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Abstract—This study focuses on the estimation of kinematic 

and kinetic information during two-digit grasping using 
frequency decoding of motor cortex spike trains for brain 
machine interface applications. Neural data was recorded by a 
100-microelectrode array implanted in the motor cortex of one 
monkey performing reach-to-grasp movements. An artificial 
neural network (ANN) was used to decode the neural information 
and to estimate the upcoming grip type (precision grip vs. side 
grip) as well as the required grip force (low vs. high). We then 
used the decoded information to reproduce the monkey motion 
on a robotic platform comprised of a two-finger, eleven degrees 
of freedom (DoF) robotic hand carried by a six DoF robotic arm. 
The results show that 1) the proposed ANN model can be used for 
frequency decoding of multiple motor cortex spike trains with 
good performance for the prediction of grip type, less so for the 
prediction of grip force, 2) the prediction error was significantly 
dependent on the position of the ANN input time window 
associated to different stages of the grasp movement, 3) the less 
good performance of grasp force prediction can be improved by 
optimizing the neuronal population size presented to the ANN 
input layer on the basis of information redundancy.      

Keywords — Brain Machine Interface (BMI), Frequency 
decoding, Grasp, Grip force, Motor control.  

I.  INTRODUCTION 
As conceptually suggested by its name a Brain Machine 

Interface (BMI) refers to a set of hardware and software that 
records brain activity, decodes the activity through prediction 
algorithms and then controls end effectors. Thanks to 
promising medical applications, BMIs have recently become 
more visible to other scientific domains as well as to the 
general public, and have even raised philosophical/ethical 
discussions concerning its potential use in the context of human 
enhancement [1]. The particular benefits of decoding of neural 
signals and their use through a BMI in motion control of 
robotic arms and hands in the case of paralyzed patients has 
been recently demonstrated [2, 3, 4].  

One well-accepted classification of BMIs is based on the 
non-invasive or invasive nature of the electrophysiological 
technique used to record neural activity.  Non-invasive BMIs 
exploit electroencephalogram recordings (EEG) that represent 

the activity of large populations of neurons in the brain with a 
relatively poor spatial resolution. In contrast, invasive BMIs 
use intracerebral neural signals like spikes or local field 
potentials (LFPs) recorded from single or multiple cortical 
areas via surgically implanted individual electrodes or 
multielectrode arrays (MEAs). Whatever the source of the 
signals, the objective is to record signals that are strongly 
correlated to the physical variables to be controlled by the 
BMI, such as kinematic variables for the control of voluntary 
movements [review: 5, 6]. Over the last decade, significant 
advances have been made on the kinematic control of reach 
and grasp movements [7, 8, 9], but the types of neural signals 
used, the choice of decoding algorithms and the dynamic 
control of movements of daily life remain essential problems to 
be solved in order to restore mobility in paralyzed and/or 
handicapped people.  

Historically, the majority of invasive BMIs tested in non-
human primates relied on the recording of local field potentials, 
[10] single-cell or multi-unit activity [9,11] from a single 
cortical area. Most of these single-area BMIs used neural 
signals recorded in the primary motor cortex. However, neural 
activity from the premotor areas [12] and the parietal cortex 
[13, 14] have also been used to decode movement kinematics 
or classified between distinct movement goals. Multi-site 
recordings have recently become more frequent [15, 16, 17, 18, 
19]. In term of recording techniques, different types of 
electrodes (ceramic-based micro-electrodes, nanotechnology 
probes, or electrodes containing neurotrophic medium) have 
been tested to improve biological compatibility and long-term 
functionality.  Safe and continuous wireless data transmission 
is also among the foremost problem to be solved before BMIs 
could be used for long-term clinical applications. Determining 
the number, the location (uni-site versus multi-site), and the 
types of neurons (identified versus non-identified), as well as 
the types of signals (LFP versus spike trains) that optimizes a 
BMI system for specific tasks are still open problems.  

The improvement of BMI efficacy also requires the 
optimization of the algorithms used to decode neural activity 
and generate the appropriate motor commands for artificial 
actuators. Competing approaches have been proposed: complex 
linear/nonlinear algorithms [21], Artificial Neural Network 
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(ANN) [20] and relatively simple linear regression models [9]. 
Linear methods that incorporate adaptive algorithms during 
subject training [2] have also been proposed.  

