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ESTIMATION OF MULTIPLE MEAN VECTORS IN HIGH
DIMENSION

G. BLANCHARD∗,†, J-B. FERMANIAN∗,‡, H. MARIENWALD∗,§

Abstract. We endeavour to estimate numerous multi-dimensional means of various
probability distributions on a common space based on independent samples. Our ap-
proach involves forming estimators through convex combinations of empirical means
derived from these samples. We introduce two strategies to find appropriate data-
dependent convex combination weights: a first one employing a testing procedure to
identify neighbouring means with low variance, which results in a closed-form plug-
in formula for the weights, and a second one determining weights via minimization
of an upper confidence bound on the quadratic risk. Through theoretical analysis,
we evaluate the improvement in quadratic risk offered by our methods compared to
the empirical means. Our analysis focuses on a dimensional asymptotics perspective,
showing that our methods asymptotically approach an oracle (minimax) improvement
as the effective dimension of the data increases. We demonstrate the efficacy of our
methods in estimating multiple kernel mean embeddings through experiments on both
simulated and real-world datasets.

KEYWORDS. aggregation estimator, effective dimension, high dimension, kernel mean
embedding, minimax rate, multiple means estimation.

1. Introduction

We study the problem of jointly estimating multiple vector means µ1, . . . , µB of dis-
tinct probability distributions P1, . . . ,PB over Rd (an extension to Hilbert spaces is also
discussed). The estimation of the means is based on a family of independent sample
sets, X(1)

• , . . . , X
(B)
• , where each X

(k)
• with k ∈ JBK := {1, . . . , B} comprises of Nk

samples drawn i.i.d. from Pk. Formally, the joint model is{
X

(k)
• := (X

(k)
i )1≤i≤Nk

i.i.d.∼ Pk, k ∈ JBK;
(X

(1)
• , . . . , X

(B)
• ) independent.

(1)

The distributions are assumed to be at least square-integrable. We refer to a set of
samples X(k)

• as bag and to Pk as task, in line with the domain of multi-task learning.
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Our aim is to define estimators µ̂k and analyse the risk given by the expected squared
distance to the true means µk.

Evident candidates are empirical means taken separately for each bag, which we
call naive estimators. The question we want to tackle is whether it is possible to
improve over these individual naive estimators by exploiting similarities between tasks.
We propose and study particular estimators µ̂k formed by a convex combination of
naive estimators of “related” tasks. We insist that absolutely no information about
the underlying similarity or task structure is assumed to be known a priori. Roughly
speaking, we measure relatedness between tasks by estimating the distance between
their means.

The goal is to analyse the relative risk of the proposed estimators, i.e., the ratio of
their risk to that of the corresponding naive estimator. The following questions will
guide our estimator construction and analysis:

(a) what would be the ideal “oracle” convex combination estimator, if some addi-
tional a priori information about task relatedness were known?

(b) can an empirical estimator approach the oracle relative risk from the data only,
in a suitable asymptotical sense?

(c) is the oracle relative risk minimax optimal in a suitable asymptotical sense?
Because we focus on the relative risk, the usual asymptotics of the sample size going
to infinity is not the most relevant one (though we will assume that the sample sizes
are “large enough”). Rather, we will focus on high-dimensional asymptotics where the
dimension grows large. More precisely, we mean a notion of effective dimension rather
than ambient space dimension: the effective dimension of a task will be defined from
spectral quantities related to its covariance matrix, as is common in high-dimensional
statistics.

Motivations for this work. The framework under examination is motivated by
scenarios involving large volumes of high-dimensional data. These scenarios typically
involve the categorization of independent samples into homogeneous units that may
exhibit differences but also varying degrees of similarity. Examples include medical or
educational records sourced from different institutions, or purchase histories organised
by individual clients on an internet platform. This framework also intersects with
the concepts of federated and personalised machine learning (McAuley, 2022; Tan et
al., 2022). An application of particular interest within this framework is that of kernel
mean embeddings of distributions (Muandet, Fukumizu, Sriperumbudur, and Schölkopf,
2017). This involves estimating means of distributions after a formal mapping of the
data into a Hilbert space. Notably, in this context, one anticipates that the effective
dimensionality of the mapped data will be high.

Relation to previous work. The problem of estimating multiple means has a
long and rich history in statistics, starting in particular with the seminal work of Stein
on the eponymous paradox and the James-Stein estimator (James and Stein, 1961),
continued with the empirical Bayes point of view on the latter (Efron and Morris,
1972), up to modern considerations on the topic (Brown and Greenshtein, 2009; Jiang
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and Zhang, 2009). The topic of “multitask learning” also provides a more recent angle
on the problem (Duan and Wang, 2023; Feldman et al., 2014). We defer a detailed
discussion to Section 7, but stress that most previous works analysed the compound
(or cumulated) risk over all tasks and its behaviour in the asymptotics B → ∞, in a
one- or fixed-dimensional setting. By contrast, we will be interested in analyzing the
individual risk separately for each task, and in “high dimensional” asymptotics.

We start with a description of the considered setting in Section 2. Sections 3 and 4
introduce two approaches to form convex combination estimators of the means, provide
bounds on their relative risks, and a comparison of the two. A minimax analysis for
suitable distribution classes is conducted in Section 5. Finally, experiments on artificial
and true data are presented in Section 6. All proofs are provided in the Supplemental,
wherein Supplemental A contains a list of the used notation for the reader’s convenience.

2. Setting and notation

2.1. Loss and risk. We consider the squared norm loss and expected risk

Lk(µ̂k) := ∥µ̂k − µk∥2 ; Rk(µ̂k) := E[Lk(µ̂k)]. (2)

of an estimator µ̂k for µk. The empirical mean µ̂NEk := 1
Ni

∑Ni

i=1X
(i)
k , called the naive

estimator, serves as a reference. Due to the unbiasedness of the naive estimator, its
variance is equal to its risk. More specifically, let the naive risk be denoted by

s2k := Rk(µ̂
NE
k ) =

TrΣk

Nk

, (3)

where Σk is the covariance of task k. Then any estimator µ̂k is analysed in terms of its
relative risk to the naive — lower is better :

Rk(µ̂k)

s2k
. (4)

In contrast to the compound decision setting, our goal is to analyse the relative risk
for each task separately. For this reason, the focus is on a specific task, say k = 1 and
R1(µ̂1)/s

2
1 without loss of generality. In Section 5.2 the relative risk averaged over tasks

1
B

∑B
k=1Rk(µ̂k)/s

2
k is considered.

2.2. High-dimensional asymptotics. Observe from (3) that the naive risk s21 de-
creases at the parametric rate O(N−1

1 ). We expect the risk of a competing estimator
µ̂1 to follow the same trend. As a consequence, the role of the sample size will cancel
out in the relative risk. In order to state meaningful results, it is necessary to obtain
sharp estimates of the other factors in the rate.

To this end, we shift the perspective from a standard asymptotic view point, N1 →
∞, to high-dimensional asymptotics, emphasizing the behaviour of the risks as the
dimensionality grows. There are different possible definitions of effective dimensionality
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of a distribution, generally linked to the spectral decay of the covariance matrix and
ratios of its Schatten norms. The following ones will be relevant to our analysis:

d•k :=
(TrΣk)

2

TrΣ2
k

, dek :=
TrΣk

∥Σk∥∞
. (5)

Observe that in the isotropic setting Σk ∝ Id, the effective dimensions d•k and dek
coincide with the ambient dimension d, as one would expect. In all cases it holds
1 ≤

√
d•k ≤ dek ≤ d•k ≤ d. In random matrix literature, de is sometimes called intrinsic

dimension (Hsu et al., 2012; Tropp et al., 2015) or effective rank (Koltchinskii and
Lounici, 2016), and (de)2/d• is known as the numerical or stable rank of Σ (Rudel-
son and Vershynin, 2007; Tropp et al., 2015). Most notably, we uncover a “blessing
of dimensionality” phenomenon: in a nutshell, we will show that the relative risks of
our estimators asymptotically approach a suitable notion of oracle relative risk as the
(effective) dimensionality increases.

2.3. Distributional assumptions. For our theoretical analysis, we consider the fol-
lowing different possible distributional assumptions:

Assumption (GS, Gaussian setting). For all k ∈ JBK, the distribution Pk isN (µk,Σk).

Assumption (BS, Bounded setting). For all k ∈ JBK, Pk has support in the ball of
radius M centred at 0.

The (BS) setting is of particular interest for the application to kernel mean embed-
dings, for which the assumption of a bounded kernel is very common. All results for
(BS) are presented in Rd but can be extended to a separable Hilbert space (up to
adequate adaptation of notation).

Supplemental C.4.3 covers another distributional assumption: heavy-tailed distribu-
tions with finite fourth moment. These results only hold for some of the proposed
estimators (the testing approach, introduced in Section 3) and are, thus, not discussed
further in the main text of this paper.

2.4. Simplifying settings. At times we will discuss unrealistic but simplifying settings
to help with the exposition or to illuminate our theoretical findings.

Setting (ECSS, Equal Covariance and Sample Sizes). For all k ∈ JBK, Σk = Σ and
Nk = N , which implies that s2k, d•k, dek do not depend on k.

Setting (KC, Known Covariances). For all k ∈ JBK, Σk is known. Consequently, all
derived quantities TrΣk,TrΣ

2
k, d

•
k, d

e
k, s

2
k are also known.

We will first derive the estimators assuming known covariances (KC) but later pro-
vide estimates for covariance-related quantities if those are unknown. If the covariances
and sample sizes are homogeneous (ECSS) the risks are more transparent and inter-
pretable which will help to illuminate our theoretical findings. We insist that the final
algorithms neither assume (KC) nor (ECSS).
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2.5. Naive estimator aggregation. As announced earlier, without loss of generality
we focus on estimating task k = 1. Furthermore, we focus on estimators which can be
written as convex combinations (aggregation) of naive estimators. Let SB denote the
(B − 1)-dimensional simplex, and ω = (ω1, . . . , ωB) ∈ SB be a weight vector, then

µ̂ω :=
∑
k∈JBK

ωkµ̂
NE
k s.t.

∑
k∈JBK

ωk = 1 and ∀k ∈ JBK : ωk ≥ 0, (6)

whose loss and risk will be abbreviated as L1(ω) and R1(ω), respectively. While the
weight vector ω may be data-dependent later, for the present considerations we assume
that the weights are deterministic. In this case, using independence of the naive esti-
mators and the notation ∆k := µk − µ1, we restate the risk R1(ω) by its bias-variance
decomposition for a fixed ω as

R1(ω) =

∥∥∥∥ ∑
k∈JBK

ωk(µk − µ1)

∥∥∥∥2 + ∑
k∈JBK

ω2
ks

2
k =

∑
k,k′∈JBK

ωkωk′⟨∆k,∆k′⟩+
∑
k∈JBK

ω2
ks

2
k , (7)

where the first term corresponds to the (squared) bias and the second to the variance.
Intuitively, we want to give higher weights to tasks that are close (small task bias ∥∆k∥)
and can be accurately estimated (small naive risk s2k). At a first glance, we could set
as a goal to find suitable weights ω that minimise (7); this, however, would require
full knowledge of the Gram matrix (⟨∆k,∆k′⟩)k,k′∈JBK, in addition to the naive risks s2k.
Estimation of the full Gram matrix, accurate enough to approach exact minimization
of (7), appears unattainable if the number of tasks B is large and the Gram matrix
becomes high-dimensional, which is the scenario we are interested in. For this reason,
we will consider optimizing the risk given more limited information, which includes a
subset of neighbouring tasks close to the target in relative sense but not their exact
position. We define the oracle risk as the minimiser of the worst-case risk of (7) as if
this partial information was known to the oracle.

We will consider two strategies to approach that oracle programme from data. In
Section 3 we aggregate only means close to the target which are identified by a test
procedure. Minimization of an upper bound of the risk yields their weights. In Section 4
we minimise directly an upper confidence bound of the aggregate risk (7) but have to
take into account that the means that are further away induce a large uncertainty on
the bias term. In both cases, we compare the obtained relative risk to that of the oracle.
Additionally, we study the minimax risk under the oracle information in Section 5 and
whether the proposed estimators match it.

3. A testing approach

A low-risk aggregation estimator (6) combines naive estimations that — at best —
provide a reduction in variance but add only a small bias, cf. (7). Our first approach
explicitly controls the bias. We aim at identifying a subset of neighbour tasks whose
means are sufficiently close to the target task. We then restrict the support of the
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weights to that subset and form a convex combination of neighbouring naive estima-
tions. This approach and its analysis generalise ideas introduced in Marienwald et al.
(2021). Let us first introduce some additional notation.

Definition 1 (τ -neighbouring tasks). Recall the notation ∆k = µk − µ1. For a fixed
τ > 0, let Vτ ⊆ JBK denote the set of all τ -neighbouring tasks (of task 1) as:

Vτ :=
{
k ∈ JBK : ∥∆k∥2 ≤ τs21

}
. (8)

For τ = 0, for the sake of later notational coherence we define V0 := {1} which
deviates from (8) as V0 does not contain any other tasks k ̸= 1 even if ∆k = 0.

Note that this notion of τ -neighbourhood is relative to the naive risk of task 1, and
that 1 ∈ Vτ always holds.

