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Centre d’Etude de la Sensorimotricité, (CNRS UMR 8194), Université Paris Descartes, Institut des Neurosciences et de la Cognition, Sorbonne Paris Cité, Paris, France

Abstract

Several experimental studies in the literature have shown that even when performing purely kinesthetic tasks, such as
reaching for a kinesthetically felt target with a hidden hand, the brain reconstructs a visual representation of the movement.
In our previous studies, however, we did not observe any role of a visual representation of the movement in a purely
kinesthetic task. This apparent contradiction could be related to a fundamental difference between the studied tasks. In our
study subjects used the same hand to both feel the target and to perform the movement, whereas in most other studies,
pointing to a kinesthetic target consisted of pointing with one hand to the finger of the other, or to some other body part.
We hypothesize, therefore, that it is the necessity of performing inter-limb transformations that induces a visual
representation of purely kinesthetic tasks. To test this hypothesis we asked subjects to perform the same purely kinesthetic
task in two conditions: INTRA and INTER. In the former they used the right hand to both perceive the target and to
reproduce its orientation. In the latter, subjects perceived the target with the left hand and responded with the right. To
quantify the use of a visual representation of the movement we measured deviations induced by an imperceptible conflict
that was generated between visual and kinesthetic reference frames. Our hypothesis was confirmed by the observed
deviations of responses due to the conflict in the INTER, but not in the INTRA, condition. To reconcile these observations
with recent theories of sensori-motor integration based on maximum likelihood estimation, we propose here a new model
formulation that explicitly considers the effects of covariance between sensory signals that are directly available and internal
representations that are ‘reconstructed’ from those inputs through sensori-motor transformations.
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Introduction

A number of previous studies have suggested that the CNS
plans and executes targeted movements of the hand using a visual
representation of the movement even when the target is presented
kinesthetically (e.g. pointing with one hand to the other) and even
when no visual feedback about the hand is allowed [1–5]. This is
in apparent contrast with our own studies on human sensori-motor
integration [6,7] in which we observed that if subjects were asked
to align their hidden hand to the orientation of a kinesthetically felt
target, they completely ignored the information related to the
visual scene, indicating that the brain executes purely kinesthetic
tasks (K-K: kinesthetic target and kinesthetic response) without
using a visual representation of the movement. This apparent
contradiction, however, could be related to a fundamental
difference between the motor tasks that the subjects were asked
to perform in these different sets of studies. Whilst in our study
subjects felt and reproduced the target position/orientation with
the same hand, participants in the other aforementioned studies
had to sense the target with the left hand or with a foot, hidden
under a table, and reproduce its position with the right hand.
Based on this observation, we postulated that the use of a visual
representation of the movement could be related to the necessity of
performing an inter-limb transformation of the kinesthetic
information.

We set out to test this hypothesis by asking healthy volunteers to
reproduce, by pronating/supinating their unseen hand, a kines-
thetically memorized orientation (i.e. in a replication of the K-K
condition of our previous study [6]) and we compared their
responses in two different conditions (Figure 1). In the first, called
INTRA-manual, subjects memorized and reproduced the orien-
tation with the same hand. In the second, called INTER-manual,
subjects memorized the orientation with one hand and responded
with the other. Note that in the INTER-manual task, subjects
could have simultaneously sensed the target with one hand and
reproduced the target orientation with the other. We chose instead
to have subjects reproduce the target from memory even in the
bilateral task, so that any differences observed between INTER
and INTRA could not be attributed to differing memory
requirements of the tasks.
In both INTER and INTRA, we exploited the peculiarity of our

reach-to-grab paradigm in virtual reality that allows us to assess
the weight given to visual information even when the subject had
only kinesthetic sensory inputs to control the movement [6,7].
Specifically, subjects were asked to tilt the head laterally after the
target memorization and during the head movement of half of the
trials we introduced an imperceptible sensory conflict between the
orientation of the visual scene and the direction of gravity. Under
these circumstances, deviations of the final hand orientation
should be proportional to the relative weight given to the visual-
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scene versus gravito-kinesthetic information used to control the
movement. If our hypothesis is correct, we expect visual encoding
to play a role – and hence we expect to see a deviation of the
responses due to the visual scene tilt – in the INTER-manual, but
not in the INTRA-manual task.
In an effort to explain our results, we applied models of optimal

sensory-motor integration based on the maximum likelihood
principle (MLP), which falls in the domain of Bayesian optimal
estimation [8–16]. Recent models assume that to control goal-
directed upper-limb movements the brain evaluates the difference
between target and hand concurrently in visual and kinesthetic
reference frames [4,6,7,17]. When direct sensory information is
not available in one or more sensory modalities, internal
representations of the target or hand may be ‘reconstructed’ via
coordinate transformations, through recurrent neural networks in
the parietal cortex (for review see [18]). Thus, when reaching a
visual target with an unseen hand, the CNS might, for instance,
reconstruct a visual representation of the hand to be compared
with the available sensory information about the target. The
relative weight given to the comparisons performed in visual or
kinesthetic space would be determined by the expected variability
within each representation, taking into account the variability
added by any sensori-motor transformations that may be required
[14,19–21].
In the context of this model, we asked whether kinesthetic

information from the two hands is encoded in a single, kinesthetic,
perhaps trunk-centered, reference frame, allowing them to be
directly compared, or whether the kinesthetic information from
the right and left arms is encoded in two different, arm-specific
reference frames, perhaps centered on each shoulder [22], and
thus requiring sensory transformations between them. For each of

these two alternatives we proposed the corresponding mathemat-
ical formulation of the model (Figure 2), and we tested their ability
to predict subjects’ performance on each task. We then considered
the effects of co-variance between transformed sensory signals as a
means of reconciling the predictions of MLP with our experimen-
tal observations and with our hypothesis that the brain
reconstructs concurrent movement representations only if a direct
target-hand comparison is not possible [6].