The current medical BMI applications for the substitution of 
paralyzed upper limbs concern principally tetraplegic patients, 
with the aim of using robotic arms and hands to perform reach 
and grasp movements for daily activities. This is currently in an 
experimental stage [2,3,4]. Successful kinematic control of 
reach movements has been demonstrated, whereas grasp 
movements have so far been limited to opening and closing 
actions of multi-finger hands driven by conventional actuators. 
Neither the control of different grasp configurations nor the 
control of grasp forces has been yet demonstrated, in spite of 
substantial advances in decoding cortical activity for the 
estimation of finger joint angles and grip forces (and/or EMGs 
of hand muscles) [17,20]. Therefore, the implementation of 
force control remains a scientific and clinically relevant 
research topic for BMI applications. The potential advantages 
of using ‘soft arms’ actuated by artificial muscles for force 
control might also be considered.   

In our previous work [20,30], we have shown the results 
obtained by asynchronous temporal decoding of the activity of 
identified corticomotoneuronal (CM) cells recorded by 
individual electrodes in the primary motor cortex, while the 
monkey performed a precision grip task. The spike trains 
recorded from up to six CM cells, which project 
monosynaptically to motoneurons driving target muscles, were 
directly used as binary inputs to a time-delayed multi-layer 
perceptron (TDMLP) via a sliding window that scanned the 
time-varying neural signal in order to take into account the 
temporal distribution of the individual spikes. The 
identification as a CM cell was based on the connectivity 
strength of the individual neuron to a given target muscle, 
quantified by the presence of post-spike facilitation obtained by 
spike triggered averaging of that muscle EMG [24]. The 
TDMLP successfully estimated the time-varying positions of 
thumb and index finger, as well as the activity of nine forearm 
muscles (EMG). The estimated fingertip positions were then 
used to reproduce the monkeys’ hand movements on a nine 
DoF 2-finger artificial hand (Shadow hand).   

Here, we present the results obtained by ANN-based 
frequency decoding of the activity of unidentified motor 
cortical neurons recorded using a 100-electrode MEA in a 
monkey while it performed two different types of grip 
movements at two different force levels. The "machine" part of 
the BMI platform now employs an extended version of the 
hand used in our previous work (ref.), with two more DoF 
providing a mobile wrist. Moreover a six DoF robotic arm 
carries the hand to provide both reach and grasp movements, as 
shown in Fig. 1.C. In addition, this new robotic setup provides 
the possibility of testing different types of grips and allows 
recording of kinematic and dynamic variables of the motion. 

II. MATERIAL AND METHODS 
Grasping an object involves shaping of the hand and 

fingers as a function of the object's physical properties, and 
requires adequate grasp forces to secure object manipulation. 
In the majority of grasp tasks the index finger and the thumb 

ensure the main motion while the other three fingers act as 
auxiliary end effectors. An experimental setup used to 
characterize different types of two-digit grips including their 
grasp forces has been previously presented, and was used to 
explore the correlations between cortical activity and grasp 
parameters in monkeys and in humans [22, 23]. Fig. 1A and 
1C show a slightly modified version of this setup for the 
current BMI-related work. 

A. Experimental Protocol and Data acquisition 
One adult female rhesus macaque (Macaca mulatta) was 

used in the experiments. The monkey, sitting in front of the 
experimental apparatus, was trained to perform an instructed 
reach-grasp-and-pull task using one hand to obtain a food 
reward, while her other hand was restrained (Fig.1A). The 
object to be grasped was a stainless steel parallelepiped (40 
mm ×"16 mm ×"10 mm) attached to a low-friction horizontal 
shuttle and rotated at a 45°" angle from the vertical axis. The 
object had to be grasped and pulled using one of two different 
grips: a precision grip (PG) by placing the tips of the index and 
the thumb on the upper and lower sides of the object, 
respectively, or a side grip (SG), by placing the tip of the 
thumb and the lateral surface of the index on the right and left 
sides, respectively.  

 

 

 

 

Fig. 1. Schematic representation of the offline BMI components. A) Precision 
and side grip experiments in monkeys. B) Decoding the cortical activity by 
ANN. C) End effector to reproduce the monkey motion. 