Definition 2 (Relative aggregated variance ν). For a subset U ⊆ JBK of tasks, define
their relative aggregated variance (to that of task 1) as:

ν(U) :=
s2(U)

s21
, with s2(U) :=

(∑
k∈U

1

s2k

)−1

. (9)

Observe that s2(U) is the variance of the optimal convex combination of unbiased, in-
dependent estimators that have different variances s2k — a classical problem of statistics.
The quantity ν(U) is, again, relative to the naive risk of task 1.

The quantity τ can be seen as the worst-case relative bias of a convex combination of
their naive estimators for the goal of estimating µ1, while ν(Vτ ) is a best-case relative
variance (i.e., all the tasks in Vτ would in fact have mean µ1). We introduce the
following auxiliary function, which will capture an optimal trade-off between these two
quantities. It provides a common reference value for the relative risks of our estimators
and is of fundamental importance for the remainder of this manuscript.

Definition 3. Define the function B : R× [0, 1]→ [0, 1] as

B(τ, ν) :=
(

τ

1 + τ

)
+

(
1

1 + τ

)(
ν

1 + τ(1− ν)

)
. (10)

Observe that B(0, ν) = ν, B(τ, 0) = τ
1+τ

, and B is increasing in both of its variables.

In the next section, we derive a form of optimal or “oracle” weights for combining
naive estimators of tasks belonging to any given subset V ⊆ Vτ , and identify B as
a bound on its relative risk. The following sections (3.2 to 3.4) are concerned with
approximating the oracle bound by estimating unknown quantities and using a plug-in
principle.

3.1. Oracle procedure. For a fixed τ > 0, assume an oracle provides a set of neigh-
bours V with the guarantee that V ⊆ Vτ holds. We restrict our attention to convex
combinations of naive estimators only in set V , i.e., estimators µ̂ω as in (6) with ω ∈ SV ,
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the set of convex weights of support included in V . Using the Cauchy-Schwartz inequal-
ity in (7) (with ∆1 = 0), for such aggregated estimators we obtain the risk bound

R1(ω) ≤ τs21(1− ω1)
2 +

∑
k∈V

ω2
ks

2
k, for all ω ∈ SV , (11)

which can be optimised for ω. A bound on the oracle relative risk is presented next.

Lemma 1. Let τ > 0 be fixed. For all V ⊆ Vτ , the weights ω∗
V ∈ SV that minimise

(11) yield the bound
R1(ω

∗
V )

s21
≤ B(τ, ν(V )). (12)

The oracle weights ω∗
V are given by:

ω∗
V,k(τ, s) = (1− λ)1{k = 1}+ λ

s2(V )

s2k
, where λ :=

1

1 + τ(1− ν(V ))
. (13)

It holds B(τ, ν(V )) ∈ [ τ
1+τ

, 1], i.e., this bound cannot be better than τ
1+τ

. We will
call τ

1+τ
best potential improvement (that can be guaranteed by the oracle bound). The

bound on the relative risk depends on the relative neighbourhood size τ and the relative
aggregated variance ν(V ). Because B increases in both variables, small τ and ν(V ) are
beneficial. This coincides with what we noted from the bias-variance decomposition (7).
If τ is fixed, it is of advantage to consider as many τ -neighbours as possible so that ν(V )
decreases, i.e., to take V = Vτ . On the other hand, reducing the neighbourhood size
τ reduces the bias but also leads to a smaller set of neighbours, ergo, a larger relative
aggregated variance ν(Vτ ). Thus, there is a trade-off between both quantities. We may
aim at a relative risk close to minτ>0 B(τ, Vτ ) but for the remainder of this section we
assume τ > 0 fixed beforehand.

The following observations enable additional insight into the involved quantities:
(a) B(0, ν(V )) = ν(V ), i.e., when τ ↘ 0, which implies that all tasks in V have the

same mean, the bound is given by the relative aggregated variance, as should
be expected from the remark following Definition 2.

(b) B(τ, 0) = τ
1+τ

, the best potential improvement is reached when s2(V ) ↘ 0.
This happens if at least one of the τ -neighbouring means is known with perfect
precision and it becomes a “reference point”. This scenario is comparable to the
classical James-Stein setting, for which the origin is such a reference point and
the James-Stein estimate improves most if the target is close to the origin (see
Supplemental B for a detailed discussion). However, s2(V ) ↘ 0 also happens
when τ -neighbours have a non-zero variance, but their number grows large.

(c) B(τ, ν(V )) remains unchanged if we replace a group of neighbours V \ {1} by a
single τ -neighbour with variance s2(V \ {1}).

3.2. From an oracle to an empirical procedure. In practice, the oracle information
about the relative neighbours is unavailable. However, we can hope to approach the
oracle setting by estimating the set of τ -neighbours Vτ and their risks s2k. We will
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assume that such estimates are independent of the samples used to compute (µ̂NEk )k∈JBK.
(To this end, one might resort to sample splitting.) The independence assumption of
estimates is emphasised by a tilde notation: (Ṽ , s̃2).

The simplest is to plug in such estimates into the oracle formula (13). The next
proposition quantifies how the relative risk of the plug-in procedure can be bounded,
provided the estimation error is.

Proposition 1. Let τ > 0 be fixed. Assume Ṽ ⊆ JBK, s̃2 = (s̃2k)k∈JBK ∈ RB
+ are possibly

random but independent of the samples in model (1). Let V ∗ be some deterministic
reference set, such that 1 ∈ V ∗. Let (Ṽ , s̃2) be plugged in for (V, s2) into (13), giving
rise to weight vector ω̃. Conditionally to the event{

V ∗ ⊆ Ṽ ⊆ Vτ ,

|s̃2k − s2k| ≤ ηs2k, for all k ∈ Ṽ , and some η ∈ [0, 1),
(14)

it holds
R1(ω̃)

s21
≤
(
1 + η

1− η

)
B
(
τ, ν(Ṽ )

)
≤
(
1 + η

1− η

)
B
(
τ, ν(V ∗)

)
. (15)

Comparing the oracle relative risk bound (12) with that of the empirical procedure
(15), note first the requirement that all estimated neighbours are τ -neighbours (Ṽ ⊆
Vτ ); secondly, the oracle risk is deteriorated by two factors: the excess factor (1+η)/(1−
η) ≥ 1 which quantifies what we lose due to estimation of the neighbours’ risks; and the
replacement of the set of true neighbours by the smaller set V ∗, under the requirement
that V ∗ ⊆ Ṽ holds. To summarise, we expect the risk of the empirical procedure to
be close to the oracle risk if (1) the relative estimation error η for naive risks is small,
and (2) we can guarantee the “sandwiching” property V ∗ ⊆ Ṽ ⊆ Vτ , with V ∗ as large
as possible; typically we would be satisfied with V ∗ = V(1−ε)τ for a small ε.

The next sections will introduce such estimates and the fulfillment of event (14) under
certain conditions, starting with the estimation of neighbour tasks.

3.3. Finding neighbours (known covariances). For now let us assume (KC); we
will generalise to unknown covariances in the next section. Accordingly, the naive risks
s2k are known, so that η = 0 in the context of (15), and we focus on the estimation of
the set of neighbours. We assume that we are doing so using independent “tilde” data
(X̃

(k)
• )k∈JBK which are drawn from (1) but independent of (X(k)

• )k∈JBK (e.g., using sample
splitting). For clarity X(k)

• and X̃(k)
• are assumed to be of the same size Nk. Given the

first requirement Ṽ ⊆ Vτ , it is natural to think of Ṽ as the output of a multiple test
procedure (for which the null hypothesis for task k is not being a τ -neighbour, i.e.,
∥∆k∥ > τs21).

Our approach is based on recent results for two-sample mean vector testing (Blan-
chard and Fermanian, 2023). Assume Nk ≥ 2 for all k ∈ JBK. For k ∈ JBK \ {1}, we
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form an unbiased estimator for ∥∆k∥2 based on the U-statistics

Ũk :=
∑

ℓ∈{1,k}

Nℓ∑
i,j=1
i ̸=j

〈
X̃

(ℓ)
i , X̃

(ℓ)
j

〉
Nℓ(Nℓ − 1)

− 2

N1∑
i=1

Nk∑
j=1

〈
X̃

(1)
i , X̃

(k)
j

〉
N1Nk

. (16)

The following proposition is a direct consequence of Blanchard and Fermanian (2023):

Proposition 2. Assume (GS), (KC) hold and let α ∈ (0, 1), τ > 0 be fixed. Let T̃ (τ)
k

be given by

T̃
(τ)
k := 1

{
Ũk ≤ τs21

}
. (17)

Put for k ∈ JBK

τ kmin := 32

(
1√
d•1

+
s2k/s

2
1√

d•k

)
log(8α−1) , (18)

then it holds:

if ∥µ1 − µk∥2 > τ+k s
2
1 : P

[
T̃

(τ)
k = 1

]
≤ α; (19)

if ∥µ1 − µk∥2 ≤ τ−k s
2
1 : P

[
T̃

(τ)
k = 0

]
≤ α. (20)

where τ±k =
(√

τ ±
√
τ kmin

)2
+
.

Equations (19)-(20) can be understood as controls of the type I/II error level for the
test of ∥∆k∥2 > τ+k s

2
1 versus the alternative ∥∆k∥2 ≤ τ−k s

2
1. It is possible to make the

original null hypothesis ∥∆k∥2 > τs21 appear through notation translation (
√
τ ←

√
τ−k ,√

τ+k ←
√
τ , if we assume additionally τ ≥ τ kmin). We prefer to keep the above more

symmetric form, also because the rejection set (17) has a simple form, used in practice.
The test is able to identify mean differences very accurately relative to the target

threshold τs21 if τ ≫ τ kmin. Formula (18) highlights the crucial role of the effective di-
mensionality for this minimal threshold of reliable detection. In the simplified (ECSS)
setting, this threshold is simply of order 1/

√
d•1. This reflects the known phenomenon

that testing is more reliable than estimation in high dimensions; distances that can be
detected might be of smaller order than the typical estimation error. For fixed τ and
increasing dimension, the inconclusive gap between the null and the alternative vanishes
with increasing dimension — a desirable property given the sandwiching property that
we aim for (see (14)).

In general non-(ECSS) configurations, we still want to keep τ kmin small of order
1/
√
d•1. In view of the second term in (18), this suggests to only consider tasks with

s2k/
√
d•k ≤ ςs21/

√
d•1 for some constant ς ≥ 1. To this aim, denote the set of tasks
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satisfying this criterion as

W(ς) :=

{
k ∈ JBK :

s2k√
d•k
≤ ς

s21√
d•1

}
=

{
k ∈ JBK :

∥Σk∥2
Nk

≤ ς
∥Σ1∥2
N1

}
, (21)

and correspondingly the set of whittled down neighbours as
Vτ,ς := Vτ ∩W(ς). (22)

Note that since we are under (KC), the set W(ς) is assumed to be fully known for now.
(We will consider estimating it in the next section.) Then the following corollary makes
the obtained sandwiching property explicit:

Corollary 1. Let ς ≥ 1 be fixed. Assume (GS) and (KC) hold and let α ∈ (0, 1).
Then, defining

Ṽτ,ς :=
{
k ∈ JBK : T̃ (τ)

k = 1
}
∩W(ς)

(where T̃ (τ)
k is as in (17)), with probability at least 1− α it holds

Vτ−,ς ⊆ Ṽτ,ς ⊆ Vτ+ , (23)

where τ± :=
(√

τ ±
√
ςτ ◦min

)2
+
, τ ◦min := 64 log(8Bα−1)/

√
d•1.

The sandwiching property (23) provides a direct link to Proposition 1. More specifi-
cally, Corollary 1 together with Proposition 1 guarantee with high probability that the
bound on the relative risk of the plug-in estimate µ̂ω̃ of (13) using the estimated set of
neighbours Ṽτ,ς is bounded by B

(
τ+, ν(Vτ−,ς)

)
(recall η = 0 for now because of (KC),

and Ṽ0 := {1}). Furthermore, for fixed τ , if d•1/(logB)2 →∞ then τ ◦min vanishes and it
holds τ− ≈ τ ≈ τ+. Under (ECSS), we can simply take ς = 1 and have Vτ−,ς = Vτ− ,
ensuring a relative risk very close to the oracle B

(
τ, ν(Vτ )

)
. In a general context, there

is an additional trade-off through the choice of the constant ς. In both cases, closeness
to the oracle relative risk improves with increasing effective dimensionality.