Results

Figure 3 shows for the INTRA and INTER-manual conditions
the average responses to each target orientation in trials without
conflict, which do not differ appreciably between the two
experimental conditions: statistical analyses on the aligning errors
showed no significant effect of the experimental condition
(ANOVA F(1,15) = 2.13, p = 0.17) or interactions between condi-
tion and target orientation (ANOVA F(6,90) = 0.92, p= 0.49). On
the other hand, clear differences can be observed in Figure 4 for
the responses in the trials with conflict: in the INTRA condition
the responses were not consistently deviated by the conflict, in the
INTER condition conflict caused the responses to all target
orientations to be deviated in the same direction. These latter
observations were confirmed by the statistical analysis of the global
deviation of the responses. Figure 5A shows that in the INTER-
manual condition responses were significantly deviated by the
inclination of the visual surround (one-tailed t-test with respect to
0%: t(15) = 2.27, p = 0.02), whilst no statistical difference from the
null deviation could be detected in the INTRA-manual condition
(one-tailed t-test with respect to 0%: t(15) =20.37, pw0.25). The
differing effects between the two experimental conditions was

Figure 1. Experimental conditions. In both INTRA- and INTER-manual condition subjects felt the orientation of a kinesthetic target and
reproduced it by prono-supinating the hand (blue arrows). Subjects never saw their hand, thanks to a virtual reality system. Whilst in the INTRA
condition the subject sensed the target and reproduced the orientation with the same (right) hand, in the INTER condition targets were sensed with
the left and reproduced with the right. To detect the use of visual representation of the task, in some of the trials the virtual scene imperceptibly
rotated with respect to gravity (red arrows).
doi:10.1371/journal.pone.0068438.g001
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confirmed by a significant difference between the INTRA- and
INTER-manual conditions (ANOVA F(1,15) = 8.81, p = 0.009).
The comparison of the response variability between the two
experimental conditions, reported in Figure 5B, shows that
subjects were more precise when they had to reproduce an
orientation felt with the same hand than with the other hand
(ANOVA F(1,15) = 10.38, p = 0.005).

Theoretical Modeling
Given the clear empirical observations shown above, we then

undertook a mathematical analysis to better understand the
implications of these results for recent theories of sensorimotor
integration. To represent the performance of this task, we
considered the two candidate models shown in Fig. 2, both of
which assume that the brain performs concurrent target-hand

Figure 2. Models of sensory-motor integration. Both models A
and B assume that the brain can perform concurrent visual and
kinesthetic comparisons (DV , DK ) between the target (T) and the hand
(H) and optimally combine the results of these comparisons to estimate
the target-hand distance (D). Both models also include the possibility of
performing sensory reconstructions of the information about the target
and the effector, as represented by the green arrows. Model A does not
distinguish between the kinesthetic information from left and right limb
and they can be compared directly, therefore two concurrent
comparisons are possible (DV , DK ). For model B kinesthetic
information about the target and the response can be directly
compared only if they come from the same limb. Therefore this model
explicitly differentiates three concurrent references frames for the
comparisons: visual (DV ), kinesthetic linked to the right limb (DKR) and
kinesthetic linked to the left limb (DKL).
doi:10.1371/journal.pone.0068438.g002

Figure 3. Subject responses to each target orientation in the
INTRA- and INTER-manual conditions for the trials without
conflict. Thick lines are the average responses (transparent areas’
width represent the standard error) of all subjects, combining trials with
left and right head tilt as explained in the methods.
doi:10.1371/journal.pone.0068438.g003

Figure 4. Subject responses to each target orientation in the
INTRA- and INTER-manual conditions. The responses for the trials
with and without conflict are represented separately. Thick lines are the
average responses (transparent areas’ width represent the standard
error) of all subjects, combining trials with left and right head tilt as
explained in the methods. Green arrows represent the measured
responses’ deviations due to the tilt of the visual scene.
doi:10.1371/journal.pone.0068438.g004

When Kinesthesia Becomes Visual

PLOS ONE | www.plosone.org 3 July 2013 | Volume 8 | Issue 7 | e68438



comparisons in different sensory modalities and then optimally
combines the result of these comparisons to create the movement
vector (D). For model A, D~wDVDVzwDKDK . For model B
D~wDVDVzwDKL

DKLzwDKR
DKR (for details about the nota-

tions, see the caption to Figure 2). Both models also assume that
the brain can reconstruct missing information from available
signals through recurrent neural networks (for review see [18]). To
make predictions using these two models, we hypothesized that the
weighting (w) of each individual comparison would be determined
by the maximum likelihood principle, which states that the two or
three quantities computed in each case will be combined
according to the relative variance of each signal (see Methods).
We assumed that sensorimotor transformations add variability
[19–21], such that reconstructed signals will have greater variance
than the source signal. Note that this is a slight simplification. A
transformation might literally add stochastic noise if the transfor-
mation involves the integration of the primary signal with other,
noisy sensory inputs. But transformations might also amplify the
variability of the primary signal if they included distortions,
perceptual biases or other non-linearities. We assume here,
however, that on a target-by-target basis the effects of such
distortions will be small, such that the effects of a sensorimotor
transformation on the variability of the transformed output can be
adequately represented by the simple addition of variance and that
the MLP equations can be applied directly to the sum, as was done
in other sensori-motor integration models [4,14]. We hence
computed relative weights between directly sensed and recon-
structed comparisons based on the assumption that transforma-
tions add variance [6].
With few exceptions [23], all studies in Neuroscience to date

