapy and chemotherapy 

including methotrexate had significantly lower cognitive performance than controls, 

especially in younger patients. In contrast, those treated with radiation therapy and 

chemotherapy without methotrexate had similar results to controls in most cognitive 

tests. Methotrexate is associated with white matter neurotoxicity and may cause 

leukoencephalopathy (85). It is currently difficult to estimate the impact of 

chemotherapy on cognition in patients treated for a brain tumor due to many 

confounding factors. In children treated for a medulloblastoma, chemotherapy is most 

often associated with radiation therapy, and this combination may result in more 

diffuse white matter injury (86,87).  

 

C. Environmental factors 

In addition to factors related to the disease and its treatment, the patient's family 

and school environment influence subsequent cognitive development. A recent study 

showed that the family’s socioeconomic level, measured by the mother's occupation, 

was a significant predictor of the level of neurocognitive deficits in children treated for 

medulloblastoma (88). Similarly, Palmer et al. (6) analyzed the effect of socio-

economic status (measured by the parents’ education level) on IQ change over time 

in children treated for medulloblastoma. Interestingly, a significant difference in 

average IQ was observed between high- and low socio-economic level groups and 



 
 

 

 

this difference was maintained as scores decreased over time. In other words, IQ 

differences exist between children of different socio-economic levels, but the IQ 

decline over time seems to be similar across groups.  

Socioeconomic level and family functioning were also reported to be associated 

with social adjustment or quality of life (13,89,90). Indeed, a stressful family 

environment and the inability of parents to develop strategies to adapt to the 

constraints associated with the disease (“coping resources") are factors associated 

with a higher risk of impairment (91). 

Finally, school adaptations and appropriate and timely rehabilitation interventions 

may have a significant impact on the academic performance of patients with PFT, 

promoting the implementation of strategies to minimize the impact of their cognitive 

difficulties (28,92,93). These environmental factors—which have a major influence on 

outcomes in other acquired brain pathologies such as traumatic brain injury—remain 

underexplored in children treated for medulloblastoma (13). Nonetheless, these 

variables could have a significant impact on the intellectual development of these 

children, and probably more generally children with brain tumors. Accounting for 

them would probably explain a non-negligible part of the variability observed among 

children treated for medulloblastoma. 

III. Interventions aimed to improve cognitive functioning, 

behavior and psychosocial functioning, academic 

achievement and community integration 

Given the broad range of deficits reported in many domains in this population, early 

comprehensive assessment is necessary. Given the delayed expression of cognitive 

deficits—impacting school, everyday life and long-term community integration—

assessments should be repeated over time, either at key transition periods (e.g. 



 
 

 

 

before entering primary or secondary school, or when vocational training questions 

arise), or when difficulties arise. Assessments should take into account various 

demographic, tumor- and treatment-related factors, as well as the environment in 

which the child lives, i.e. his/her family environment. The resources available at 

school and in the community are also very important to consider. Those assessments 

should allow early and individualized intervention and rehabilitation programs to be 

implemented as necessary. Careful assessment and discussion with the family 

should allow an adequate level of care to be implemented, while minimizing care-

related burden. Thus it is important to provide systematic long-term coordinated 

multidisciplinary follow-up until the child transitions to adult services. Individualized 

child- and family-based care can be implemented as needed (94,95). These 

individualized interventions should ideally be holistic and reviewed and adjusted 

regularly, as needs evolve over time. Interventions can thus include specific motor or 

cognitive interventions designed to improve a given skill, or a combination of 

interventions focused on various deficits. Psychosocial and school interventions, or 

implementation of special education services are also often needed at various times 

post-diagnosis, as well as family support interventions. For example, this can include 

interventions by physiotherapists, occupational therapists, speech and language 

therapists, psychologists and neuropsychologists, social workers, special school 

teachers, etc. (94,96).  

As an example, a comprehensive rehabilitation program devoted specifically to 

children and adolescents with acquired brain injury (including brain tumors) has been 

developed in the Paris area by the Saint-Maurice Hospitals. This program provides 

multi-disciplinary rehabilitation—which can start in the hospital if needed (in the most 

severe cases)—early and repeated contact with the professionals in the community 

who will support the child over the long term, as well as family support programs, 



 
 

 

 

addressing educational issues, and discharge planning neuropsychological 

assessments, which reveal the need for interventions and school adaptations when 

necessary (94).  