  

The object load was set to either 100 or 200g by means of 
an electromagnet. Thus, two different pulling forces were 
required, qualified as low force (LF) or high force (HF), 
respectively. Changes in object load occurred between trials 
and were unpredictable for the monkey. The setup provided a 
continuous measure of the grip and load forces by means of 
forces sensitive resistance (FSR) sensors. In addition, a hall-
effect sensor measured the horizontal displacement of the 
object over a maximal distance of 15mm. A square of four red 
light-emitting diodes (LEDs) with a fifth green LED in its 
center was used to display the instruction cues. The task and 
the recording of the physical data were programmed and 
controlled using LabVIEW  (National Instruments Corporation, 
Austin, TX, USA) via an I/O card (NI PCI-6220). The 
behavioral sequence of a trial was as follows: the monkey had 
to close the home-pad switch with the hand to start a trial from 
the initial home-pad position. After 400ms, the central green 
LED was illuminated, kept on for another 400ms, and was 
followed by the preparatory cue, illuminated for 300ms, which 
instructed the monkey about the required grip type (PG or SG) 
followed by a 1-s preparatory delay. At the end of this delay, 
the LEDs provided the remaining information about the force 
as high force (HF) and low force (LF); this signal also served 
as the GO signal instructing the monkey to release the switch to 
reach and grasp the object. Following object grasp, the monkey 
had to pull the object into a narrow position (4–14mm) and to 



hold it there for 500ms to obtain the reward. In case of a 
wrongly executed grip type, the trial was aborted and all four 
LEDs were flashed as a negative feedback. Several behavioral 
time points were defined (Fig. 3): The movement onset (taken as 
the time of switch release (RT), corresponding to the reaction time. 
The onset of grip force increase (object touch) (MT), 
corresponding to reach movement time. The pulling onset (PT) 
indicated the beginning of the object displacement. During 
recording sessions, the four trial types, i.e., a combination of 
SG–LF, SG–HF, PG–LF, and PG–HF sequences, were 
presented at random with equal probability.  

The neural data consisted of spike trains (Fig. 2A) and 
LFPs (Fig. 2B) simultaneously recorded through a 4 mm ×"4 
mm, 100-electrodes Utah MEA (Blackrock Microsystems, Salt 
Lake City, UT, USA) surgically implanted in the motor cortex 
contralateral to the working hand, at the junction of the dorsal 
premotor and primary motor cortex (Fig. 2C). A 128–channel 
Cerebus acquisition system (Blackrock Microsysytems) was 
used to collect and process both the neural and behavioral data, 
such as stimuli switch release, force traces for thumb and index 
fingers (Fig. 2.D) and object displacement (Fig 2.E). Here we 
only used the spike trains for decoding.  

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

Fig. 2. Examples of neural and physical (behavioral) signals recorded 
during experiments. A) Raster plot of spike trains for a single trial: each line 
represents the neural activity of an individual neuron, with black dots indicating 
the presence of a spike. The vertical blue lines indicate different critical 
behavioral periods either detected automatically or calculated offline. GO=GO 
signal, RT=movement onset, MT=grip force onset., PT=pulling onset, 
RW=reward. B) LFPs. C) Position of the surgically implanted UTAH array. D, 
E) Mean and standard deviations of grip force and object displacement, 
respectively. Grand average of one experimental session  (N=122 trials). Force 
and displacement are represented separately for SG (left) and PG (right) and for 
HF (blue lines) and LF (red lines). 

Details of the data acquisition, filtering, preprocessing and 
spike-sorting are given in [22]. Depending on the recording 
session, single unit activity (SUA) was obtained from 78 to 110 

neurons per recording session. Five sessions with different 
number of trials (19 to 34 per condition) were selected for the 
current decoding work.  

B. ANN based frequency decoding of motor cortex activity 
The way in which the central nervous system (CNS) 

encodes physical variables is still a partly open issue in 
neuroscience; this logically affects the choice in decoding 
approaches. Even though frequency encoding/decoding is well 
established and more widely studied, there is substantial 
evidence showing that the CNS uses also temporal distribution 
of spike trains in encoding physical variables [20].  

The current work analyzes the performance of ANNs in 
frequency decoding of motor cortical activity to estimate 
kinematic and dynamic parameters of grasp movements. This 
approach differs from our previous work (ref) in the following 
aspects: 

1. The neural data were obtained from unidentified 
neurons of the motor cortex and not from identified 
CM cells as in [ref].   