have, to our knowledge, applied the maximum likelihood
equations as if the original and reconstructed signals are
independent (i.e. uncorrelated). To demonstrate the limitations
of that approach, and to gain insight into how covariance might
affect the results, we first computed the model predictions without
taking into account the covariance between the original sensory
inputs and internal representations that are computed through

sensorimotor transformations of those signals. Applying Eqs. 4 and
5 from the Methods for model A we have:

wDV~
s2DK

s2DKzs2DV
ðA1Þ

wDK~
s2DV

s2DKzs2DV
ðA2Þ

where s2DK and s2DV are the variance associated to the kinesthetic
and visual comparison respectively. For model B, applying Eqs 6–
8 from the Methods gives:

wDV~
s2DKLs

2
DKR

s2DVs
2
DKR

zs2DVs
2
DKL

zs2DKL
s2DKR

ðB1Þ

wDKL
~

s2DVs
2
DKR

s2DVs
2
DKR

zs2DVs
2
DKL

zs2DKL
s2DKR

ðB2Þ

wDKR
~

s2DVs
2
DKL

s2DVs
2
DKR

zs2DVs
2
DKL

zs2DKL
s2DKR

ðB3Þ

where s2DKL , s
2
DKR

, and s2DVare the variances associated to the left-

hand kinesthetic, right-hand kinesthetic and visual comparison

respectively. The net variance of each of the comparisons, s2DV ,

s2DK , s
2
DKL

and s2DKR , depends on the variance of the input signals

(e.g. s2T ,K , the variance of target orientation as measured via

kinesthesia) and the variance added by any sensorimotor trans-
formations required to reconstruct an internal representation (e.g.

s2T ,K?V , representing the variance added when transforming

target information from the kinesthetic to visual domains, includ-
ing the variability of the sensory information that allows one to
measure the orientation of the head, such as the visual scene,
vestibular signals and neck proprioception). For the detailed
equations defining the variance of each comparison, depending on
the experimental conditions and hypotheses, see Figure 6. In order
to reduce the number of parameters of the model and allow a
meaningful fitting to the experimental data, the following
assumptions were made:

N The variability of the kinesthetic information from the left and
right arm was similar [24]: s2T ,KR

~s2T ,KL
~s2H,KR

~s2H,KL
.

N The variance associated to the inter-limb transformation of
kinesthetic information about the target and about the
response was the same (s2T ,KR<KL

~s2H,KR<KL
).

N The variance associated to the reconstruction of visual infor-
mation from kinesthesia from either the right or left arm was
the same (s2T ,KR<V~s2T ,KL<V~s2H,KR<V~s2H,KL<V ).

Note that asymmetries in errors when matching kinesthetic or
visual targets with the right or left hand [25] mean that the last of
these three assumptions may not be entirely true. We nevertheless
adopted these assumptions so as to reduce the number of free

parameters to three (variance of the kinesthetic signals s2K ,
variance due to inter-limbs transformations s2KR<KL

and variance

due to visuo-kinesthetic transformations s2K<V ) whose values could

Figure 5. A. Experimental results for the deviation of responses
induced by the imperceptible tilt of the visual scene and the variability
of responses in the INTRA- and INTER-manual conditions. Results are
expressed as a percentage of the theoretical deviation expected if
subjects aligned the response with respect to the visual scene. B.
Average within-subject variability (standard deviation) of the response
without conflict. In both panels vertical whiskers represent the 0.95
confidence intervals. Stars represent the significance of the main effects
in the ANOVA and the results of the t-test comparison with the nominal
0% value. (** pv0:01; * pv0:05).
doi:10.1371/journal.pone.0068438.g005
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be determined to best fit the experimentally observed values of
response deviation and response variability that are reported in
Figure 5.
Figure 6 shows the model predictions based on equations A1–

A2 and B1–B3, i.e. when co-variation between sensory signals and
reconstructed internal representations is ignored. To the left we
show a 262 grid, corresponding to the predictions of each of the
two models (A and B) for each of the two experimental conditions
(INTRA and INTER). Within each model we show the sources of
variance associated with each individual comparison necessary for
equations A1–A2 and B1–B3, including the noise associated with
input signals that are present and variance added by any sensory
transformations that may be required. Sensory inputs that are not
available directly are grayed out in the schematic diagrams. To the
right we superimpose on the experimental data the predictions of
each of the two models with weights calculated from equations
A1–A2 and B1–B3 that best fit all of the data (deviations and
variability). The estimated variability associated with the kines-
thetic information and each transformation as a result of the best-
fit procedure are shown in Table 1.
From this analysis one can eliminate Model A as an explanation

of the empirical data. According to this model, there is no
difference between comparing the posture of the right hand to the
left hand versus comparing the right hand’s posture with itself.
Thus, this model predicts precisely the same weight given to the
visual comparison, and thus precisely the same deviations of the
response due to tilt of the visual scene between the INTER and
INTRA tasks. Model A also predicts that the variability of

responses will be equal between the INTER and INTRA tasks.
We observed, however, a statistically-significant difference in both
deviation and variability between the INTER and INTRA
conditions, inconsistent with these predictions (two-tailed t-test
between Model A’s prediction and the experimentally observed
difference for response deviations between the INTER and
INTRA conditions: t(15) = 3.0, pv0.01).
Model B does a better job of capturing the qualitative features of

the measured data. According to this model, comparing the
posture of the left hand to the right hand requires inter-limb
sensory transformations. Thus, the kinesthetic comparisons will be