 

Also, a multidisciplinary consultation meeting was created in 1997 at the Gustave 

Roussy cancer center, in collaboration with family associations and the Saint-Maurice 

Hospitals (97), in which complex cases (but not complex enough to require the 

prolonged involvement of the outreach team) are examined in detail. Several 

professionals from the pediatric oncology department attend the meeting (oncologist, 

neuropsychologist, psychologist, child psychiatrist, educator, and specialized 

teachers who provide in-hospital schooling, etc.). Professionals caring for the child in 

the community, such as speech and language therapists, occupational therapists or 

physiotherapists are invited as well. Finally, an educator and a social worker from the 

Saint Maurice outreach team also attend the meeting for teenagers. During this 

meeting, the team proposes an intervention plan, including rehabilitation and school 

adaptations (modified curriculum, implementation of a personal school assistant, 

special education services, etc.). Those suggestions are made to the family. If they 

agree, the necessary work will be done to implement those decisions and a written 

document detailing the school adaptations is sent to the family, the teacher and the 

therapists working with the child.  

 

Rehabilitation should typically be combined with simple environmental interventions, 

such as appropriate placement in the classroom; adaptations of school curriculum 

and testing formats; providing more time to perform assignments; giving shorter 

assignments or using different testing formats to reduce the memory retrieval load 

(e.g. multiple choice or true/false responses); having the instructions clarified if 

needed; using written handouts to reduce the need to copy text from the blackboard; 



 
 

 

 

reducing the amount of homework, and promoting the use of computers to improve 

writing efficiency when needed (92,94). All of these multidisciplinary holistic programs 

usually yield good results (94,95). Unfortunately, one of the most frequent limitations 

of these holistic interventions is that they rarely measure treatment effects using 

ecological tasks that would show improvement of the patients’ performance in 

everyday life—they usually measure performance on various tests pre- and post-

intervention. Also, they hardly ever measure generalization of treatment effects to 

untrained tasks and the transfer to other contexts, as well as long-term maintenance 

of treatment effects after treatment completion (for a review on those issues, see 

Krasny-Pacini et al. (98,99)).  

 

Various approaches have been developed and are detailed below.  

 

A. Use of medications 

There have been a few studies on the use of stimulants to improve neurocognitive 

and learning outcomes in children diagnosed with brain tumors. They have been 

summarized in a recent systematic review (100) that identified a total of 226 

participants with ALL or brain tumors (n=121) who received cranial radiation therapy, 

randomized across four clinical trials. Promising results were found for 

methylphenidate in improving attention, processing speed, cognitive flexibility, social 

skills and academic competence, using direct and indirect parent- and teacher-rating 

measures. In the long-term follow-up of treatment effectiveness, parent and teacher 

ratings of attention, social skills and behavior were significantly improved, however 

changes on standardized measures of academic attainment did not reach statistical 

significance. Results also suggest that male gender, older age when treated and 



 
 

 

 

higher baseline IQ are predictive of greater response to methylphenidate at a dose of 

0.6 mg/kg.  

 

Lithium is an agent that has been used for psychiatric disorders for decades, but 

recently there has been emerging evidence that it can have a neuroprotective effect. 

Lithium exerts neuroprotective effects and is associated with less cognitive loss in 

various brain-injury models, including after CSI (101,102). One study used three-

dimensional magnetic resonance imaging and brain segmentation to evaluate the 

effect of lithium on grey-matter volume in patients with bipolar mood disorder. Four 

weeks of lithium treatment increased brain grey-matter content (103) and 

hippocampal volume (104). There has been one early-phase study in adults in which 

lithium was used as a neuroprotectant (105,106). A phase I study in children with 

brain tumors will be performed in Europe. 

 

B. Interventions aimed at improving a specific cognitive 

skill 

Cognitive rehabilitation aims to restore lost cognitive functions, or at least to teach 

the patient the skills needed to compensate for cognitive deficits that cannot be 

restored.  

As an example, Slomine and Locasio  (107) reviewed cognitive rehabilitation 

programs for children with acquired brain injury (ABI) and Wolfe et al. (23) reviewed 

interventions focused on executive dysfunction in posterior fossa tumor survivors. 

Overall, there are very few experimental rehabilitation studies that have included 

brain tumor survivors, but there is emerging evidence of cognitive rehabilitation being 

effective. Positive effects are often found for cognitive functions that have been 



 
 

 

 

specifically trained. However, long-term maintenance of the effects, generalizability to 

other untrained tasks and transfer to everyday life activities are very rarely reported. 