2. The number of simultaneously recorded neurons 
(SUA) was much higher (between. 75 and. 110) due 
to the MEA. 

3. The data preprocessing (prior to the training of the 
ANN) has been designed to calculate frequency 
discharge of each SUA over a fixed time window. 
The time windows were assigned to different 
behavioral epochs (chosen by the user).  Depending 
on the training type, the average discharge frequency 
calculated within one or more time windows, was 
used as inputs of the ANN input neurons.    

4. The outputs to be estimated by the ANN were 
discrete, that is the grip type (either SG or PG) and 
force level (either HF or LF). 

 Fig. 3 shows a schematic representation of the ANN 
architecture used for decoding. It has two layers both 
constituted by units with symmetric sigmoid transfer functions 
and bias inputs.  

 

 

 

 

 

 

 

 

 
 Fig. 3. Schematic representation of the ANN used in prediction of grip 

type (SG and PG) or load force (HF and LF) by frequency decoding of motor 
cortex activity. The colored regions on the raster plot represent the time 
windows where the average discharge frequency of each SUA (depicted by the 
grey square) was calculated. Green squares depict use of multiple time 
windows. 
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The input layer receives the frequency discharge calculated 
on the fixed time window for each SUA, whereas the two units 
of the output layer are dedicated to estimate the kinematic (grip 
type: SG and PG) or dynamic (load force: HF and LF) 
parameters of the movement.   

Separate ANNs were designed for each of the output pairs 
for predicting grip type or load force using the Matlab Neural 
Network Toolbox. ANNs were trained and tested separately for 
each of the five sessions. The training trials were randomly 
chosen among 50% of all trials and the remaining ones were 
used as test trials in order to calculate the performance measure 
of the prediction as percentage error (%error). This procedure 
was repeated 30 times per session and the %error for a given 
session was calculated as the mean of %error obtained during 
those 30 training / testing epochs.   

We first trained all ANNs on six different time windows of 
different lengths located with respect to the five critical points 
of the movement, as described in Table 1 and depicted in Fig. 
3. The weights between the input and output layer and the bias 
values were initialized with Nguyen Widrow algorithm and a 
scaled conjugate backpropagation learning algorithm 
(Levenberg – Manquard backpropagation) was used to update 
both weights and bias values. 

TABLE 1. Description of input window length and position for calculating 
SUA average discharge frequency. 

Window  Time interval Corresponds to: 
W1 from GO-200ms to GO Pre load-cue period 
W2 from GO to RT Reaction time period 
W3 from RT to MT Reach duration 
W4 from MT to PT Grip force increase 
W5 from PT to PT+200ms Object displacement 
W6 from PT+200ms to PT+400ms Static hold 

 

We further checked the impact of two training parameters 
on the ANN performance of prediction. 

1. The number of time windows used as inputs. 

2. The number of SUA in a given time window. The 
number of inputs can be reduced by using two 
optimization criteria: 

a. Removing neurons whose activity is cross-
correlated (CC) to other neurons. 

b. Removing neurons for which the Cohen's 
index [29], described in Fig.4, is smaller than 
a threshold value. 

 
Fig. 4. Calculation of the optimization criterion, where µ and σ represent 

respectively the mean and the standard deviations of the discharge frequency 
calculated over the trials corresponding to a given experimental condition.  

 

C. Reproduction of the motion on the robotic platform 
Fig. 5 shows the current state of our BMI platform. It 

consists of three main modules: 

1. A copy of the experimental reach-grasp-and-pull setup 
used by the monkey, described in section II.A. The size 
of the parallelepiped is, however, bigger (60 mm ×"40 
mm ×"30 mm) in order to fit the size of the Shadow 
(and of the human) hand. 

2. A 6 DoF robotic arm (®Epson S5) 
3. A 11 DoF 2-finger robotic hand actuated by artificial 

muscles (®Shadow Hand). 
 

 

 
 

 

 

 

 

 

Fig. 5. A) Current state of the BMI platform. B) Precision grip with the 
robotic hand. C) Side grip with the robotic hand.  

Each of the three modules is controlled by a separate 
personal computer (PC), and the whole system is centrally 
controlled by a custom BMI software installed on the PC 
controlling the Shadow Hand, which exchanges information 
with the PCs of the two other modules via either serial or 
Ethernet ports connected to a router. The BMI software using 
the neural data as input controls the reach motion (positioning) 
of the hand driven by the 6 DoF robotic arm and selects the 
corresponding ANN, whose prediction is used to drive the 
grasp motion of the hand.   