Figure 6. Model predictions when MLP is applied while ignoring the covariance between direct and reconstructed sensory signals.
On the right, graphical representations of the information flow for model A and B and for the INTRA and INTER conditions, together with the
equations of the variance corresponding to each concurrent target-hand comparison. The best-fit Model A predicts equal weight given to visual
versus kinesthetic information between the INTRA and INTER tasks, and the same response variability in both cases. Model B predicts a greater
weighting of visual information and higher response variability for the INTER task, qualitatively similar to the empirical data, but does not correctly
predict a zero weighting of visual information in the INTRA-manual task.
doi:10.1371/journal.pone.0068438.g006

Table 1. Values (expressed in u) of the predicted variability
(695% confidence interval) associated with the kinesthetic
information (sK ), inter-limb kinesthetic transformations
(sKL<KR

) and visuo-kinesthetic reconstructions (sK<V ) that
best fit the experimental data for the models in Figure 2.

sK sKL<KR
sK<V

Model A 8.5+0.3 – 22.8+14.5

Model A9 8.1+0.3 – –

Model B 8.1+0.5 16.0+3.5 20.2+14.7

Model B9 7.2+0.3 17.2+1.6 17.2+1.8

doi:10.1371/journal.pone.0068438.t001
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more variable in the INTER task compared to the INTRA task.
This allows the model to predict a different weighting between
visual and kinesthetic information for the INTER vs. INTRA
tasks, meaning that the deviations induced by rotations of the
visual scene and the overall variability of responses are expected to
be greater in the INTER task than in the INTRA task.
Nevertheless, Model B, with weights computed to best fit the
data, predicts a smaller differential of the response deviations
between the INTRA and INTER tasks than what we actually
observed (two-tailed t-test between Model B’s prediction and the
experimentally observed difference in response deviations between
the INTER and INTRA conditions: t(15) = 2.2, pv0.05). Indeed,
using reasonable assumptions about the relative amounts of
variability in each sensory signal and in each sensory reconstruc-
tion, one cannot expect to see zero weight given to a visual
comparison in the INTRA condition using Model B, even though
that is what we observed experimentally.
This inability to reproduce the deviation data with Model B was

insensitive to the precise values of response variability used to
perform the fitting. The only way that one could expect to see the
observed difference in deviations between INTER and INTRA
with Model B would be if the difference in response variability
between INTRA and INTER was much greater than what was
observed. But to achieve the better than 7:1 ratio that would be
required to reproduce the deviation data with Model B, either the
overall response variability would have to be much smaller

(
ffiffiffiffiffi
s2

p
&0) in the INTRA condition or much larger (

ffiffiffiffiffi
s2

p
&70) in

the INTER condition than the actually observed values

(
ffiffiffiffiffi
s2

p
~10:2+ 1.9 for INTRA and

ffiffiffiffiffi
s2

p
~12:5+2:5 for INTER).

To adequately fit both the deviation and variability data we
needed to take into account the covariance between a recon-
structed signal and its source when computing the MLP weights.
As explained in the Methods section, this means that the relative
weighting of the parallel comparisons is based on the variance of
the independent components of each comparison, neglecting the
variance of the common components. In Figure 7 we therefore
report the variance associated to each possible comparison with
the component of the variance common to all branches grayed
out.
For model A we note that there is no component of variance in

kinesthetic comparison DK that is not also included in the visual
comparison DV . Applying Eqs. 16–17 of the Methods, the
predicted weight is zero for the visual comparison and one for the
kinesthetic comparison for both INTER and INTRA conditions:

wDV~
0

s2T ,K?Vzs2H,K?V

~0 ðA01Þ

wDK~
s2T ,K?Vzs2H,K?V

s2T ,K?Vzs2H,K?V

~1 ðA02Þ

Because both conditions rely on DK only, one should also
observe equal variance of responses between the two conditions.
The statistically significant differences of deviations and variability
between INTER and INTRA, and the statistically non-zero
weight given in to visual information in the INTER condition
mean that Model A should be rejected even if covariance is taken
into account (two-tailed t-test between the predictions of A’1–A’2
and the experimentally observed difference for response deviations
between the INTER and INTRA conditions: t(15) = 3.0, pv0.01).

On the other hand applying the same concepts for Model B
does predict different results between the INTER and INTRA
conditions. As shown in Figure 7, for the INTRA situation, there is
no variance associated with the direct intra-manual comparison
DKR that is not also included in DKL and DV . Applying Eqs. 18–
20 to this situation gives the following weights for the three
concurrent comparisons:

denominator~0:(s2T ,KR?KL
zs2H,KR?KL

)z

0:(s2T ,KR?Vzs2H,KR?V )z

(s2T ,KR?KL
zs2H,KR?KL

)(s2T ,KR?Vzs2H,KR?V )

~(s2T ,KR?KL
zs2H,KR?KL

)(s2T ,KR?Vzs2H,KR?V )

wDV Dintra~

0:(s2T ,KR?KL
zs2H,KR?KL

)

(s2T ,KR?KL
zs2H,KR?KL

)(s2T ,KR?Vzs2H,KR?V )
~0

ðB01Þ

wDKL
Dintra~

0:(s2T ,KR?Vzs2H,KR?V )

(s2T ,KR?KL
zs2H,KR?KL

)(s2T ,KR?Vzs2H,KR?V )
~0

ðB02Þ

wDKR
Dintra~

(s2T ,KR?KL
zs2H,KR?KL

)(s2T ,KR?Vzs2H,KR?V )