3.4. Unknown covariances. In a realistic setting the covariances are unknown, es-
pecially in high dimensions. In this section, we estimate all quantities relevant for the
fulfilment of Proposition 1, using the same independent “tilde” data (X̃

(k)
• )k∈JBK as in

the previous section. For simplicity we assume that the sizes Nk of the “tilde” sam-
ples are the same as that of the main sample, as we would get by equal-size splitting.
Observe that it is not necessary to estimate the full covariance matrices Σk, but only
scalar quantities related to their Schatten norms. In particular, in the Gaussian setting
we have the following result for the natural unbiased estimators of s2k:

Proposition 3. Let s̃2k := 1
Nk(Nk−1)

∑Nk

i=1

∥∥X̃(k)
i − µ̃NEk

∥∥2, where µ̃NEk := N−1
k

∑Nk

i=1 X̃
(k)
i ,

and let α ∈ (0, 1). Assume (GS) holds. Then with probability at least 1− α:

∀k ∈ JBK :
∣∣s̃2k − s2k∣∣ ≤

(
4
√
2
log(2Bα−1)√

d•kNk

)
s2k. (24)
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When Nk ≳ log2(2Bα−1) for all k, the estimation of s2k has relative accuracy of order
1/
√
d•k with probability (1 − α). This finding can be used for the fulfillment of the

second requirement of condition (14). It also allows to preserve the qualitative results
of Proposition 2 (up to numerical factors) for test (17) wherein s̃21 is plugged in for s21.
Finally, we also replace ∥Σk∥2 in the definition (21) of set W(ς) by suitable estimators;
Proposition 14 in the Supplemental gives the details. It provides a quantitatively precise
version of the sandwiching property analogous to (23) with all unknown quantities are
replaced by their proposed estimators.

We combine the obtained results in an illustrative example. It shows a fully empirical
algorithm that approximates the (whittled down) oracle B(τ, Vτ,ς) (numerical constants
are made explicit for concreteness but not meant to be sharp):

Proposition 4. Assume (GS) holds. Let α ∈ (0, 1/3). Consider the following plug-in
versions of the quantities appearing in (17), (21):

W̃(ς) :=

{
k ∈ JBK :

Z̃
(2)
k

Nk

≤ ς
Z̃

(2)
1

N1

}
, ˜̃T (τ)

k := 1
{
Ũk ≤ τ s̃2k

}
, (25)

where s̃2k as in Prop. 3, and Z̃(2)
k estimates ∥Σk∥2 as defined in (59) in the Supplemental.

Define the set of estimated τ -neighbours˜̃V τ,ς :=
{
k ∈ W̃(ς) :

˜̃T (τ)

k = 1
}
. (26)

Assume Nk ≥ a(4 + log(2Bα−1))4 for all k ∈ JBK, for a big enough numerical constant
a (a = 4400 works). For fixed τ > 0, ς ≥ 1, consider the weights ω̃♯ obtained by the
modified plug-in

( ˜̃V τ̃ ,3ς , s̃
2
)

for (V, s2) in (13), where

τ̃ :=

1 +
1

60

√
d̃•1

(√τ +√6ςτ̃ ◦min

)2
; τ̃ ◦min :=

32
(
log(8Bα−1)

)√
d̃•1

;

√
d̃•1 :=

N1s̃
2
1

Z̃
(2)
1

.

(27)
Then with probability at least 1− 3α over the draw of the “tilde” sample (X̃

(k)
• )k∈JBK, it

holds

R1(ω̃
♯)

s21
≤
(
1 +

1

10
√

mink d•k

)(
1 +

30
√
ς log(8Bα−1)

(d•1)
1
4
√
τ

)2

B
(
τ, ν(Vτ,ς)

)
,

where the expected risk is with respect to the main sample (X
(k)
• )k∈JBK.

3.5. Discussion. To summarise, for fixed values of τ, ς, B, (Nk)k∈JBK, the bound on the
relative risk of ω̃♯ becomes arbitrarily close to the oracle bound in the high-dimensional
asymptotics d•1 → ∞. We stress that this applies for fixed sample sizes Nk, provided
Nk ≳ log4B. Consequently, the fully empirical procedure is (with high probability)
not worse than the naive estimator up to a risk factor very close to 1 (since the oracle
bound B is always less than 1), and potentially performs much better if there are many
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true τ -neighbouring tasks (again, as reflected by the oracle factor). The conclusion still
holds true if τ, ς, B, (Nk) vary with d•1 (τ → 0 and/or B →∞ being the most interesting
situations) provided ς log(B)/

√
d•1 = o(τ) holds and as Nk ≳ log4B as before.

Beyond the Gaussian setting. The results presented above hold under the Gaussian
distributional assumptions (GS). However, the required components — specifically,
concentration of estimators for distances between two means and for Schatten norms
of the covariances — can be extended with appropriate modifications to the bounded
(BS) and heavy-tailed (HT) distributional settings. Detailed results are presented in
in Supplemental C.4 and show the qualitative robustness of our approach beyond the
Gaussian setting.
Beyond the testing approach. The testing approach has two flaws: first, the the-
oretical necessity to partition the data entails a certain loss of efficiency, such as a
reduction by a factor of 1/2 when the data is equally split. This consideration has
been disregarded in the preceding discussion, where the oracle risk was restricted to the
main sample. Second, the issue of parameter selection of τ and ς persists. As previously
elucidated, the oracle relative risk B exhibits a bias-variance trade-off: the aggregated
variance decreases with an increase in the number of τ -neighbours, consequently, with
the worst-case relative bias τ . Ideally, parameters should be adaptively chosen to strive
for optimal oracle improvement minτ≥0,ς≥1 B

(
τ, ν(Vτ,ς)

)
. The next section introduces an

alternative approach pursuing this objective. Additionally, Section 5 analyses whether
the derived bounds are optimal.

4. A “Q-aggregation” approach

In this section, we propose an alternative approach for forming the weights of the
convex combination estimator (6). The weights are found by direct minimization of an
upper confidence bound of the risk R1(ω), i.e.,

ω̂ ∈ arg min
ω∈SB

(
L̂1(ω) + uQ̂1(ω)

)
, (28)

where L̂1(ω) is an unbiased estimate of the risk. The idea of this scheme bears resem-
blance to Q-aggregation (Lecué and Rigollet, 2014), because the objective function will
be a quadratic function of ω. The objective aims at taking into account all individual
distances between the bags, rather than selecting those less than a fixed threshold as in
the testing approach. The penalization term Q̂1(ω) shall be a high probability upper
bound on the difference between estimated and true loss (L̂1(ω)−L1(ω)). Observe that
the penalization term also depends on the weight vector, since giving more weight to
tasks that are further away from the target (large ∥∆k∥) will result in a larger variabil-
ity of the risk estimate L̂1(ω). The parameter u is a calibration constant. Compared to
the testing approach, one advantage is that it is not necessary to choose the parameters
τ and ς. Furthermore no sample splitting is needed. On the other hand, the procedure
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is more computationally demanding since there is no closed form solution to (28). In-
stead, a solution ω̂ can be obtained by exponentiated gradient descent on the simplex
(Kivinen and Warmuth, 1997).

We present specific choices for L̂1(ω), Q̂1(ω) and an analysis of the relative risk of
the resulting Q-aggregation estimator for (GS) in Section 4.1 and for (BS) thereafter.
In contrast to Lecué and Rigollet (2014), we focus on the effect of the dimension rather
than that of the sample size which provides a novel analysis.

4.1. Gaussian setting. Under assumption (GS) we propose to use the following es-
timates to form the Q-aggregation estimator:

L̂1(ω) =

∥∥∥∥ B∑
k=2

ωk(µ̂
NE
i − µ̂NE1 )

∥∥∥∥2 + (2ω1 − 1)ŝ21 , (29)

ŝ21 :=
1

N1(N1 − 1)

N1∑
i=1

∥∥∥X(1)
i − µ̂NE1

∥∥∥2 , (30)

Q̂1(ω) :=
B∑

k=2

ωk

√
q̂k
N1

, where q̂k :=
1

N1 − 1

N1∑
i=1

〈
µ̂NE1 − µ̂NEk , X(1)

i − µ̂NE1
〉2
. (31)

It can be checked easily that ŝ21 is an unbiased estimator of the naive risk s21, and
that the estimator L̂1(ω) is an unbiased estimate of the conditional risk E

[
L̂1(ω) −

L1(ω)
∣∣X(k)

• , k ≥ 2
]
= 0. With these choices we establish the following result for the

average risk of the Q-aggregation estimator:

Proposition 5. Assume (GS) holds, and let u0 ∈ R+ be fixed such that log(17B) ≤
u0 ≤ (N1 − 1)/2. With L̂1(ω) and Q̂1(ω) as defined in (29),(31), let

ω̂ ∈ arg min
ω∈SB

(
L̂1(ω) + 16

√
u0 Q̂1(ω)

)
. (32)

Then it holds:
R1(ω̂)

s21
≤ 1

s21
min
ω∈SB

[
R1(ω)(1 + CBe−u0/2) + CQ1(ω)

√
u0

]
+ C

u0√
d•1
, (33)

where C > 0 is an absolute constant, and (recalling ∆k = µk − µ1)

Q1(ω) :=
B∑

k=2

ωk

√
qk
N1

, with qk := ∆T
kΣ1∆k +

TrΣ1Σk

Nk

. (34)

The above bound (33) has the form of an “oracle inequality” relating the relative
risk of the Q-aggregation approach to the minimum of the attainable relative risk of
any aggregation estimator with fixed weight ω but with a penalization term Q1(ω).
The extra additive term (outside the minimum) vanishes in high effective dimension,
but indicates that the relative risk bound cannot be better than O(logB/

√
d•1). We

also emphasise the requirement logB ≲ N1 implicit in the condition on the calibration
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parameter u0. The effect of the penalization term Q1(ω) on the oracle bound (33)
might appear obscure: depending on the weights ω, the penalization might outweigh
the main risk term R1(ω). It is noteworthy that this term penalises tasks with distant
means (term ∆T

kΣ1∆k) or with high variance (term TrΣ1Σk/Nk). To provide further
clarification, we present the following corollary which bounds the relative risk of the
Q-aggregation method in terms of the relative risk of the oracle testing approach B(τ, ν):
Corollary 2. Assume (GS) holds. Let u0 ∈ R+ be fixed, such that log 17B ≤ u0 ≤
(N1 − 1)/2, and ω̂ as defined in (32). Then it holds:

R1(ω̂)

s21
≤
(
1 + CBe−u0/2

)
inf
τ≥0
ς≥1

[
B
(
τ, ν(Vτ,ς)

)
+ Cς

√
u0
de1

]
. (35)

where C > 0 is an absolute constant, B(., .), ν(.) are as defined in (10), (9) and Vτ,ς as
in (21)-(22).

As a simple illustration, assume the tasks satisfy (ECSS) and have equal means
(µk = µ1 for k ∈ JBK), but the estimator does not have this information. The oracle
merges all tasks and has relative risk infτ,ς B

(
τ, ν(Vτ,ς)

)
= B−1 for τ → 0, ς = 1. For

u0 = log 17B, the relative risk of the Q-aggregation method (35) becomes

R1(ω̂)

s21
≤ Cmax

{
1

B
,

√
logB

de1

}
,

where C ≈ 1 if de1 and B are large. We observe again a blessing of dimensionality; the
best improvement is obtained when de1 is high (de1 ≥ B2 logB ensures a relative risk
bound of order 1/B, which is the best improvement even if the information of equal
means had been known).

4.2. Comparison with the testing approach. Let us compare the bounds obtained
for the test method (Proposition 4) to that for the Q-aggregation approach (Corol-
lary 2), in high-dimensional asymptotics d•1, de1 → ∞. We start with an analysis of
the conditions on the other parameters {τ, ς, B, (Nk)k∈JBK} under which the obtained
bounds guarantee that the relative risk of either method is bounded by the oracle bound
B
(
τ, ν(Vτ,ς)

)
up to a factor asymptotically converging to 1, a property which we call

“oracle-consistency” for short.
Recall from Section 3.5 that the relative risk of the test method is oracle-consistent

(as d•1 → ∞), provided ς log(B)/
√
d•1 = o(τ) and Nk ≳ log4B hold. Aside from these

conditions the parameters τ, ς, B, (Nk) can vary with d•1. On the other hand, (35) shows
that the Q-aggregation method is oracle-consistent (as de1 → ∞) with respect to any
(τ, ς) provided that N1 ≳ log(Bde1), and ς

√
log(Bde1)/d

e
1 = o(τ) (taking u0 = 2 logBde1).

The additive terms in (35) are then negligible compared to B(τ, ν), due to B(τ, .) ≥
τ/(1 + τ). Note also that it does not require any condition on Nk for k ̸= 1.

If d•1 and de1 are of the same order (e.g. in the isotropic setting), the above parameter
conditions for consistency of either method are very similar with only minor differences.
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One such difference is that the test method is guaranteed to be oracle-consistent even
if B, τ, ς, (Nk) are fixed, i.e., must not change as d•1 → ∞; while we require N1 →
∞ (though only at a logarithmic rate in B, d•1) to warrant oracle consistency of the
aggregation estimator. If de1 is of order

√
d•1 (for example, for a slow power decrease of

the eigenvalues λi of the covariance, λi = i−α for 1 ≤ i ≤ d and α ∈ (1/2, 1)), then the
oracle consistency conditions for the Q-aggregation method are narrower.

Still, one has to keep in mind that oracle-consistency for the testing approach only
holds for the specific parameters (τ, ς) that must be provided by the user, while the
Q-aggregation method is oracle consistent with respect to any choice (τ, ς) satisfying
the delineated conditions. In other words, the relative risk of the Q-aggregation method
qualitatively enjoys the same asymptotic guarantees as the testing approach with op-
timally selected τ and ς subject to the above conditions. This and the fact that the
Q-aggregation does not use data splitting is a strong argument in its favour. On the
other hand, the testing method has the advantage of being more flexible and easily
adapts to non-Gaussian distributions, e.g., bounded or heavy-tailed distributions (see
Supplemental C.4). With a modification of the penalization term, the Q-aggregation
method can also be applied to bounded distributions, as shown next, but it currently
does not accommodate heavy-tailed data distributions.