Butler and Copeland (108) developed a promising program aimed at improving 

attention deficits in cancer survivors that combined various approaches: attention 

process training, metacognitive strategies, and cognitive behavioral strategies. The 

program consisted of 20 two-hour sessions over 4 to 5 months with a therapist. 

Results of a pilot study were encouraging, but there was no evidence of 

generalization and transfer (108). Results of a larger controlled study (109) (waitlist 

control group) with 161 childhood cancer survivors who had undergone CNS 

treatment, revealed improvements in brief attention, working memory, memory and 

learning strategies, vigilance, as well as parents’ perceptions of cognitive problems 

and attention, and in all academic domains except reading comprehension.  

Hardy et al. (110) tested a computerized home-based 12-week intervention program 

in a small group of cancer survivors, and reported a trend towards better working 

memory scores, along with a decrease in parent-reported attention problems.   

Kesler et al. (111) performed a pilot study of an online cognitive rehabilitation 

program (8 weeks – 40 sessions), focused on cognitive flexibility, attention and 

working memory in childhood cancer survivors. They concurrently studied brain 

activation in functional MRI. Post-intervention, improvements were found in 

processing speed, cognitive flexibility, verbal and visual declarative memory scores, 

as well as significantly increased pre-frontal cortex activation compared to baseline. 

Such studies are promising, but as most published studies, no long-term outcomes or 

mention of generalization to untrained tasks and transfer to everyday life activities 

was made. These issues should be priorities for future studies (112).  

Finally, since recent data indicate that aerobic exercise has been associated with 

improved cognitive outcomes in children and in aging adults (113–115), a pilot study 



 
 

 

 

performed by Wolfe et al. (116) used a functional MRI protocol to investigate the 

relationship between working memory and cardiorespiratory fitness in 9 adolescent 

survivors of posterior fossa tumors treated with CSI. Higher cardiorespiratory fitness 

was related to better performance on a behavioral measure of working memory and 

more efficient neural functioning in the functional MRI task. Results suggested that 

cardiorespiratory fitness might be associated with more efficient neural processing in 

survivors. Future studies should explore the direct effects of cardiovascular exercise 

on cognitive functioning in this population. This possibility is supported by the review 

by Diamond and Lee (117) on interventions shown to aid executive function 

development in children 4 to 12 years of age. They found that aerobic exercise 

robustly improves prefrontal cortex functions and executive functions (EF) in adults. 

These findings are supported by studies performed in children also: running / aerobic 

exercise improves 8 to 12 year-olds’ cognitive flexibility and creativity, and 

significantly more than standard physical education; it improves EF and math in 7 to 

11 year-old overweight children. Diamond and Lee (117) suggest that sports might 

benefit EFs even more than aerobic exercise alone, as sports also require sustained 

attention, working memory, and disciplined action, and they bring joy, pride, and 

social bonding. Recently, in  a clinical trial with crossover of exercise training versus 

no training, Riggs et al., (118) showed that exercise training promoted the increase of 

white matter and hippocampal volume, and improved reaction time in children treated 

with CSI for brain tumors. 

 

C. Interventions focused on behavior and social skills 

Interventions for school re-entry are necessary, but not sufficient. Information needs 

to be given to teachers and peers, as well as information on the child’s strengths and 

weaknesses and ways to help him/her most effectively. Social skills training is also 



 
 

 

 

recommended to optimize social reintegration, improve peer relationships and 

prevent long-term social isolation, which are important to the child’s subsequent 

development (3).  

Slifer and Amari (119) reviewed the behavioral interventions available for children 

with ABI. Most of the research in this field is based on case studies, or studies 

employing single-subject experimental designs. Overall, the literature supports the 

efficacy of such behavioral interventions in childhood ABI, across ages, injury 

severities, and stages of recovery. The authors provide guidelines for behavior 

management that can be very useful in clinical practice.  

Social skills appear to be important determinants of social reintegration. Recurrent 

themes emerging from group discussions with brain tumor survivors are ‘being made 

fun of by peers’ and ‘lack of friendships with classmates’ (120). As these difficulties 

do not seem to improve spontaneously over time, and tend to persist into 

adolescence and adulthood, Barrera and Schulte (120) developed a social skills 

intervention program. It targets children aged 8–16 years, is performed in a small 

group format, and aims to improve the following social skills: assertiveness, handling 

teasing by peers, making new friends, cooperation, empathy and conflict resolution. 