(s2T ,KR?KL
zs2H,KR?KL

)(s2T ,KR?Vzs2H,KR?V )
~1

ðB03Þ

No weight will be given to either DKL or DV and thus, the
deviation of the responses in the INTRA condition is predicted by
Model B to be strictly zero. On the contrary, Figure 6 shows that
in the INTER condition each of the comparisons DKL, DKR and
DV contains a component of variance that is not included in the
two others, because each comparison requires at least one
transformation, the transformations are all different, and each of
these transformation adds variability that is independent from the
others. In this case applying Eqs. 18–20 predicts that some non-
zero weight will be given to each of the three comparisons to
determine the optimal outcome.

wDV Dinter~

s2T ,KL?KR
s2H ,KR?KL

(s2T ,KL?Vs
2
H,KR?V )s

2
T ,KL?KR

z(s2T ,KL?Vs
2
H,KR?V )s

2
H,KR?KL

zs2H,KR?KL
s2T ,KL?KR

ðB04Þ

wDKL
Dinter~

(s2T ,KL?Vzs2H,KR?V )s
2
T ,KL?KR

(s2T ,KL?Vs
2
H,KR?V )s

2
T ,KL?KR

z(s2T ,KL?Vs
2
H,KR?V )s

2
H,KR?KL

zs2H,KR?KL
s2T ,KL?KR

ðB05Þ

When Kinesthesia Becomes Visual

PLOS ONE | www.plosone.org 6 July 2013 | Volume 8 | Issue 7 | e68438



wDKR
Dinter~

(s2T ,KL?Vzs2H,KR?V )s
2
H,KR?KL

(s2T ,KL?Vs
2
H,KR?V )s

2
T ,KL?KR

z(s2T ,KL?Vs
2
H,KR?V )s

2
H,KR?KL

zs2H,KR?KL
s2T ,KL?KR

ðB06Þ

The estimated variances associated with the kinesthetic infor-
mation and sensory transformations as a result of the best-fit
procedure are shown in Table 1. The non-zero weight given to
DV means that Model B does predict a deviation of responses due
to tilt of the visual scene. Unlike for the predictions of Eqs. B1–B3,
predictions made by taking into account the covariance when
applying MLP (Eqs. B’1–B’6) are not statistically different from the
empirically estimated difference in weights between the INTER
and INTRA conditions (two-tailed t-test between the predictions
of Model B’ and the experimentally observed difference for
response deviations between the INTER and INTRA conditions:
t(15) = 0.4, pw0.70). The variability added by the different
transformations also means that the final variance of responses is
expected to be greater for the INTER condition, compared to the
INTRA condition, which is what we observed. Equations B’1–B’6
are therefore able to fit the salient features of the empirical data
(deviation of responses in INTER but not INTRA, different
variability between INTER and INTRA).

Discussion

The results show that, for a purely kinesthetic task of
reproducing a kinesthetically sensed orientation with an unseen
hand (K-K condition), the brain gives significant weight to visual
information when the task requires an inter-limb information
transmission (INTER condition), but not when subjects memo-
rized and responded with the same hand (INTRA condition). The
lack of a significant effect of visual information in the INTRA
condition matches our previous results [6] and is coherent with
studies of reaching movements in which subjects also used the
same arm to feel the target and to reproduce its remembered
position [26–29]. The use of visual encoding in otherwise purely
kinesthetic pointing tasks has nevertheless been observed in a
number of studies that have required comparing one limb to
another [1,4,5]. Our results suggest that the use of visual encoding
in these studies was most likely due to the bilateral nature of the
task and that responses would have been different if the subjects
had used the same limb to feel the target and to reproduce its
position.
In our previous work [6] we concluded that the CNS avoids

reconstructing sensory information whenever a direct target-
effector comparison is feasible and that if a sensorimotor
transformation cannot be avoided, the CNS creates concurrent
representations of the task in multiple reference frames potentially

Figure 7. Model predictions when covariance is taken into account in the calculation of the optimal weights for each individual
comparison. On the right, graphical representations of the information flow for Model A’ and B’ and for the INTRA and INTER conditions, together
with the equations of the variance corresponding to each concurrent target-hand comparison. Components of variance common to all branches, and
hence not used to define the relative weights for D, are grayed out. Model A’ predicts that there will be no reconstruction of the task in visual space
for either INTRA or INTRA, because there is no variance in the DK comparison that is not included in the DV comparison. Deviation of the response
with visual scene tilt should be 0 and the variance of the response should be the same for both conditions. Model B’ predicts that the task will be
carried out only in kinesthetic space for the INTRA condition, but that both kinesthetic and visual comparisons will be made in the INTER condition.
Only Model B’ can accurately fit the data.
doi:10.1371/journal.pone.0068438.g007
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tied to other sensory modalities. Based on the reconstruction of a
visual representation in the INTER condition observed here, we
therefore postulate that inter-manual comparisons require senso-
rimotor transformations and are therefore not ‘direct’. Indepen-
dent support for this hypothesis can be found in the literature.
Baud-Bovy and colleagues [27] showed that variable errors are
oriented toward the left or the right shoulder depending on the
arm used to memorize the kinesthetically-presented target,
suggesting the existence of distinct reference frames tied to each
arm. A transformation would therefore be required to compare
the position of the two hands. Evidence for arm-specific reference
frames for the control of pointing movements to visual targets has
also been reported [19,22,30,31]. The recreation of the task in
multiple, alternative reference frames has been reported for other
tasks as well. Just as we saw a reconstruction of the task in an
alternative (visual) reference frame in the INTER, but not in the
INTRA condition, Rao and colleagues [29] reasoned that tactile
information plays more of a role in a bilateral reaching task, as
compared to a unilateral one, because the bilateral tasks requires a
transformation anyway, and so it made sense to transform the task
into tactile space as well. Subjects did use an eye-centered
reference frame to encode the kinesthetic information even in a
unilateral kinesthetic matching task [32], but those subjects
verbally reported whether one passive movement imposed by a
robot was more to the left or to the right of another. Given that
‘left’ and ‘right’ refer to directions that are not intrinsically defined
by the kinesthetic receptors of the arm, sensory transformations
would nevertheless be required to verbalize the response. Thus,
the need for at least one transformation, or not, appears to be the
key factor in determining if additional representations of the task
(visual or otherwise) are constructed. This concept explains, in a
parsimonious way, the difference between INTER and INTRA
reported here and a wide variety of findings reported in the
literature.
Avoidance of sensory transformations, including inter-manual