4.3. Bounded setting. Our results for the Q-aggregation estimator can be extended
to the bounded setting (BS) where the data lie in a ball of radius M centred in 0.
A precise value for M is often known. For example, if the data lies in a reproducing
kernel Hilbert space associated with a bounded kernel, M2 will be the bound on the
kernel. The methodology we propose for (BS) closely resembles the one outlined for the
Gaussian setting. It utilises the same estimates, (29)-(30)-(31), for the risk estimation
and its deviations. In order to compensate the lack of regularity of bounded compared
to Gaussian data, an additional penalization term Q̂BS(ω) is introduced, which depends
on M .

Proposition 6. Assume (BS). Let u0 ∈ R+ with 2 logN1 + log(B) ≤ u0 ≤ N1, and

ω̂ ∈ arg min
ω∈SB

(
L̂1(ω) + 4

√
2u0Q̂1(ω) + C0u0Q̂

BS
1 (ω)

)
, (36)

where L̂1, Q̂1 are defined in (29), (31) resp., C0 > 1424 works, and

Q̂BS
1 (ω) =

M

N1

B∑
i=2

ωi

∥∥µ̂NEi − µ̂NE1 ∥∥ . (37)

Assume Nk ≥ (d•k)
β for some β > 0 and all k ∈ JBK, then:

R1(ω̂)

s21
≤ min

τ>0,ς≥1

(
B
(
τ, ν(Vτ,ς)

)
+ Cςε

)
+ Cϕ1ε , ε := max

{√
u0
de1
,

u0
(d•1)

β/2

}
, (38)

where B(·, ·), ν(·) are as defined in (10), (9), Vτ,ς as in (21)-(22), C an absolute con-
stant, and ϕ1 :=M2/TrΣ1.
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The quantity β reflects the trade-off between the requirement on the number of
samples and the rate of convergence to the oracle bound. A bound similar to that
in the Gaussian case will only be obtained if a stricter condition on the bag sizes is
met (Nk ≳ d•k instead of N1 ≳ logB as in Corollary 2). In contrast to (35), there
is no multiplicative constant in front of the bound, however, the additive term now
involves the quantity ϕ1 (see Supplemental F for a discussion of this quantity in the
framework of kernel mean embedding (KME) estimation with a bounded kernel, which
is our primary motivation for analyzing the bounded setting).

5. Minimax results

This section explores if the oracle relative risk upper bound B(τ, ν(Vτ )) as defined
in (12), which has been utilised as benchmark in previous sections, is optimal in a
minimax sense. As before, we will first examine the estimation of a single mean. Sub-
sequently, we extend the analysis to the compound relative risks averaged over tasks.

Our aim is to establish minimax bounds matching the upper bounds over distribution
classes that are as restrictive as possible. Since a minimax lower bound on a distribution
class also applies to every superclass containing it, bounds on restrictive classes are more
insightful. To achieve this, we narrow down the distribution classes by fixing as many
parameters as possible to arbitrary values. As employed throughout this manuscript, we
will adopt a high-dimensional asymptotics viewpoint and focus on minimax statements
as the effective dimension grows large.

5.1. Single task relative risk. We derive a lower minimax bound for a class of distri-
butions that closely match the assumptions proposed to introduce the oracle bound (12):
a known subset of τ -neighbours V in arbitrary position, all other parameters (sample
sizes, covariances, . . . ) being fixed. We additionally assume that all task covariance
matrices are proportional to each other ("aligned"), which appears to be the least
favourable setting.

Definition 4. Let τ ∈ R+;B, V ∈ N>0 with B ≥ V , s2 = (s21, . . . , s
2
B) ∈ RB

+,
(Nk)k∈JBK ∈ NB

>0, and Σ a symmetric positive definite matrix of size d with TrΣ = 1 be
fixed. We denote by Psingle(τ, V,Σ, s

2) the set of joint distributions for tasks following
model (1) such that:

(i) The total number of bags is B and the number of samples per bag is given by
(Nk)k∈JBK. (Omitted from the distribution class notation for simplicity.)

(ii) (GS) holds.
(iii) The task covariances are given by Σk = Nks

2
kΣ (i.e., all tasks have covariances

proportional to Σ and the naive risks are specified by the vector s2).
(iv) The mean vectors (µk)k∈JBK can vary freely subject to:

∥µ1 − µk∥2 ≤ τs21, k ∈ JV K.
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A minimax lower bound, as by Proposition 7 below, over that model holds over
any larger model; for instance, the model where Σ1 is arbitrarily fixed and the other
covariances may vary freely provided that the naive risks still match the prescribed s2.

Proposition 7. It holds

inf
µ̂1

sup
Q∈Psingle(τ,V,Σ,s2)

R1(Q, µ̂1)

s21
≥ B

(
τ, ν(JV K)

)
− ε
(
de(Σ)

)
,

where B is defined in (12), ν in (9), the infimum is over all estimators µ̂1 for µ1, and
R1(Q, µ̂1) indicates its risk (2) under distribution Q. The function ε(t) is independent
of any parameters and satisfies ε(t) = O((log t)/t) as t→∞.

This minimax lower bound can be compared with the upper bounds obtained for the
testing and Q-aggregation methods, Proposition 4 and Corollary 2, resp. In the case
of (ECSS) (so that Vτ,ς = Vτ for any ς ≥ 1 and we can ignore the role of ς), the lower
and upper bounds match. This shows that the oracle relative risk B(τ, ν(Vτ )) is indeed
minimax in the sense of high-dimensional asymptotics, provided that log(B) = o(de1).
Furthermore, the Q-aggregation method is asymptotically minimax adaptive over the
parameter τ > 0. This can be seen as a generalization of classical results on the James-
Stein estimator (see Supplemental B). Observe also that for the upper and lower bounds
the dimension-dependent remainder terms do not depend on other parameters, which
makes the dimensional asymptotics uniform with respect to those parameters.

If (ECSS) does not hold, there can be a discrepancy between the minimax lower
bound and the obtained upper bounds due to the exclusion of high variance tasks
in the latter (Vτ against Vτ,ς). An unfavourable regime illustrating this gap is the
following: suppose there are many tasks that are τ -neighbours of the target (τ being
fixed independently of the dimension but V ≈ d•1) with significantly higher variances
though (ς = s2k/s

2
1 ≈ V 1/2 for all 2 ≤ k ≤ V ). In that scenario, the upper bounds of

Proposition 4 and Corollary 2 do not guarantee convergence to B(τ, ν(Vτ )) ≈ τ/(1+τ),
since the remainder terms ς/

√
d•1 (resp. ς/

√
de1) do not converge to zero for high-

dimensional asymptotics. This gap can amount to an arbitrary large factor since τ
can be arbitrarily small. However, the scenario where a target task is surrounded
by numerous neighbours with significantly higher variance can only arise for a small
proportion of the tasks. This implies that this concern is alleviated when evaluating
the relative risk averaged across all tasks, as shown next.

5.2. Compound relative risk. We define the compound relative risk as the relative
risk averaged over all tasks. As we only studied upper bounds for a single task so far,
we first derive new upper bounds for the compound relative risk. We then proceed to
derive minimax bounds on restrictive distribution classes under which the task means
exhibit a certain clustering or covering structure.

Definition 5. Let µ = (µk)k∈JBK be a collection of vectors of Rd, J ∈ N>0, and C a
J-partition of JBK (i.e., C = (Cj)j∈JJK with C1 ⊔ . . . ⊔ CJ = JBK). The diameters of the
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partition C applied to µ are defined as:

diam(C,µ) =
(
max
k,ℓ∈Cj

∥µk − µℓ∥
)

j∈JJK
∈ RJ

+. (39)

We shall refer to parts as “groups” rather than clusters, because the partitioning can in
principle be arbitrary. However, the intuition is that the set of vectors µ exhibits more
structure if it can be partitioned into a limited number of groups with small diameter.
For instance, if it is strongly clustered, or supported on a set of small metric entropy
such as a low-dimensional manifold. The compound relative risk of the Q-aggregation
approach can then be upper bounded as follows:

Proposition 8. Assume (GS) holds, and let u0 ∈ R+ such that log 17B ≤ u0 ≤
(minkNk − 1)/2. For k ∈ JBK, define L̂k(ω), Q̂k(ω) analogously to (29),(31) and

ω̂k ∈ arg min
ω∈SB

(
L̂k(ω) + 16

√
u0 Q̂k(ω)

)
. (40)

Then it holds:

1

B

B∑
k=1

Rk(ω̂k)

s2k
≤
(
1 + CBe−u0/2

)
min
C

(
L∗(s,C, diam(C,µ))+ C

u0
mink∈JBK(dek)

1/2

)
,

(41)
where the minimum is taken over all partitions C of JBK, C is an absolute constant,
and for ζ ∈ RJ

+:

L∗(s,C, ζ) := 1

B

J∑
j=1

∑
k∈Cj

B(τj,k, νj,k), τj,k :=
ζ2j
s2k
, νj,k :=

s2(Cj)
s2k

, (42)

and B is defined in (12).

Similarly to the estimation of a single mean, the bound on the compound relative
risk depends on the maximum distance between tasks of the same group relative to
the naive risk of each task, and on the relative aggregated variances (9) in each group.
Remarkably, the compound relative risk bound does not involve any “whittling down”
of high-variance tasks as in the single task bound (22), and holds under arbitrary
inhomogeneity of the tasks and sample sizes.

The quantity L∗ equates to an oracle compound relative risk and is minimax under
high-dimensional asymptotics. To show this, we extend the single task model 6 to a
joint distribution class such that the tasks are divided into inhomogeneous groups.

Definition 6. Let B ∈ N>0, s
2 = (s21, . . . , s

2
B) ∈ RB

+, (Nk)k∈JBK ∈ NB
>0, and Σ a

symmetric positive definite matrix of size d with TrΣ = 1 be fixed.
Let J ∈ N>0, C be a J-partition of JBK and ζ ∈ RJ

+. We define Pmult(C, ζ,Σ, s) as the
set of tasks according to model (1) with:
(i)-(iii) as in Definition 4;
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(iv) The mean vectors µ = (µk)k∈JBK can vary freely subject to

µ ∈
{
µ ∈ Rd×B : diam(C,µ) ≤ ζ (coordinate-wise inequality)

}
.

In words, Pmult(C, ζ,Σ, s) is the set of Gaussian tasks with fixed, aligned covariances
and naive risks prescribed by the vector s, such that the groups of mean vectors given
by partition C have diameters bounded by the respective entries of vector ζ.

Proposition 9. Let s ∈ RB
+, J ∈ N>0, C a J-partition of JBK and ζ ∈ RJ

+ be fixed. It
holds

lim
de→∞

sup
Σ:

de(Σ)=de

inf
µ̂

sup
Q∈Pmult(C,ζ,Σ,s)

1

B

B∑
k=1

Rk(Q, µ̂k)

s2k
≥ L∗(s,C, ζ/2), (43)

where the infimum is over all joint estimators µ̂ = (µ̂1, . . . , µ̂B).

In particular, since it holds L∗(s,C, ζ/2) ≥ L∗(s,C, ζ)/4, the upper bound matches
the lower minimax bound up to a fixed constant factor in a dimensional asymptotics
sense (by choosing u0 = log 17B and provided that logB/(mink(d

e
k)

−1/2) = o(L∗)).
Moreover, (41) shows that the Q-aggregation estimator is (up to that constant factor)
asymptotically minimax adaptive with respect to the choice of grouping C of the task
means, the corresponding group diameters, and the bag variances.

As in the single task case, the minimax bound L∗ only depends on the bag sizes
through the naive risks s: bags with large variance and many samples are statistically
equivalent to bags with low variance and few samples. Similarly, the improvement only
depends on the relative aggregated variance of each group, not on the number of bags.
Proposition 10 gives an interpretable upper bound for L∗:

Proposition 10. Let s ∈ RB
+, J ∈ N>0, C a J-partition of JBK and ζ ∈ RJ

+, it holds:

L∗(s,C, ζ) ≤
J∑

j=1

|Cj|
B
· τ̄j + |Cj|

−1

τ̄j + 1
, τ j :=

ζ2j
s2(Cj)

, s2(Cj) :=

 1

|Cj|
∑
k∈Cj

s−2
k

−1

, (44)

implying in particular:

L∗(s,C, ζ) ≤ min

(
1,

τ̄∗
1 + τ̄∗

+
J

B

)
, τ̄∗ :=

J∑
j=1

|Cj|
B
τ j. (45)

If all risks and diameters are equal, s2k = s2 and ζ2j = ζ2 for all k ∈ JBK and j ∈ JJK,
then the bound of (45) is sharp up to a factor at most 2.7.

Bound (45) elucidates that the compound oracle relative risk L∗ is small when (i)
there are few groups relative to the number of bags (i.e., J/B small); and (ii) groups
have on average a small squared diameter relative to the harmonic mean of the naive
risks of its constituent tasks.
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Eq. (41) implies that the compound risk is upper bounded by L∗ for any valid par-
titioning. As an illustrative example we consider the (ECSS) setting and C as a

√
τs-

covering of µ for a given τ . Then τ̄∗ = τ and the number of groups J is the covering
number N(µ,

√
τs). This highlights that the Q-aggregation strategy will be very effec-

tive to reduce the compound risk if the set of true means can be covered by a relatively
small number of balls, in comparison to the total number of tasks, with a radius signif-
icantly smaller than the standard deviation of the naive estimates.