The intervention consisted of eight two-hour weekly sessions, focusing on the 

following social skills: social initiation and friendships, cooperation, managing teasing 

and bullying, conflict resolution, empathy, and assertion with self-confidence building. 

Overall, the intervention was feasible, and participants and their parents reported that 

it helped them improve relationships with friends and peers or parents/family, and 

helped them express feelings about experiences with peers and parents/family. Most 

participants said that meeting other children with similar experiences was beneficial. 

The intervention led to significant improvement in parent-rated social skills, self-

control and health-related quality of life, without changes in behavior or depression 



 
 

 

 

(which was not present to start with). Improvements were maintained at the 6-month 

follow-up. 

 

D. Interventions focused on families  

Disability and the disease affect not only the child, but the whole family. In addition to 

the cancer-related issues, changes in the child’s personality, behavior and emotions 

could be conceptualized as the child’s response to the poor fit between the 

environmental expectations held of him and his current neurodevelopmental 

capabilities. As the growing child encounters increasing demands and fails to make 

age-appropriate acquisitions, the person–environment fit can worsen, thus 

contributing to an expanding pattern of disability as time goes by. Cole et al. (121)  

reviewed studies in which family interventions for pediatric ABI were assessed, and 

then provided theoretical clinical guidelines for those interventions to guide clinicians. 

Unfortunately, few studies were included in this review, and even fewer were 

controlled studies. They were classified as “promising but not yet validated” or 

“probably effective”. Since then, a number of online programs have been developed 

and assessed using robust randomized controlled studies, and it has been shown 

that age-adapted family problem solving interventions are effective, mostly in 

traumatic brain injury context (122,123). Those studies may be relevant for children 

and youth with brain tumors as well. 

 

Ideally, the various interventions should be tailored to each child’s deficits, strengths 

and weaknesses, to the availability of care in the community, and to the child’s and 

family’s choices and preferences. The interventions should be coordinated by an 

experienced rehabilitation team working closely with the education team. 

 



 
 

 

 

IV. Transition into adulthood 

Long-term survivors of childhood medulloblastoma often suffer long-standing motor 

and cognitive deficits (22,27), which impact their independence in adulthood and 

employment. Despite often being able to obtain a diploma, patients can have 

difficulty finding and especially maintaining a job, or they might need special 

adaptations in their workplace (i.e. reducing the pace, avoiding multi-tasking, etc.) or 

need to work less (i.e. working part-time) because of disabling persistent fatigue. 

Further, some patients may lack motivation or energy, or suffer mood disorders such 

as anxiety and depression. 

Recently, there has been growing interest in the transition to adulthood for survivors 

of childhood brain tumors (124–126). In France, a long-term oncology follow-up clinic 

was created in January 2012 at two cancer centers (Gustave Roussy and Institut 

Curie) (127). All survivors over 18 years of age with at least 5 years’ follow-up since 

diagnosis were invited to attend this clinic. The outreach team for children and youth 

with ABI in the Saint Maurice Hospitals also has developed a specific support system 

for the older teenagers and young adults (16–25 project). This team aims to help 

young adults find adequate professional training, develop independence (e.g. in 

administrative documents), and refine a plan defining which adult structure would be 

most adequate for their subsequent follow-up (94). The patients who need physical 

medicine and rehabilitation follow-up in an adult department are referred to the 

appropriate unit based on their needs. Some families are also referred to an 

association composed of lawyers that provide legal guidance and assistance to 

young people about administrative and financial issues. They also provide skill 

assessments and help patients find a career path that takes into account their 

cognitive impairment. 



 
 

 

 

 

Conclusion 

Medulloblastoma is a chronic disease. Patients in remission often suffer a number of 

very diverse, long-standing impairments (endocrine, growth and neurological deficits, 

neuropsychological impairments, mood, emotional and psychosocial difficulties, etc.), 

which have negative consequences on their social participation and professional 

integration. In addition to oncological and endocrine follow-up, they require 

specialized and coordinated multidisciplinary rehabilitation follow-up that provides 

timely and adapted assessments. The assessments should identify the patient’s 

strengths and weaknesses, as well as the patient’s and family’s goals. Taken 

together, these elements help to define and implement personalized intervention 

goals with the patient and their family. The goals should be reviewed over time as 

impairments appear or change with increasing demands (especially at school). 

Follow-up should be continued until the child is old enough to be referred to adult 

services.  
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