transformations, can also explain how the CNS chooses one
sensory input over another when sensory information is available
simultaneously in more than one modality. In an orientation-
matching paradigm [6,7], where we compared movements to a
visual target with only visual feedback (V-V) or with both visual
and kinesthetic feedback (V-VK) of the hand, we observed very
similar results between these conditions both in terms of global
variability and strength of the oblique effect (for review about
oblique effect see [33]), suggesting a similar importance given to
visual information in both conditions. Helms Tillery also observed
similar variable error between a VK-V and V-V condition in a 3D
pointing task [20]. Similarly, compared to a unilateral kinesthetic-
only task (K-K), we saw no evidence for a reconstruction in visual
space when visual information about the hand was added (K-VK).
But other studies have reported the use of visual information in K-
VK tasks [2–4,8,9,34]. In those studies, however, subjects did not
use the same arm to sense the target and produce the movement.
Transforming the kinesthetic target to be compared with visual
feedback about the hand would, in the bilateral case, appear to be
advantageous. Conversely, adding kinesthetic information about a
visual target had little effect in a study by Sabes that compared V-
VK and bilateral VK-VK conditions [17]. Generally speaking,
eye-centered representation of the movement dominate over
kinesthetic cues when subjects reach for visual targets [35,36].
Indeed, neural activation in the posterior parietal cortex of
monkeys during reaching toward visual targets with the hand in
view suggests that a target-hand comparison is performed in
retinal space, without integration of kinesthetic information about
the limb [37].

MLP can explain why the CNS gives greater weight to direct
versus reconstructed comparisons if one takes into account the
additional variability inherent to transformed signals [14,19–21].
As a direct evidence supporting this idea, Burns and collegues [14]
showed that for reaching to a visual target (V-VK) increasing the
variability of cross-modal transformations by tilting the head
[6,38] increased the weight given to the direct visual comparison.
It is worth noticing, therefore, that subjects in our experiments
showed greater variability for INTER than for INTRA (Fig. 5B).
A similar increase in variability was observed when contrasting
cross-modal conditions (V-K or K-V) to conditions allowing a
direct visual or unilateral kinesthetic comparison (V-V and K-K,
respectively) [6]. The greater variability in the INTER condition
observed here and elsewhere [39], can therefore most likely be
ascribed to the variability added by inter-limb transformations, be
it through added noise from sensory signals required for the
transformation, or due to distortions or non-linearities in the
transformation itself. In this vein, the loss of precision when tactile
information was compared between limbs [40,41] has been been
attributed to the inter-hemispheric relay [42–44] or to the
coordinate transformations that would be required to compare
stimuli to different fingers within the same hand [45]. In sum,
sensorimotor transformations in general, and inter-limb transfor-
mations in particular, appear to add variability. According to
MLP, performing additional comparisons based on transformed
information would do little to improve performance when a direct
comparison is possible.
Simply considering the variability added by inter-limb compar-

isons was not sufficient, however, to properly predict the
experimental results within the context of our models. We could
only predict the total lack of effect of scene tilt in the INTRA
condition by specifically considering the correlation between
reconstructed and direct sensory information. More precisely, we
showed that if a direct target-response comparison was possible
(DKR in the INTRA-manual condition), combining it with other
comparisons (e.g. DV ) reconstructed from the available kinesthetic
information could not reduce response variability. On the other
hand, in our INTER condition, where a direct target-effector
comparison was not possible, all possible comparisons required
some sort of sensory transformation. If the variability of each
transformation is independent from the others, combining them
can result in a decrease of the overall response variability.
Accordingly, subjects reconstructed a visual representation of the
task (DV ), even though just one of the kinesthetic comparisons
(DKR or DKL),would have been sufficient. These results are in line
with our working premise that once a transformation becomes
inevitable, a broader slate of redundant comparisons are
automatically performed [6]. Furthermore, explicitly taking into
account the covariance of transformed signals in the application of
MLP provides a firm theoretical basis that explains not only when,
but also why the CNS would reconstruct a visual representation of
a kinesthetic task [1–5].
In conclusion, the fact that in the intra-manual task no role of

visual information could be detected in our experiments demon-
strates that the brain prefers direct comparisons whenever
possible. We have shown that this is because additional
reconstructed representations would strongly correlate to the
direct comparison and hence would not reduce movement
variability. On the other hand, when a sensory transformation is
necessary to compare the hand and target position, even if it is just
the transformations required to compare one arm to the other, the
brain reconstructs the movement in multiple reference frames,
thus creating a visual representation of a purely kinesthetic task.
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Methods

Ethics Statement
The experimental protocol was approved by the IRB of

University Paris Descartes (Comité de Protection des Personnes
Ile-de-France II, IRB registration number 00001073, protocol
20121300001072) and all participants gave written informed
consent in line with the Declaration of Helsinki.