Due to the lack of joint angle recordings in the monkey, the 
motion parameters of the reach and the grasp were manually 
set so that SG or PG and subsequent pulling were executed as 
shown in Fig. 5, B and C. In order to realize two different grip 
forces, the surface of the grasp object was coated with 
compressible foam strips (of 3cm thickness).  

III. RESULTS 
Training of the ANNs resulted in error values < 0.1% on 

the training set. In the following we report the %error on the 
test set (median %error over 5 sessions per condition). 

 Fig. 6 shows, from top to bottom, examples of behavioral 
and neural data from a representative trial and the evolution of 
average percentage prediction errors of the ANNs for grip type 
and load force decoding as a function of 6 different time 
windows (cf Table 1) calculated over five sessions. Clearly, the 
%error of the prediction varied as a function of the position of 
the time window and of the condition. This was confirmed by 
nonparametric Friedman ANOVA showing that the percentage 
error was significantly affected by the time window position in 
predicting grip type [χ2 (5,5)=16.28, p=0.006] and in predicting 
load force [χ2 (5,5)==18.49, p=0.002]. The error decreased 
continuously form W1 to W5, and then increased at W6. In 
predicting grip type, the median percentage error was equal to 
2% for W2 to W5, with a best performance on W5; it was 4% 
for W1, a window prior to movement onset, which represents 
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anticipatory activity. The error increased to 7% for W6, a 
window that covers the period of static hold against the load.  

In contrast, the performance of load force prediction was 
dramatically lower. At W1, prior to the GO signal, %error was 
about 50%, corresponding to chance prediction. This served as 
a control, since no load instruction was given prior to GO. The 
error then decreased steadily from W2 on and reached its 
minimum with 25% error at W5. Thus, W5 provided the best 
prediction, for grip type and for load force. W5 represents the 
period from touch onset to the end of the displacement: during 
this period the grip type is firmly established and invariant, 
whereas grip force and load force change over time.  

 

 
Fig. 6. Effect of six different positions of the neural input time window on 

the performance of ANN prediction of grip type and load force. From top to 
bottom (first three panels): example of a representative trial with grip force, 
object displacement (pulling) and raster plot of a neural data. In color and 
superposed to the raster plot: the positions of the 6 different input time 
windows. Below: median %error (across all 5 sessions) of grip type prediction 
for each input time window. median %error (across all 5 sessions) of load force 
prediction for each input time window; the whisker bars correspond to the 25th 
and 75th percentiles. 

Since performance of load force prediction was as not good 
as grip type prediction, we investigated whether input 
optimization would improve the former. We first evaluated the 
effect of combining several (from 2 up to 4) input windows. 
These results are represented in Figure 7. A Friedman ANOVA 
showed that the number of combined windows has a significant 
effect on the %error of load force prediction [χ2 (5,3)=15.00, 
p=0.0018], with a best result for the combination of four 
windows.  

Second, we evaluated the effect of reducing (optimizing) 
the number of neurons in a given time window by eliminating 
redundant SUA according to criteria described in section II.B 
(cross-correlation, Cohen’s Index). Table 2 reports the %errors 
and the amount of removed neurons as a function of the 
corresponding threshold values obtained by separate 
application of the two criteria. The first line of Table 2 gives 
the reference values corresponding to the performance of 
prediction obtained without optimization.  

 
Fig. 7. Effect of combining several time windows on the median prediction 

error of load force. 1: no combination, %error of 6 ANNs trained using the 
neural data on each of the single windows defined in table 1.  2: combination of 
two windows, average error of 5 ANNs using combinations of two windows. 3:  
combination of 3 windows, %error of 4 ANNs using combinations of three 
windows.  4: combination of four windows. 

The threshold of Cohen’s index (first column Table 2) was 
systematically varied and neurons with an index greater than 
the threshold were kept. For the second optimization criterion 
neurons with cross-correlation smaller than the threshold were 
kept. Application of Cohens’s index was more efficient: it 
strongly reduced the number of input neurons (76%) and 
improved the load force prediction (%error decreased from 
24.35% to 18.73%). The cross-correlation procedure allowed 
for only modest improvements of prediction accuracy and the 
combined use of both optimization criteria (Cohen's index > 
0.9 and CC < 0.8) did not improve the performance any further 
(19.16 %error with 76% removed neurons). 