This bound takes a form akin to the findings presented in Marienwald et al. (2021),
who examined the (ECSS) setting only and used a testing strategy comparable to
that of the previous section. The parameter of their (and our) test, though, has to be
fixed by the user. In contrast, the Q-aggregation approach attains the oracle trade-off
between the “bias” term τ/(1 + τ) and the “variance” term N(µ,

√
τs)/B without the

need to specify τ .
Finally, observe that the first term τ/(1+τ) resembles the best potential improvement

and is reminiscent of the oracle improvement factor of the James-Stein estimator, which
can be conceived as a special case; see Supplemental B for additional details.

6. Application: Estimation of Multiple Kernel Mean Embeddings

We emphasise that our discussion and theoretical results include the case when X is
a reproducing kernel Hilbert space (RKHS), in which case the mean corresponds to a
kernel mean embedding (KME) (Muandet, Fukumizu, Sriperumbudur, and Schölkopf,
2017; Smola et al., 2007). Let Z be a measurable space enriched with a reproducing
kernel κ : Z × Z → R and its corresponding RKHS H. The kernel mean embedding
µPZ
∈ H of distribution PZ on Z and its empirical (naive) estimation µ̂PZ

, which is
based on the samples (Zn)1≤n≤NZ

∼ PZ , are defined as

µPZ
=

∫
Z
κ(z, ·) dPZ(z) , µ̂PZ

=
1

NZ

NZ∑
n=1

κ(Zn, ·). (46)

The estimation of multiple KMEs is an instance of model (1) once we identify X = H
and X(i)

k = κ(Z
(i)
k , ·) for a bounded reproducing kernel κ; this allows a direct application

of our theoretical results for the bounded setting.
For characteristic kernels the map from P to µP is injective and contains information

about all moments of P, so that µP provides a unique representation of P. Thus, KMEs
can naturally be used to define a metric on probability distributions. Let P,Q denote
distributions and their KMEs µP, µQ respectively. The maximum mean discrepancy
(MMD) expresses the distance between µP and µQ in H

MMD2(µP, µQ) = ∥µP − µQ∥2H ,

M̂MD
2
(µP, µQ) =

N∑
n̸=n′=1

κ(Zn, Zn′)

N(N − 1)
− 2

N∑
n=1

M∑
m=1

κ(Zn, Ym)

NM
+

M∑
m̸=m′

κ(Ym, Ym′)

M(M − 1)
,
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where M̂MD
2

denotes an unbiased estimate based on the samples (Zn)1≤n≤N ∼ P and
(Ym)1≤m≤M ∼ Q. For characteristic kernels it holds that MMD2(µP, µQ) = 0 iff P = Q
(Gretton, Borgwardt, et al., 2012), which enables a large range of possible applications.

6.1. Motivation and Related Work. KMEs are employed for a variety of statistical
tests, e.g., two-sample tests (Gretton, Borgwardt, et al., 2012), goodness-of-fit tests
(Chwialkowski et al., 2016), and tests on statistical independence based on the Hilbert
Schmidt independence criterion (Gretton, Fukumizu, et al., 2007). It also finds appli-
cation in machine learning, e.g., for unsupervised (Jegelka et al., 2009) or supervised
distributional learning (Muandet, Fukumizu, Dinuzzo, et al., 2012; Szabó et al., 2016),
density estimation (Muandet, Fukumizu, Sriperumbudur, Gretton, et al., 2014), as part
of the optimization criterion of the learning (Brehmer and Cranmer, 2020; Fakoor et al.,
2020), and so on. Due to the wide variety of kernel functions, kernel mean embeddings
can in general be used on various data types and for structured data. See Muandet,
Fukumizu, Sriperumbudur, and Schölkopf (2017) for an in-depth overview on KMEs
and their applications.

The success of applying the KME or the MMD resp. relies heavily on the ability to
accurately estimate the kernel mean based on sample data. The naive empirical estima-
tor (46) was recently superseded by a James-Stein-like estimator (Muandet, Fukumizu,
Sriperumbudur, Gretton, et al., 2014). They showed that this estimator is admissible
and consistent for a suitable choice of shrinkage. Other single KME estimation strate-
gies were proposed since then, e.g., non-linear shrinkage (Muandet, Sriperumbudur,
et al., 2016), an empirical Bayesian approach (Filippi et al., 2016), and more robust es-
timations based on marginalised corrupted data (Xia et al., 2022), or a MOM approach
(Lerasle et al., 2019). To the best of our knowledge, there is no prior work on the
improved estimation of multiple kernel mean embeddings except for Marienwald et al.
(2021).

6.2. Description of the Experiments. We evaluate the estimation of multiple kernel
mean embeddings on artificial and real-world data.

6.2.1. Methods. We only sketch the best performing methods here. A complete list
and detailed description of the tested methods can be found in Supplemental G, where
we also provide pseudocode that demonstrates how the methods can be implemented
in practice. More specifically, we found that methods based on Q-aggregation benefit
from restricting the support of the weights from ω ∈ SB to ω ∈ SV . However, the
neighbouring test merely functions as a safeguard here with a much larger value for
τ (cf. (8)) than that used for the testing approaches. We referred to methods, that
are based on the testing procedure which finds neighbours for the construction of the
convex combination as in Cor. 1, as similarity test-based (STB). The approaches differ
in their weighting schemes for these neighbours. STB opt calculates the oracle weights
(13) where the aggregated variances are replaced by their empirical estimations. STB
orth performs constrained risk minimization and posits an orthogonality assumption,
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µ̂NEj − µ̂NEi , µ̂NEj′ − µ̂NEi

〉
= 0 for all j ̸= j′, which might be unrealistic in practice but yields

a closed-form solution for the weights. Finally, STB egd minimises the Q-aggregation
objective (36) and applies exponentiated gradient descent on the simplex (Kivinen and
Warmuth, 1997) to approximate the solution.

We compare their performances to the naive estimation (NE), and we modify the
multitask-averaging approach from Feldman et al. (2014) (MTA const) so that it is ap-
plicable to the estimation of KMEs. It assumes a constant similarity across tasks. In
Supplemental G.4, we further report the results of our previously proposed approach,
STB weight (Marienwald et al., 2021), which was not designed to handle inhomogenous
data, and the regularised kernel mean shrinkage estimator R-KMSE, proposed in Muan-
det, Sriperumbudur, et al. (2016), that shrinks the estimation towards the origin and is
performed separately on each bag. In Supplemental G.6 we discuss the computational
complexity of all approaches.

The considered methods have data-dependent model parameters whose optimal val-
ues might be found by cross-validation. We also provide default parameter choices that
we observed to perform well in most situations (see Supplemental G.5).

6.2.2. Experimental Metric. In the kernel case, the true KME µ is unknown even for
synthesised data. We use a (naive) estimation based on an independent sample of the
same distribution as approximation. Because this proxy is computed on a very large
sample, it can be assumed to have low risk and to be more accurate than the estimation
performed by any method on much smaller bags. The squared MMD between the
(proxy) true KME µi of bag i ∈ JBK and its estimation µ̂mi , of form (6), performed by
method m with weights ωm

i· is then used as error measure

M̂MD
2
(µi, µ̂

m
i ) =

∑
j,j′∈JBK

ωm
ijω

m
ij′

Nj∑
n=1

Nj′∑
n′=1

κ(Z
(j)
n , Z

(j′)
n′ )

NjNj′
−
∑
j∈JBK

2ωm
ij

Nj∑
n=1

Mi∑
m=1

κ(Z
(j)
n , Y

(i)
m )

NjMi

+

Mi∑
m̸=m′

κ(Y
(i)
m , Y

(i)
m′ )

Mi(Mi − 1)
, (47)

where Yi, Zi ∼ Pi independent with |Yi| = Mi ≫ Ni = |Zi| for all i ∈ JBK, so that Yi
can be used to calculate the proxy and Zi for the estimation. Each method is validated
on the same data to guarantee comparability. This estimation error is averaged over
multiple trials MMD2

(µi, µ̂
m
i ) and its decrease compared to the naive estimation µ̂NE is

reported for all experiments((
MMD2

(µi, µ̂
NE
i )−MMD2

(µi, µ̂
m
i )
)
/ MMD2

(µi, µ̂
NE
i )
)
· 100 [%].

6.3. Artificial Gaussian Data. The toy data sets are Gaussian distributed in R2

with fixed means and randomly rotated covariance matrices. For i ∈ JBK and B = 50

Z(i)
• , Y (i)

• ∼ N
(
mi, R(θi)ΣR(θi)

T
)
= Pi , θi ∼ U

(
−π
4
,
π

4

)
,
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Figure 1. Decrease in average quadratic estimation error compared
to NE in percent on Gaussian data settings (a) and (b) resp. Higher is
better. The hashed histogram bars in (b) show the bag sizes for the bags
1 to 50, which vary between 10 and 300 (right axis).

where the rotation matrix R(θi) rotates the matrix Σ = diag(1, 10) according to angle
θi. We generate |Y (i)

• | = 1000 data for the “proxy truth”. A Gaussian RBF kernel, with
a kernel width set to the average feature-wise standard deviation of the data, maps
the data from the two-dimensional input space to the infinite dimensional RKHS. Two
setups are tested:

(a) Clustered Bags: Ni = 50 for all i ∈ JBK. In the input space, each ten bags form
a cluster where the cluster centres (= mi) lie equally spaced on a circle. The
radius of that circle varies between 0 and 3, which creates different amount of
overlap between the clusters.

(b) Imbalanced Bags: mi = 0 for all i ∈ JBK. The bags Z(i)
• are highly imbalanced,

i.e. Ni ∈ [10, 300]. Because the tasks only vary in the rotation of their covariance
matrices, we know that their KMEs lie on a low dimensional manifold in the
RKHS. Because of the different bag sizes, the individual KMEs have different
estimation accuracies.

The experiments are repeated for 100 trials; the results of the methods with default
parameter choices are shown in Fig. 1. We also report the performances with tuned
parameters (optimised on i.i.d. training data) in Supplemental G.5, Figure 7.

All methods provide an improvement over NE, which is most significant for bags with
few samples. This was already observed in other multi-task learning problems, e.g., see
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Marienwald et al. (2021) or Feldman et al. (2014). The constant similarity assumption
of MTA const leads to an inadequate estimation for large radii or large bags. Namely,
a KME with large bag size is shrunk to the grand empirical mean of all bags even
though it includes high-variance (low sample size) or distant bags. This impairs the
improvement. This effect is alleviated by the proposed STB approaches, that define the
shrinkage according to the variance of and the distances between the KMEs. They show
high performance for the tested settings. For 0.5 < radius < 2, the similarity test might
mistake a bag of another cluster for a neighbour due to the strong overlap between the
clusters, which explains the slight performance dip. All the proposed methods provide
similarly accurate results. Despite its unrealistic orthogonality assumption, STB orth
performs best on the artificial data.

6.4. Flow Cytometry Data. Flow cytometry is fundamental to biomedical research
and clinical practice. It provides a multiparametric, single-cell analysis of a suspension
or sample. The flow cytometer analyses the size, shape and internal complexity of cells
and can detect the presence and amount of different fluorochromes (which in turn reveal
insights about the presence of proteins or structures within the cell). These character-
istics might then be used to classify the cells into different populations. Applications
are vast, but well-known examples are differential blood count, or immunophenotyping
of leukemia or in HIV infections (Adan et al., 2017; McKinnon, 2018).

The data set we use corresponds to the T-cell panel of the Human ImmunoPheno-
typing Consortium (Finak et al., 2016). Seven laboratories were asked to perform a
flow cytometry analysis of three replicates of blood samples of three patients. All labo-
ratories were asked to follow the same experimental protocol and used the same seven
markers to characterise the cells (d = 7). Based on the observed characteristics the cells
were then classified into ten different populations or cell types. We use this structure
(laboratory, replicate, patient, cell type) to divide the data into bags. We excluded
bags with less than 1000 data points, which leads to 424 bags in total. Each data point
Z

(i)
n ∈ R7 in a bag i corresponds to one cell. As the number of cells varies, the bags are

highly imbalanced. We use a Gaussian RBF kernel with kernel width of 950 to map the
cell features to a RKHS. The kernel choice and width are in accordance with Dussap
et al. (2023). The (proxy) true KME is approximated by a naive estimation based on
Y

(i)
• with |Y (i)

• | = 1000 (bags with more samples are capped). The sizes of the bags that
are used for the estimation are chosen proportional to the bag sizes of the original input
data, Ni ∈ [7, 125], to mimic a realistic setting. In each one of the 100 trials, a subset
of samples Z(i)

• with |Z(i)
• | = Ni is drawn randomly from Y

(i)
• , on which the methods

perform their estimation. We conducted experiments on each cell type separately so
that B ∈ [43, 62], and on all cell types jointly (B = 424). Cell types 5, 6 and 10, for
which B < 7, are excluded for the separate but included in the joint analysis.