Experimental Setup
The experimental setup used here to test our hypothesis was a

modified version of the one employed in our previous studies [6,7].
The system consisted of the following elements: a motion-analysis
system with active markers (CODA; Charnwood Dynamics), that
was used to measure the three-dimensional position of 27 infrared
LEDs in real time (submillimeter accuracy, 200 Hz sampling
frequency). Eight markers were distributed ,10 cm apart on the
surface of stereo virtual-reality goggles (nVisor sx60, NVIS) worn
by the subjects, eight on the surface of tools (350 g, isotropic
inertial moment around the roll axis) that were attached to each of
the subjects’ hands and three attached to a fixed reference frame
placed in the laboratory. For the goggles and the tools, a numerical
model of the relative positions of the LEDs was implemented in
advance, so that an optimal matching algorithm could be used to
effectively and robustly estimate the position and the orientation of
the object, even in case of partially hidden markers. We exploited
the redundancy of the high number of markers on the helmet and
on the tools to reduce errors in the position and orientation
estimation, resulting in a standard error in the measured viewpoint
orientation below the visual resolution of the goggles (0.078u). To
minimize the effect of the noise and computational delays of the
system, a predictive Kalman filter was applied to the angular
coordinates of the objects.
The virtual environment consisted of a cylindrical horizontal

tunnel whose walls were characterized by longitudinal marks
parallel to the tunnel axis (Figure 1). These marks helped the
subjects to perceive their own spatial orientation in the virtual
world. Identification of the visual vertical was facilitated by the fact
that the marks went from white on the ceiling to black on the floor.
The real-time position and orientation of the goggles were then
used to update, at 50 Hz, the visual scene viewed by the subject in
the virtual environment. Data from markers on the tools attached
to the hands were used when necessary (i.e. during training) to
place a representation of the hand in the scene and to record the
subjects’ movements.

Experimental Procedure
In both INTRA and INTER experimental conditions the trial

started with the subject’s head upright. Then automatic auditory
commands asked the subject to raise one hand in front of him (the
left or the right hand in the INTER or INTRA condition
respectively). At this point the walls of the tunnel started changing
color depending on the hand prono-supination angle. The color
went from red to green as the hand approached the orientation
that had to be memorized. Once the subject achieved the hand
desired orientation, he or she had 2.5 sec to memorize it, after
which the walls became insensitive to the hand orientation and the
subject was instructed to lower the hand. After the target was
acquired, subjects had 5 sec to tilt their head by 15u, to the right or
to the left, depending on the trial. To guide subjects to the desired
inclination of the head, audio feedback was provided: a sound with
a left-right balance corresponding to the direction of the desired
head inclination decreased in volume as the head approached 15u.
If the subject was not able to turn off the sound within 5 sec, the

trial was interrupted and was repeated later on. If he/she was able
to reach the desired head inclination, after the 5 sec delay period
that included the head roll movement, a signal was given to the
subject to align the unseen right hand with the remembered target
orientation and to validate the response by pressing a pedal with a
foot.
Sensory Conflict During Tilting of the Head: Tracking the virtual-

reality goggles was normally used to hold the visual scene stable
with respect to the real world during movements of the head. But
in half of the trials we generated a gradual, imperceptible conflict
such that when the head tilted 15u, the subject received visual
information corresponding to a rotation of 24u. The amplitude of
the angle between the visual vertical and gravity varied
proportionally (0.6 times) with the actual head tilt with respect
to gravity, so that when the head was straight there was no conflict,
and when the head was tilted to 15u, it was about 9u. At the end of
the experiment the experimenter explicitly interviewed the
subjects about the conflict perception. None of the subjects in
this experiment reported to have noticed the tilt of the visual scene.

Participants
After giving written informed consent, 16 subjects participated

in this study: 8 male and 8 female, age 2363 years (mean6-
standard deviation). All subjects performed both experimental
conditions, and to compensate for possible order effects, half of
them started with the INTRA condition and the other half with
the INTER condition. For each of the two experimental
conditions the subjects performed 56 trials: two for each
combination of seven target orientations (245u, 230u, 215u, 0u,
+15u, +30u, +45u), two head inclinations (615u), and two levels of
conflict (no and yes).

Data Analysis
We analyzed the recorded data in terms of errors (err) made at

the moment of the response in aligning the hand with respect to
the memorized target orientation. To quantify the specific effect of
the sensory conflict in each condition, we first corrected for any
global rotation of responses that might occur, for instance, due to
possible Muller or Aubert effects (for review see [46]), independent
from the tilt of the visual scene in the conflict situation. To do so,
we subtracted from all values of err involving a head tilt to the
right mean of such values obtained in the absence of sensory
conflict and we did the same for leftward tilt, on a subject-by-
subject basis. This allowed combining the trials with right and left
head tilts. Next, for each value of err obtained with conflict we
computed the relative deviation (dev) from the mean of all
responses without conflict expressed as percentage of the expected
deviation if only visual information was used, taking into account
the actual amount of head tilt measured during the response phase
of each trial.

V t [ trialwithconfl devt~
errt{mean(errwithoutconfl)

{head anglet:0:6
ð1Þ

Finally, we computed the mean value of these relative
deviations, which is a direct measure of the overall weight given
to the visual versus other sources of information, for each subject
and for each condition.

dev~

P28
t~1 devt
28

:100 ð2Þ
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The variability of the performance of each individual subject in
the trials without conflict was also evaluated. To robustly estimate
each subject’s precision, despite the fact that only two responses
could be used for each combination of target orientation and head
inclination, the following procedure was used. First, the responses
with the head tilted to the right and to the left were combined by
compensating for possible Aubert-Muller effect, as reported above.