TABLE 2. Effect of the reduction of the number of input neurons (best 
case in red). 

Cohen's  
index 

Error %  
Neurons 
removed 

Cross-corr 
threshold 

Error %  Neurons 
removed 

0 24,35 0 1 24,35 0 
0.95 19.60 79 0.9 24.38 0 
0.9 18.73 76 0.85 23.95 1 
0.8 19.48 62 0.8 23.40 4 
0.7 19.76 49 0.7 25.20 21 
0.6 19.97 34 0.6 26.44 39 
0.5 21.56 17 •  •  •  

0.4 23.53 7 •  •  •  

 

For evaluation of the robotic part for our offline BMI 
application, we used best-case predictions. The ANN using the 
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neural data in W5 was the best predictor for grip type. For 
load force prediction, we used the ANN trained on the 
combination of several windows (W1, W2, W3, W4), 
including optimization through Cohen's index > 0.9 (using 
24% of the original neurons). Then the weights of these two 
trained ANNs were transferred to the ANN part of the main 
control software of the BMI platform to perform an offline 
BMI test. Due to the lack of empirical joint angle values from 
the monkey experiments, we manually defined four different 
joint configurations of the shadow hand to realize four 
different movement conditions (as defined above in section 
II.A). Figure 8 shows the force traces obtained for SG-HF and 
SG-LF experiments realized on the "machine" part of the BMI 
platform with the joint values reported in Table 3.  
 
TABLE 3. The Shadow hand joint angles corresponding to two joint 
configurations for side grip with two different force levels. IF_J=Index Finger 
Joint; TH_J=Thumb_Joint. J1 corresponds to the most distal, J4 and J5 to the 
most proximal joints of the index and thumb, respectively.  
 

Shadow hand joints SG-LF SG_HF 
IF_J1 75 75 
IF_J2 85 85 
IF_J3 90 90 
IF_J4 0 20 
TH_J1 30 51 
TH_J2 18 21 
TH_J3 -15 -15 
TH_J4 60 70 
TH_J5 40 20 

 
Clearly, the robot hand applies higher thumb and index 

finger forces in the HF-condition compared to the LF-
condition. Note that the speed of the movement (force 
production) is slower than in the monkey (c.f. Fig. 6A). 
 

 
 
Fig. 8. Forces exerted on the object surfaces by the thumb (blue line) and 
index finger (red line) of the Shadow hand using two different joint 
configurations corresponding to two different force levels. A) Side grip with 
high force. B) Side grip with low force.    

 

IV. CONCLUSIONS  
Here we presented a BMI platform to reproduce upper 

limb reach-grasp-and-pull movements using a two-digit grasp. 
Neural data were obtained from the monkey motor cortex. The 
monkey was instructed to perform a reach, grasp an object 
with either a precision grip or a side grip, and then pull the 
object against a either high or low load. In contrast to our 
previous work [20], which presented the results of temporal 
decoding of identified CM cells, frequency decoding of 

spiking neural activity of unidentified primary cortex neurons 
was achieved by a two-layer ANN that predicted grip type 
(precision grip vs. side grip) and load force (high and low). A 
11-DoF artificial hand carried by a 6- DoF robotic arm was 
used to reproduce the upper limb movement.  

The ANN (using time windows of variable positions 
within a behavioral trial, defined in Table 1 provided reliable 
prediction of grip type, whereas prediction of load force was 
less good as shown in Fig. 6. Therefore, grip type information 
can be decoded with high accuracy from multiple spike trains 
during the preparatory period (W1), during the reaction time 
period before movement onset (W2), as well as during 
movement execution (W3-W5). This has been shown 
previously, for more than two grip types, however, with other 
methods than ANNs [24, 12, 17]. During static hold, 
prediction accuracy was worst. Qualitatively, the firing rate 
(and tentatively the amount of information) tended to increase 
after the GO signal and decreased to initial levels during static 
hold. 