The results are depicted in Fig. 2. On average, all methods provide an improve-
ment over NE. For some trials, MTA const gives worse estimations than NE (negative
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Figure 2. Decrease in estimation error compared to NE in percent
on the flow cytometry data. Higher is better. The number next to the
boxplot quantifies the median, which is also depicted as a line. The mean
is visualised as a circle. From left to right: results on individual cell types
1, 2, 3, 4, 7, 8, 9, and all cell types taken jointly.

improvement), see e.g., cell type 1. When all cell types are considered jointly, its per-
formance drops significantly. The STB approaches give more accurate estimations than
MTA const and provide an improvement of ≈ 50% for all cell types. STB egd gives
the most accurate and stable estimations across the different settings but also has high
computational complexity.

In summary, our presented methods provide an improvement over the naive estima-
tion and over other state-of-the-art methods. Although R-KMSE or MTA const give more
accurate estimations than the sample average, the provided improvements vary whether
a shrinkage towards a common reference point or the grand mean resp. complies with
the underlying data. In contrast, our proposed methods identify inhomogeneous task
similarities and are applicable to imbalanced data sets (which, therefore, surpass our
previously introduced method STB weight). While STB egd provides in most cases
the highest improvement with least variance, it also requires the most computational
complexity. STB orth provides a good trade-off.

7. Relation and comparison to previous work

We review related literature grouped along two axes: the first is rooted in statistics,
compound decision rules and the empirical Bayes point of view, and secondly a more
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recent one related to multitask learning. We first emphasise again the seminal impor-
tance of the James-Stein (JS) estimator (James and Stein, 1961) for a single vector
mean, which can be seen as a particular setting of model (1). Historically important
is the realization that the sample average µ̂NEi := 1

Ni

∑Ni

k=1X
(i)
k , despite being MLE (in

the Gaussian model) and BLUE, is inadmissible and dominated by the shrinkage-based
JS estimator. Pinsker (1980) should be credited for an early “dimensional asymptotics”
point of view, analysing the minimax risk if the mean vector belongs to a ball of Rd as a
by-product of his celebrated minimax analysis of estimators in Sobolev ball models (see,
e.g., Nussbaum, 1996 for a discussion). The risk of the JS estimator is asymptotically
close to that minimax in the isotropic Gaussian model if d→∞, as well as adaptive to
the radius of the ball (Beran, 1996); see more details in Supplemental B.

7.1. Empirical Bayes and compound decision point of view. The celebrated
series of works by Efron and Morris (1972, 1973, 1976) advocated for an interpretation
of the JS estimator as a compound decision problem and an empirical Bayes point
of view (Robbins, 1951, 1964; Zhang, 2003): the problem of estimating a single mean
vector in RB with standard Gaussian noise is better seen as B-many estimations of one-
dimensional means observed with independent observation noise (which in model (1)
corresponds to B > 1 means in dimension d = 1). The authors compare the perfor-
mance of the JS estimator to that of a Bayesian model, i.e., the means are themselves
drawn from a centred Gaussian prior. The Bayes rule under the fully Gaussian model
(prior and observations) is solely determined by the prior variance, which is usually
unknown, hence, called “oracle” in the present discussion. The JS estimator can then
be interpreted as being empirically Bayes as it replaces the oracle (prior) variance with
an empirically estimated counterpart. The compound risk is shown to converge to the
oracle Bayes risk, as B grows.

Efron and Morris (1976) generalised this analysis to the multidimensional case which
is an instance of model (1) for arbitrary d and Gaussian task distributions with identical
covariances. They proposed a multidimensional version of the JS estimator. Similarly
to the one-dimensional case, this is interpreted as an empirical Bayes procedure with a
multidimensional Gaussian prior, whose unknown covariance is replaced by an empir-
ically estimated counterpart. If (d + 2)/B → 0, then the risk of the multidimensional
JS estimator approaches that of the oracle Bayes rule.

The nonparametric empirical Bayes estimator developed by Brown and Greenshtein
(2009) (see also Jiang and Zhang, 2009 for a closely related, independent work) is in
the same line of thought, but considers a completely arbitrary prior on the means (in
dimension d = 1). In that situation, the oracle Bayes procedure can be expressed
in terms of the marginal, nonparametric mixture density of the observations across
tasks and of its derivative (to establish this, Gaussian partial integration is used, thus,
relying heavily on the assumption of isotropic Gaussian tasks). The proposed estimator
replaces the true density with a kernel density estimate (while Jiang and Zhang, 2009
adopt a Generalised Maximum Likelihood Empirical Bayes estimator to estimate the
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prior). For a Gaussian kernel and as B → ∞, this estimator approaches the oracle
Bayes rule.

Similar to our approach, George (1986) proposed a weighted combination of shrinkage
estimators, e.g., multiple JS estimators. The weights are assumed to be known but can
adapt to the data to some extent. He showed that an aggregation of Bayes rules is again
Bayes on a mixture prior where the weights naturally translate to prior probabilities.

We emphasise the following key differences of this important line of work to the
present one:

(a) The above approaches focus on the compound risk, while we analyse the risk of
each individual task. The compound relative risk, analysed in Section 5.2, is a
different quantity from the ratio between compound risk and oracle Bayes risk.

(b) In the empirical Bayes framework, the focus lies on asymptotics as the number
of independent tasks B grows large, while ours is on the growing (effective)
dimension. Consequently, the choice of “oracle” reference for analyzing risk ratios
differs between the two perspectives. Within the empirical Bayes paradigm,
the compound oracle Bayes risk serves as the reference. We adopt a task-
specific oracle improvement relative to the naive estimator. Thus, the theoretical
outcomes derived from these divergent approaches are not readily comparable.

Concerning the role of the dimension, consistency with the oracle Bayes refer-
ence requires d/B → 0 for the parametric approach of Efron and Morris (1976)
and presumably an even more stringent condition for the nonparametric ap-
proaches of Brown and Greenshtein (2009) or Jiang and Zhang (2009). In fact
they only considered the case d = 1, but since both works rely on metric entropy
estimates on appropriate function spaces, one would expect those to suffer of
the curse of dimensionality.

Consistency with the oracle, as considered in our paper, requires roughly
polylog(B)/d→ 0, thereby accommodating a broader spectrum of regimes. For
instance, when B = Θ(dα) for arbitrary α > 0, our approach ensures consistency
with our oracle improvement, yet fails to achieve consistency with the oracle
Bayes with a Gaussian prior if α ≤ 1. Conversely, the regime where B → ∞
while d remains fixed, which is pertinent to empirical Bayes analyses, does not
yield meaningful results in our framework (though, allowing the dimension to
increase at an arbitrary small power of B remains viable).

In summary, our perspective is tailored towards high-dimensional scenarios,
with possibly non-isotropic covariance structures, whereas the empirical Bayes
methodology is not inherently designed for such settings. Moreover, we empha-
sise the minimax property of our oracle improvement across suitable models as
the dimension grows.

(c) We allow non-Gaussian data.
(d) We allow strong task heterogeneity (e.g., the covariances are not shared across

tasks).
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7.2. Multitask learning point of view. Feldman et al. (2014) viewed the many
means estimation problem (1) as a multi-task learning problem (Caruana, 1997; Zhang
and Yang, 2021), which gave rise to the term multi-task averaging. Also inspired by the
JS estimator, the proposed approach extends the empirical compound risk minimization
with a regularization term that favours the alignment of mean estimations for “related”
tasks. The notion of “task relatedness” is encoded as a similarity matrix considered
as a priori information. In absence of specific information, the similarities are taken
constant across tasks and the method reduces to shrinkage towards the grand mean.
The theoretical analysis focused mainly on the low-dimensional setting and the oracle
weights when B = 2. Their data-driven similarity estimation yielded inconclusive
results. Martínez-Rego and Pontil (2013) mitigated the default constant similarities
in the absence of information by first clustering the tasks into different groups and
then applying the approach of Feldman et al. (2014) on each cluster separately; but a
theoretical analysis of this approach was not conducted. In our work, we also propose
to assimilate estimators of related tasks and thereby define an appropriate shrinkage
direction. We eliminate the disadvantage of both approaches, i.e., constant or known
similarities, by estimating them solely based on the available data. We also extend
significantly our preliminary work (Marienwald et al., 2021) which was limited to the
testing approach unfit for heterogeneous tasks, and with less precise theoretical results.

Recent work of Duan and Wang (2023) considers a general multi-task learning setting
which includes the multiple mean estimation problem as a special case. Comparable to
that of Feldman et al. (2014), their estimators are determined by compound empirical
risk minimization with a regularization term measuring alignment to a predetermined
model of task relatedness, e.g., the means form K clusters or are close to a linear
subspace of dimension K. The proposed estimators depend on the considered task
relatedness and on K. Once interpreted in terms of relative squared risk, the theoretical
bounds obtained by Duan and Wang (2023) are not bounded by a constant but can grow
as O(K2) in the worst case where the fit to the posited task relatedness is poor. For
the relative risk to be significantly less than O(1), the bounds require the condition δ ≲
s1/K, where δ represents closeness to the model (cluster radius resp. distance to linear
subspace). By contrast, in our analysis we do not posit a particular task relatedness
or value of K to define the estimators; those are adaptive to the most advantageous
grouping model, including cluster number and size, describing the structure of the true
parameters (see Section 5). Our relative risk bounds are worst-case bounded (and even
bounded close to 1), and show a significant improvement in favourable cases even for
the number of groups K growing with the number of tasks B. On the other hand,
our approach won’t result in a significant risk improvement if the task means belong
to a low-dimensional subspace but are very far apart from each other. Still, using the
covering complexity point of view discussed in Section 5, an improvement can be shown
if the tasks increase in number and are drawn, say, from a fixed a priori distribution
having a low-dimensional support while the ambient dimension grows.
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8. Conclusion

Considering the estimation of multiple mean vectors in high dimensions from inde-
pendent samples, we focused on estimators formed as convex combinations of empirical
averages of each sample. We proposed a test-then-aggregate method generalizing the
approach of Marienwald et al. (2021), and a direct Q-aggregation approach where the
weights are found by minimization of an adequate objective. From a theoretical per-
spective, we established asymptotic convergence to an oracle risk in an appropriate
“dimensional asymptotics” sense, as the effective dimensionality grows. This oracle risk
was proved to be exactly minimax under certain homogeneity conditions for the single-
task risk, and minimax up to a fixed factor for the compound relative risk (without
homogeneity conditions). One advantage of the Q-aggregation method is its theoretical
adaptivity with respect to parameters that have to be user-provided for the testing
approach. We demonstrated the efficacy of the proposed methods on showcase experi-
ments for estimating multiple kernel mean embeddings on controlled artificial datasets
and real-world flow cytometry data.

Future investigations will aim to address the discrepancy between the lower and upper
bounds for the single mean estimation in extremely inhomogeneous cases (we suspect
the minimax lower bound could be too conservative in such a case because it does
not take into account the problem of neighbour detection). Another important open
direction is the integration in the multiple-mean estimation setting of recent advances
on single-mean estimation in high dimension, achieving sub-Gaussian performance even
under heavy-tailed distributions or samples that were adversarially corrupted, e.g., the
median of means estimator (Lugosi and Mendelson, 2019b, 2020, see Fathi et al., 2022;
Lugosi and Mendelson, 2019a for an overview), or efficiently computable estimators
(e.g., Cheng et al., 2019; Depersin and Lecué, 2022). Finally, a significant future avenue
is to extend our approach from mean estimation to more general high-dimensional multi-
task learning problems such as those considered by Duan and Wang (2023).
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Appendix A. Nomenclature

B number of tasks, Sec. 1
B(τ, ν) oracle risk, (10)
(BS) bounded assumption, Sec. 2.3
C J-partition of JBK, Def. 5
d ambient dimension, Sec. 1
d•k effective dimension, (5)
dek effective dimension, (5)
diam(C,µ) diameter of partition C of µ, (39)
∆k difference between µk and µ1, Sec. 2.5
(ECSS) equal covariances and sample sizes, Sec. 2.3
η relative estimation error of s2k, (14)
(GS) Gaussian assumption, Sec. 2.3
(HT) heavy-tailed assumption, Sup. C.4
J nr. of parts of the partition, Def. 5
k index of task, Sec. 1
(KC) known covariances, Sec. 2.3
Lk(µ̂) loss of estimator µ̂, (2)
Lk(ω) loss of aggregation estimator µ̂ω, (2.5)
L̂k(ω) estimator for cond. risk, (29), Sec. 1
L∗(s,C, ζ) compound oracle risk, (42)
M radius of ball in which the bounded data lies, Sec. 4.3
µk expectation of distribution k
µ̂k estimator of µk

µ̂NEk naive estimation (empirical average) of µk, Sec. 1
µ̂ω aggregation estimator, (6)
JnK integers 1 to n, Sec. 1
Nk number of samples (bag size) of task k, Sec. 1
∥a∥ canonical norm of vector a, Sec. 2
∥Σ∥p Schatten norm of matrix Σ, Sec. 2.2
∥Σ∥∞ operator norm of matrix Σ, Sec. 2.2
ν(U) relative aggregated variance, (9)
ω aggregation weights, (6)
Pk k-th task (probability distribution), Sec. 1
Pmult(C, ζ,Σ, s) class of distributions, Def. 6
Psingle(τ, V,Σ, s

2) class of distributions, Def. 4
Q̂1(ω) prob. upper bound on (L̂1(ω)− L1(ω)), (31)
Q̂BS

1 (ω) additional penalization for (BS), (37)
Rk(µ̂) risk of estimator µ̂, (2)
Rk(ω) risk of aggregation estimator µ̂ω, (2.5)
s2(U) harmonic mean of the risks of the tasks in U(9)
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SB (B − 1)-dimensional simplex, Sec. 2.5
s2k naive risk, (3)
SV set of convex weights of support incl. in V , Sec. 2.5
ς threshold for W(ς), (21)
Σk covariance matrix of k-th task, Sec. 2

T̃
(τ)

k , ˜̃T (τ)

k empirical similarity test on independent copy data, (17)-(63)
τ, τ kmin, τ

◦
min, τ

± thresholds for similarity test, (8)-(18)-(23)-(23)
τ/1+τ best potential improvement
Ũk unbiased estimator for ∥∆k∥2, (16)
Ṽ estimation of Vτ , (14)
Vτ τ -neighbouring tasks, (8)
Vτ,ς trimmed Vτ , (22)
V ∗ subset of Ṽ , (14)
W(ς) set of tasks with bounded variance, (21)
X

(k)
• k-th bag, (1)

X̃
(k)
• independent copy of k-th bag, Sec. 3.2

ζ bound on the diameter of the J-partition, Def. 6

Appendix B. Properties of the James-Stein estimator in the large
dimension regime

In this section, we provide a concise overview of the properties of the James-Stein
estimator in high-dimensional settings and a comparison with the Q-aggregation ap-
proach. Let us first cast the standard James-Stein problem as a particular limiting case
of our general setting (1) with only two bags, the second of which with known mean
equal to 0 and serving as a reference point:

Assumption (JS, James-Stein setting). B = 2, µ2 = 0, formally N2 =∞ and s22 = 0.