Then, the variance, s2t , of the responses obtained for each of the
14 combinations of target and head orientation were combined as
reported in the following equation to obtain the global standard
deviation [47].

SD~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP14
t~1 s

2
t (nt{1)

P14
t~1 nt{14

s

ð3Þ

where nt is the number of responses of the tth combination of
target inclination and head orientation.
We used ANOVA for repeated measures on the values of

response deviations and variability obtained with the methods
described above to compare the INTRA and INTER conditions.
The variability data, SD, were transformed by the function
log(SDz1), before performing the ANOVA [48]. To test whether
the response deviations induced by the conflict were significantly
different from the purely kinesthetic response (0%), one-tailed
Student’s t-test was used. To test whether the difference for
response deviation between INTER and INTRA condition
predicted by the models and experimentally observed differ
significantly, two-tailed Student’s t-test was used.

Mathematical Modeling
We evaluated our experimental results in the context of recent

models by which sensory signals are combined and compared
based on the principles of maximum likelihood. According to
MLP, two signals (x and y) that are statistically independent will be
optimally combined (s~wxxzwyy) by assigning weights to each

signal based on the relative variance between them:

wx~
s2y

s2xzs2y
ð4Þ

wy~
s2x

s2xzs2y
ð5Þ

Similarly if three independent signals (x, y and z) have to be
combined (s~wxxzwyyzwzz) the optimal weights are given by

the following equations:

wx~
s2ys

2
z

s2xs
2
yzs2ys

2
zzs2xs

2
z

ð6Þ

wy~
s2xs

2
z

s2xs
2
yzs2ys

2
zzs2xs

2
z

ð7Þ

wz~
s2xs

2
y

s2xs
2
yzs2ys

2
zzs2xs

2
z

ð8Þ

But if one signal is reconstructed from another, the two signals
will not be independent. In this case the MLP equations used to
determine the relative weights must be modified to take into
account the covariance between signals, as follows. Let x and y be
two variables where each is the sum of a independent components
u and v, and a common component c.

x~uzc ð9Þ

y~vzc ð10Þ

This additive formulation is representative of the computation
required to shift two signals into a common reference frame. The
variance of each variable is simply the sum of the variances of each
component:

s2x~s2uzs2c ð11Þ

s2y~s2vzs2c ð12Þ

while the covariance between x and y is simply equal to the
variance of the common component c:

covx,y~s2c ð13Þ

It can be easily demonstrated from basic principles (see
Equations S1–S16 in online Supporting Information and [23])
that the relative weight, wx and wy, which minimizes the variance

of the combination of x and y: z~wxxzwyy is:

wx~
s2y{covxy

(s2x{covxy)z(s2y{covxy)
ð14Þ

wy~
s2x{covxy

(s2x{covxy)z(s2y{covxy)
ð15Þ

and substituting Eqs. 11, 12 and 13:

wx~
(s2vzs2c){s2c

(s2uzs2c)z(s2vzs2c){2s2c
~

s2v
s2uzs2v

ð16Þ

wy~
(s2uzs2c ){s2c

(s2uzs2c)z(s2vzs2c){2s2c
~

s2u
s2uzs2v

ð17Þ
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To optimally weight three quantities x, y and z, each of which is
the sum of an independent component t, u and v, respectively, and
a common component c, one finds a similar result:

wx~
s2us

2
v

s2t s
2
uzs2us

2
vzs2t s

2
v

ð18Þ

wy~
s2t s

2
v

s2t s
2
uzs2us

2
vzs2t s

2
v

ð19Þ

wz~
s2t s

2
u

s2t s
2
uzs2us

2
vzs2t s

2
v

ð20Þ

One can see from this derivation that computing the optimum
weighting of x and y, or of x, y and z, consists of computing the
relative weights based on the variance of the independent
components of each variable (u, v, w), leaving out the variance
of the common component c. The standard deviation of the
responses expected of each model computed is.

smodel~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2xzs2yz2:covxy

q
ð21Þ

or

smodel~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2xzs2yzs2zz2:covxyz2:covxzz2:covyz

q
ð22Þ

depending on the structure of the model.
To illustrate the importance of taking into account co-variation

of signals, and to compare with previous studies, we applied the
MLP equations both ways, deliberately ignoring the co-variation
between signals using Eqs. 4–5 for model A and Eqs. 6–8 for
model B, and by correctly applying MLP in the case of co-variance
using Eqs. 16–17 for model A’ and Eqs. 18–20 for model B’. In

each case we attempted to fit the model parameters to the
experimental data in order to estimate the ability of the different
model formulations to predict the experimental results. Specifi-

cally, we searched for the set of free parameters, s2K , s
2
KL<KR

,

s2K<V for each model (see Table 1), that, in conjunction with the
modeling assumptions listed in the section entitled ‘theoretical
modeling’ above, would minimize the difference between the
actual and predicted responses deviations (Eq. 2 and Eq. 23
respectively), where the predicted deviation expressed as a
percentage is given by:

devmodel~wDV
:100 ð23Þ

and would minimize the difference between the actual and
predicted response standard deviations (Eq. 3 and Eq. 21–22
respectively), simultaneously in both conditions (INTER and
INTRA). The four data points were fit simultaneously by
minimizing the weighted sum of the square of the differences
between the experimental data and the model predictions for each
data point, with the respective weights corresponding to the
inverse of the squared confidence interval for each data point.

Supporting Information

Supporting Information S1 Equations for optimal sen-
sory weighting in case of correlated signals.
(PDF)
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