In contrast, load force decoding was more difficult: best 
%error of load prediction was, compared to grip type 
prediction, larger by a factor of ten. Although this may 
indicate that the grip force cannot be reliably decoded under 
the current experimental situation, there are several arguments 
in favor of such a decoding. First, the ANNs decoded load 
force perfectly fine for the training trials. However, for the test 
trials the %error increased dramatically. This suggests that 
load information was not sufficiently robust in the face of 
behavioral trial-to-trial variability and neural noise. Second, 
this interpretation is coherent with anecdotic evidence (not 
shown) that the accuracy of load prediction increases with 
better behavioral performance, i.e. with better differentiation 
between low and high forces. However, this needs to be 
statistically confirmed on a larger data set. Under different 
behavioral situations, endpoint force decoding [26] and whole-
hand grasp force decoding from spike trains has been 
demonstrated [27]. Other speculative reasons for the poor load 
decoding might reside in the location of the MEA (rather 
dorsal, junction premotor-primary motor cortex, but this needs 
further investigation) and in the absence of explicit (visual) 
force feedback to the monkey. 

 
Even though it has been suggested that recording more 

signals will mean higher accuracy [18] and better performance 
(dexterity) [ref], there is evidence that BMI systems using a 
small number of neurons could also be quite competitive [20, 
28]. Redundant information in the input layer constitutes one of 
the well-known drawbacks of ANN approach in prediction of 
small number of outputs from a large number of inputs. Our 
results of selecting the inputs (Fig. 7) constitute a good 
example: prediction of load force was significantly improved 
by optimizing the input, even though performance remained 
well below that of grip type decoding. Optimization by using a 
criterion based on Cohen’s index (depth of firing rate 
modulation) proved to be more efficient than taking into 
account cross-correlations (temporal redundancy in multiple 

(A) (B) 



spike trains (Table 2). This is coherent with the fact that our 
ANNs used frequency and not temporal decoding. 

In general, accuracy of prediction depended significantly on 
the position of the time window during different epochs of the 
task. Best decoding (using a single window) was achieved in 
W5, for grip as well as for load force. W5 covered the period 
from touch onset to the end of the displacement, i.e. during 
object contact with stable grip type, while grip and load force 
varied (increased). This suggests that kinematic prediction 
accuracy is best once the kinematic grip configuration is 
established, although anticipatory decoding during reaction 
time and during reach (grip preshaping) was smaller by only a  
marginal amount. In contrast, accuracy of load force prediction 
increased from W2 and reached a maximum during W4 and 
W5, i.e. during periods of object contact when grip force 
increases (W4) and when load force increases (W5). This 
tentatively suggests that force decoding is most efficient during 
active production of (grip or load) forces. This conclusion 
must, of course, be taken with caution since the grip type cue 
was given first, and the force cue only later, which might have 
biased this comparison.  

The end-effector of the BMI platform used here was a 2 
finger artificial hand actuated by pneumatic muscles (Shadow 
muscle hand) carried by a 6 DOF robotic arm (Epson S5). The 
Shadow hand has an anthropomorphic actuation scheme 
providing movement of the distal interphalangeal (DIP) joint of 
the index finger coupled to that of the proximal interphalangeal 
(PIP) joint. The kinematic control of the joint angles is 
implemented by a PID position controller that adjusts the 
pressure of compressed air in each pneumatic muscle until the 
desired angles are reached. As long as the joint angles are not 
at their target values, the PID position controller increases the 
pressure of the pneumatic muscles up to their maximum values 
and thus generates a grasp with a maximal force. This excludes 
implementation of any force control in joint space for isometric 
grips i.e. testing different force levels for a given static joint 
configuration, similar to what the monkey did in low and high 
load conditions, was therefore impossible.  

In the aim of testing the capacity of the Shadow hand in 
implementing a force control in joint space, we conducted 
several experiments of different grip types at different force 
levels with the grasp object coated with compressible foam 
strips (of 3cm thickness) on each of its surfaces. As can easily 
be seen on the values reported in Table 3 and the forces shown 
in Fig. 8 for the SG experiments two significantly different and 
stable force levels (HF and LF) were successfully obtained 
with two different and stable joint configurations. These results 
can potentially be further improved by adding a PID or ‘sliding 
mode’ control of muscle pressure. This strategy could be used 
as an alternative to the position controller, once the grasp 
configuration has been established in order to provide co-
contraction of the muscles. However, this should only be 
considered a preliminary solution to the force control problem 
of future BMI applications, which need to implement the 
simultaneous control of kinematics and dynamics, as does the 
central nervous system.     
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