Since only µ1 is of interest, we drop the index 1 everywhere from the notation in
what follows. In that case, identifying ω with its first weight, renoted as ω ∈ [0, 1],
µ̂ω = ωµ̂NE (defined in (6)) is simply a shrinkage estimator towards 0.

This is the type of estimator that Stein (1956) used to demonstrate that the empirical
mean is not admissible. Indeed, in an isotropic Gaussian setting (Σ = σ2Id), a shrinkage
estimator µJS+ (James and Stein, 1961) outperforms the empirical mean by shrinking
towards a chosen reference point µ2 = 0. Let us denote σ2

N = σ2/N and:

µ̂JS+ =

(
1− σ2

N

(d− 2)

∥µ̂NE∥22

)
+

µ̂NE . (48)

The estimator is minimax for means inside a ball of radius τσ2
Nd but beats the empirical

mean in general. For the model Gd(τ, σ2) =
{
N (µ, σ2Id)

⊗N , ∥µ∥2 ≤ τσ2
Nd
}
, the class

of N -samples of an isotropic Gaussian distribution with bounded mean vector, Pinsker
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(1980) shows that (see also Beran, 1996; Nussbaum, 1996; Tsybakov, 2008):

lim
d→∞

inf
µ̂

sup
P∈Gd(τ,σ2)

E
[
∥µ̂− µ∥2

]
dσ2

N

=
τ

1 + τ
,

E
[∥∥µ̂JS+ − µ

∥∥2]
dσ2

N

≤ τ

1 + τ
+

4

d
. (49)

In a non isotropic setting (Σ is not necessary equal to σ2Id but remains known), a
similar estimator achieving the same bounds can be constructed by replacing d by de

and σ2 by ∥Σ∥∞ in (48) and (49).

We review three interpretations of the James-Stein estimator which relates it to our
approaches in the general model: the oracle and testing ones in Section 3 and the Q-
aggregation one in Section 4.
Oracle interpretation: the James-Stein shrinkage factor can be seen as an approxi-
mation of an oracle weight defined as the minimiser of the risk of µ̂ω:

R(µ̂ω) = (1− ω)2∥µ∥2 + ω2σ2
Nd,

which is minimised by ω∗ = ∥µ∥2
dσ2

N+∥µ∥2 . By remarking that ω∗ = 1− dσ2
N

dσ2
N+∥µ∥2 , a natural

estimation of the oracle weight is obtained in (48).
Test interpretation: As in Section 3, we could first want to detect if µ is close to
µ2 = 0. Knowing the variance, a very simple test is T = 1{∥µ̂NE∥22 ≤ (d− 2)σ2

N} for the
hypothesis:

(H0) : ∥µ∥2 ≥ dσ2
N against (H1) : µ = 0.

If (H0) is rejected, then we choose 0 as an estimator of µ.
Regularization interpretation: Consider the following estimation by regularization,
for λ > 0:

µ̂λ ∈ arg min
µ∈Rd

1

n

n∑
i=1

∥µ−Xi∥2 + 2λ∥µ∥. (50)

Then µ̂λ =
(
1− λ

∥µ̂NE∥2

)
+
µ̂NE is a minimiser. Using Stein’s Lemma, we recover (48) by

choosing λ = σ2

N
d−2

∥µ̂NE∥2 (see for example Lemma 3.8 of Tsybakov, 2008).

In the (JS) setting, the Q-aggregation method exhibits the same asymptotic be-
haviour as the James-Stein estimator µ̂JS+ without knowing the covariance Σ. Corol-
lary 3 is deduced from Proposition 5 and is proven in Supplemental D.

Corollary 3. Assume (JS) and (GS), let N ≥ 7, (N − 1)/2 ≥ u0 ≥ 3, and ω̂ as
defined in (32). Then:

R(ω̂)

s2
≤ ∥µ∥2
s2 + ∥µ∥2

(
1 + Ce−u0/2

)
+ C

√
u0
de
, (51)

where C > 0 is some absolute constant.
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The first term is, up to the multiplicative factor, Stein’s error τ/(1 + τ) with τ =
∥µ2∥/s2. In the dimensional asymptotic de →∞, assume u0→∞ such that u0 = o(de)
and suppose the mean satisfies ∥µ∥2 ≤ τs2, then the estimator attains the Pinsker
bound (49):

lim
de→∞

sup
µ,s:

∥µ∥2≤τs2

R(ω̂)

s2
≤ τ

1 + τ
.

We recover the same phenomenon in the bounded setting directly from Proposition 6
as Vτ,ς = {1, 2} for all ς > 0 and the relative aggregated variance is null: ν(Vτ,ς) = 0.

Appendix C. Proofs for Section 3

C.1. Proof of Lemma 1. The weights ω∗ are obtained by minimizing the upper bound
(11) using KKT conditions, for instance. However, to verify the bound (12), it suffices
to substitute the weights (13) into (11). Let us denote ν = s2(V )

s21
, from (12):

R1(ω
∗)

s21
≤ τ(1− ω∗

1)
2 +

∑
k∈V

(ω∗
k)

2 s
2
k

s21

= τλ2(1− ν)2 + (1− λ)2 + 2λ(1− λ)ν + λ2ν.

By substituting λ with its value from Equation (13), we obtain:

R1(ω
∗)

s21
≤ τ(1− ν)2 + τ 2(1− ν)2 + 2τ(1− ν)ν + ν

(1 + τ(1− ν))2

=
τ(1− ν)((1− ν) + τ(1− ν) + ν) + ν(τ(1− ν) + 1)

(1 + τ(1− ν))2

=
τ(1− ν) + ν

1 + τ(1− ν) = B(τ, ν) = B
(
τ,
s2(V )

s21

)
.

Thus, the inequality holds as claimed. □

C.2. Proof of Proposition 1. Recall that we assume the following event holds:{
1 ∈ V ∗ ⊆ Ṽ ⊆ Vτ ,

|s̃2k − s2k| ≤ ηs2k, for all k ∈ Ṽ , (14)

for quantities Ṽ , s̃ which are considered as nonrandom for this proof (e.g., they are
computed from an independent sample and we argue conditionally to that sample).
Denote

R1(Ṽ ,ω) := τs21(1− ω1)
2 +

∑
k∈Ṽ

ω2
ks

2
k

the risk upper bound from (11) wherein we used the index set Ṽ . Due to the first
Ṽ ⊂ Vτ the same argument leading up to (11), it holds R1(ω) ≤ R1(Ṽ ,ω) for all
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ω ∈ SṼ . Denoting now

R̃1(Ṽ ,ω) := τ s̃21(1− ω1)
2 +

∑
k∈Ṽ

ω2
ks̃

2
k

the plug-in version of R1(Ṽ ,ω), we have, putting εk := |s2k − s̃2k|:

∀ω ∈ SṼ :
∣∣∣R1(Ṽ ,ω)− R̃1(Ṽ ,ω)

∣∣∣ ≤ τε1(1− ω1)
2 +

∑
k∈Ṽ

ω2
kεk ≤

(
max
k∈Ṽ

εk
s2k

)
R1(Ṽ ,ω),

which entails, from the second part of event (14):

(1− η)R1(Ṽ ,ω) ≤ R̃1(Ṽ ,ω) ≤ (1 + η)R1(Ṽ ,ω)

Since ω̃ is a minimiser of R̃1(Ṽ ,ω), it holds for any other ω ∈ SṼ :

R1(ω̃) ≤ R1(Ṽ , ω̃) ≤ (1− η)−1R̃1(Ṽ , ω̃) ≤ (1− η)−1R̃1(Ṽ ,ω) ≤
(
1 + η

1− η

)
R1(Ṽ ,ω).

Minimizing the latter inequality over ω yields (from Lemma 1):

R1(ω̃)

s21
≤
(
1 + η

1− η

)
B
(
τ, ν(Ṽ )

)
≤
(
1 + η

1− η

)
B
(
τ, ν(V ∗)

)
,

due to V ∗ ⊆ Ṽ and the monotonicity properties of ν, B.

C.3. Proofs for Section 3.3. We start with a generic result linking concentration of
the test statistic to the properties of the associated test. It will allow to handle different
distributional settings as particular cases.

We recall that Ũk is the test U-statistic given by (16) using independent “tilde” data.

Assumption (TSC, Test Statistic Concentration). Assume that for all k ∈ JBK and
α ∈ (0, 1), there exists qk(α):

P
[∣∣∣Ũk − ∥∆k∥2

∣∣∣ ≥ ∥∆k∥qk(α) + c20q
2
k(α)

]
≤ α . (52)

where c0 ≥ 2 is a numerical constant.

Put uα := log(8/α), it is established that:

• The assumption is satisfied under (GS) for q2k(α) = 2
(

∥Σ1∥2
N1

+
∥Σk∥2
Nk

)
uα and

c0 = 4. (Proposition 6 in Blanchard and Fermanian (2023))
• The assumption is satisfied under (BS) for q2k(α) = 16

(
∥Σ1∥2
N1

+
∥Σk∥2
Nk

)
uα +

4 M2u2
α

N2
1∧N2

k
and c0 = 31. (Proposition 9 in Blanchard and Fermanian (2023))

• The assumption is satisfied under (HT) for q2k(α) = 16
(

∥Σ1∥2
N1

+ ∥Σi∥2
Ni

)
uα and

c0 = 2 but for α ≥ 8e−N1∧Ni . (Proposition 18).
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Proposition 11. Grant assumption (TSC) and let α ∈ (0, 1), τ > 0 be fixed. Let T̃k
be given by

T̃k := 1
{
Ũk ≤ τs21

}
. (53)

Define τ kmin := 2c20s
−2
1 q2k(α), then it holds:

if ∥µ1 − µk∥ > (
√
τ +

√
τ kmin)s1 : P

[
T̃k = 1

]
≤ α; (54)

if ∥µ1 − µk∥ ≤ (
√
τ −

√
τ kmin)s1 : P

[
T̃k = 0

]
≤ α. (55)

Proof of Prop. 11 We assume for the rest of the proof that∣∣∣Ũk − ∥∆k∥2
∣∣∣ ≤ ∥∆k∥qk(α) + c20q

2
k(α)

holds, which according to Assumption (TSC) is the case with probability at least 1−α.
Using q2k(α)s

−2
1 = τminc

−2
0 /2 and putting x := ∥∆k∥√

τs1
, the above inequality entails∣∣∣∣∣ Ũk

τs21
− x2

∣∣∣∣∣ ≤ x

√
τmin

2τ
c−1
0 +

τmin

2τ
≤ x

ετ

2
√
2
+
ε2τ
2
, (56)

where we have used c0 ≥ 2 and where ετ :=
√
τmin/τ . This entails

τ−1s−2
1 (Ũk − τs21) ≤ x2 + x

ετ

2
√
2
+
ε2τ
2
− 1.

Assuming ετ ≤ 1, the largest root of the quadratic polynomial on the right-hand-side
above is lower bounded as

x+ = − ετ

4
√
2
+

√
1− 15

32
ε2τ ≥ 1− ετ ,

using
√
1− a ≥ 1 − √a for a ∈ [0, 1]. Thus, 0 ≤ x ≤ 1 − ετ is a sufficient condition

ensuring T̃k = 1, implying (55) since (1− ετ )2τ =
(√

τ −√τmin

)2. (The case ετ > 1 is
trivial since the statement is void in that configuration.)

Similarly, (56) entails

τ−1s−2
1 (Ũk − τs21) ≥ x2 − x ετ

2
√
2
− ε2τ

2
− 1;

the largest root of the quadratic polynomial on the right-hand-side above is upper
bounded as

x′+ =
ετ

4
√
2
+

√
1 +

17

32
ε2τ ≤ 1 + ετ ,

using
√
1 + a ≤ 1 +

√
a. Thus, x > 1 + ετ is a sufficient condition ensuring T̃k = 0,

implying (54) since (1 + ετ )
2τ =

(√
τ +
√
τmin

)2.
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Proof of Prop. 2. Proposition 6 of Blanchard and Fermanian (2023) states that
under (GS) it holds with probability at least 1− α that∣∣∣Ũk − ∥∆k∥2

∣∣∣ ≤ ∥∆k∥q′k
√
uα + 16q2kuα, (57)

where

q2k = 2

(∥Σ1∥2
N1

+
∥Σk∥2
Nk

)
= 2s21

(
1√
d•1

+
s2k/s

2
1√

d•k

)
,

and

(q′k)
2 := 2

(∥Σ1∥∞
N1

+
∥Σk∥∞
Nk

)
;

since ∥Σ∥∞ ≤ ∥Σ∥2, we have q′k ≤ qk, so that assumption (52) is satisfied with c0 = 4.
The claim is then a consequence of Proposition 11.

Proof of Cor. 1. For any k ∈ Ṽ , we have k ∈ W(c), and since ς ≥ 1, it holds (with
the notation used in Proposition 2, but using α/B in place of α)

τ
(k)
min = 64(uα + logB)

(
1√
d•1

+
s2k

s21
√
d•k

)
≤ τ ◦min

2
+
ςτ ◦min

2
≤ ςτ ◦min,

and the result is a direct consequence of Proposition 2 (combined with a union bound
over k ∈ JBK).

C.4. Proofs for Section 3.4: estimating Schatten norms and plug-in esti-
mates. We will be concentrating one one bag at a time and for this reason omit the
task index k in the next results. Thus, we assume X̃1, . . . , X̃N (with N ≥ 4) are i.i.d.
data points in Rd with expectation µ and known covariance matrix Σ. We start with
estimators for the Schatten norms ∥Σ∥p, p = 1, 2.

We can use the natural unbiased estimator for any fixed ∥Σ∥1 = TrΣ,

Z̃(1) :=
1

N − 1

N∑
i=1

∥X̃i − µ̃∥2 =
1

2N(N − 1)

∑
i ̸=j

∥∥∥X̃i − X̃j

∥∥∥2, (58)

where µ̃ = N−1
∑N

i=1 X̃i is the empirical mean of the (sub-)sample.

C.4.1. Gaussian setting. We have the following error control in the Gaussian setting:

Proposition 12. Assume (GS) holds. For u ≥ 1, if N ≥ 2

P

[∣∣∣Z̃(1) − TrΣ
∣∣∣ ≥ 4

√
2TrΣ2

N
u

]
≤ 2e−u .

Proof. Let X = (X̃1−µ̃, . . . , X̃N−µ̃) ∈ RdN . Then X is a centred Gaussian vector with
covariance matrix Σ := Γ⊗Σ where Γ = IN − 1

N
1N1

T
N ∈ RN×N , 1N = (1, . . . , 1) ∈ RN

and⊗ denotes the Kronecker product. Note that it holds TrΓ = (N−1),Σ2 = Γ2⊗Σ2 =
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Γ⊗Σ2, TrΣ = TrΓTrΣ = (N −1)TrΣ, and Tr(Σ2) = (N −1)TrΣ2. Then, according
to Lemma 5, for u ≥ 1, with probability greater than 1− 2e−u:

∥X∥22 ≤ TrΣ+ 2
√
TrΣ2u+ 2∥Σ∥∞u ≤ (N − 1)TrΣ + 4

√
(N − 1)TrΣ2u ,

∥X∥22 ≥ TrΣ− 2
√
TrΣ2u ≥ (N − 1)TrΣ− 2

√
(N − 1)TrΣ2u .

We have used that
√
u ≤ u for u ≥ 1. We conclude by remarking that ∥X∥22 =

(N − 1)Z̃(1). □

Following Blanchard and Fermanian (2023), we can estimate ∥Σ∥2 =
√
TrΣ2 using

the following U-statistic, which is an unbiased estimator of TrΣ2:

(Z̃(2))2 :=
1

4N(N − 1)(N − 2)(N − 3)

∑
i ̸=j ̸=k ̸=l

⟨Xi −Xk, Xj −Xl⟩2 . (59)

Proposition 13 (Blanchard and Fermanian, 2023, Prop. 12). Assume (GS) holds and
N ≥ 4. Then for all u ≥ 0:

P

[∣∣∣Z̃(2) −
√
TrΣ2

∣∣∣ ≥ 30

√
TrΣ2

N
u2

]
≤ e4e−u . (60)

Proof of Prop. 3 Proposition 3 is a consequence of the above Proposition 12, using
the union bound over k ∈ JBK. □

Propositions 12 and 13 can now be used to handle the plug-in versions of the quan-
tities considered in Section 3.3 when covariances are unknown:

Proposition 14. Assume (GS) holds, let c ≥ 1 be a fixed number and let α ∈ (0, 1).
Assume that we have estimates Z̃(1)

1 for ∥Σ1∥1 and Z̃(2)
k for ∥Σk∥2, k ∈ JBK, (depending

on the independent “tilde” data only) such that with probability 1− α it holds simulta-
neously for some constants η1, η2 ∈ (0, 1):∣∣∣Z̃(1)

1 − ∥Σ1∥1
∣∣∣ ≤ η1∥Σ1∥1; (61)∣∣∣Z̃(2)

k − ∥Σk∥2
∣∣∣ ≤ η2∥Σk∥2, for all k ∈ JBK. (62)

Consider the following plug-in versions of the quantities appearing in (17), (21):

W̃(ς) :=

{
k ∈ JBK :

Z̃
(2)
k

Nk

≤ ς
Z̃

(2)
1

N1

}
, ˜̃T (τ)

k := 1

{
Ũk ≤ τ

Z̃
(1)
1

N1

}
. (63)

Then, defining ˜̃V τ,ς :=

{
k ∈ W̃(ς) :

˜̃T (τ)

k = 1

}
,

with probability at least 1− 3α (with respect to the “tilde” data) it holds

Vτ−,ς/β ⊆ ˜̃V τ,ς ⊆ Vτ+,ςβ, (64)
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where τ± := (1± η1)
(√

τ ±
√
τ ◦min

)2
+
, (with τ ◦min = 64(log 8Bα−1)/

√
d•1),

and β := (1 + η2)/(1− η2).

Proof. Assume that (61)-(62) are satisfied. Then W(ς/β) ⊆ W̃(ς) ⊆ W(βς), with β :=

(1+η2)/(1−η2). Furthermore, recalling T̃ (τ)
k := 1

{
Ũk ≤ τs21

}
, then we have T̃ ((1−η1)τ)

k ≤˜̃T (τ)

k ≤ T̃
((1+η1)τ)
k ; therefore{

k ∈ W(ς/β) : T̃
((1−η1)τ)
k = 1

}
=: Ṽ− ⊆ ˜̃V ⊆ Ṽ+ :=

{
k ∈ W(βς) : T̃

((1+η1)τ)
k = 1

}
.

We can apply Corollary 1 separately to Ṽ−, Ṽ+ and get that with probability 1 − 3α
(accounting for the union bound together with event (61)-(62)), (64) holds.. □

Proof of Prop. 4. From Proposition 12 with u = log(4Bα−1) and a union bound
over tasks, with probability at least 1− α/2 it holds

∀k ∈ JBK :
∣∣∣Z̃(1)

k − ∥Σk∥1
∣∣∣ ≤ ∥Σk∥2

√
32 log(4Bα−1)√

Nk

≤ 1√
a
∥Σk∥2, (65)

where for the last inequality we used the assumption Nk ≥ a(4 + log(2Bα−1))4 ≥
a(4+log 6)2(4+log(2Bα−1))2 ≥ 32a(log(4Bα−1))2 (also using α ≤ 1/3 in that estimate).

Similarly, from Proposition 13 with u = (4 + log(2Bα−1)), with probability at least
1− α/2 it holds

∀k ∈ JBK :
∣∣∣Z̃(2)

k − ∥Σk∥2
∣∣∣ ≤ 30∥Σ∥2

(4 + log(2Bα−1))2√
Nk

≤ 30√
a
∥Σk∥2. (66)

Therefore, conditions (61)-(62) are satisfied simultaneously with probability 1−α, with
η1 =

1√
a

1√
d•1

and η2 = 30√
a

(with a ≥ 4400).

We apply Proposition 14, but using the the values (τ̃ , 3c) given by (27) in place of
(τ, ς). As a result we get with high probability the sandwiching property (64),

Vτ̃−,ς ⊆ ˜̃V τ̃ ,3ς ⊆ Vτ̃+ , (67)

denoting τ̃± the formula for τ± of Proposition 14 where we replace (τ, ς) by (τ̃ , 3ς). We
proceed to get bounds for τ̃± = (1± η1)(

√
τ̃ ±

√
3ςτ ◦min)

2.
Let us start with bounding the estimation error of d•1 by d̃•1: it holds√

d̃•1 =
N1s̃

2
1

Z̃
(2)
1

=
Z̃

(1)
1

Z̃
(2)
1

≤ 1 + η1
1− η2

√
d•1 ≤ 2

√
d•1,

where the last inequality holds if a ≥ 4400. We deduce

τ̃ ◦min =
32 log(8Bα−1)√

d̃•1

≥ 1

2
· 32 log(8Bα

−1)√
d•1

= τ ◦min/2,
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as defined in Proposition 14. Furthermore, we have for η1 = 1√
ad•1
≤ 1√

a
and a ≥ 4400:

1

1− η1
= 1 +

η1
1− η1

≤ 1 +
1/
√
a

1− 1/
√
a

1√
d•1
≤ 1 +

1

60
√
d•1
.

Using the previous estimates we obtain

τ̃ :=

1 +
1

60

√
d̃•1

(√τ +√6ςτ̃ ◦min

)2
≥ 1

1− η1

(√
τ +

√
3ςτ ◦min

)2
.

It follows :
τ̃− = (1− η1)

(√
τ̃ −

√
3ςτ ◦min

)2 ≥ τ.

Now to get an upper bound on τ̃+, similarly to above we have√
d̃•1 ≥

1− η1
1 + η2

d•1 ≥
√
d•1
2

,

and thus τ̃ ◦min ≤ 2τ ◦min; it follows

τ̃+ = (1 + η1)
(√

τ̃ +
√

3ςτ ◦min

)2 ≤ (1 + 1

66
√
d•1

)(
1 +

1

30
√
d•1

)
(
√
τ + 3

√
3ςτ ◦min)

2

= ξτ,

where ξ := (1 + 1/(30
√
d•1))(1 + 1/(66

√
d•1))(1 + 3

√
3ςτ ◦min/τ)

2.
With these estimates in hand the sandwiching property (67) implies

Vτ,ς ⊆ ˜̃V τ̃ ,3ς ⊆ Vξτ .

We use this property to apply Proposition (1) as earlier, and obtain

R1(ω̃)

s21
≤
(
1 + η

1− η

)
B(ξτ, ν(Vτ,ς)) ≤

(
1 +

1

25
√

mink d•k

)
ξB(τ, ν(Vτ,ς)).

Elementary estimates lead to(
1 +

1

25
√

mink d•k

)
ξ ≤

(
1 +

1

10
√

mink d•k

)(
1 +

30
√
ς log(8Bα−1)

(d•1)
1
4
√
τ

)2

.

□

C.4.2. Bounded setting. Proposition 15 and Proposition 16 give concentration bounds
for Z̃(1) and Z̃(2) in bounded setting.

Proposition 15. Assume (BS) holds. For u ≥ 1, if N ≥ 2

P

[∣∣∣Z̃(1) − TrΣ
∣∣∣ ≥ 2

√
2
Var[∥X1 − µ∥2]

N
u+ 32

M2u

N

]
≤ 4e−u .
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Proof. Let us first remark that:

Z̃(1) =
1

N − 1

N∑
i=1

∥∥∥X̃i − µ
∥∥∥2 − N∥µ̃− µ∥2

N − 1

Using Bernstein’s inequality (Lemma 7), with probability greater than 1− 2e−u:∣∣∣∣∣
N∑
i=1

∥∥∥X̃i − µ
∥∥∥2 −N TrΣ

∣∣∣∣∣ ≤√2NVar[∥X1 − µ∥2]u+ 8M2u .

Using McDiarmid’s inequality (Boucheron et al., 2004; McDiarmid, 1998), for f(x1, . . . , xN) =
∥N−1

∑N
i=1(xi − µ)∥, with probability greater than 1− 2e−u:

− 4M2

N
≤ ∥µ̃− µ∥2 − TrΣ

N
≤
(
E[∥µ̃− µ∥] +

√
2M2u

N

)2

− TrΣ

N

≤
(
E[∥µ̃− µ∥]2 − TrΣ

N

)
+ 2E[∥µ̃− µ∥]

√
2M2u

N
+

2M2u

N
≤ 8

M2u

N
,

where we have used successively Jensen’s inequality, that TrΣ ≤ 4M2 and u ≥ 1. It
only stays to use that (N−1)−1 ≤ 2N−1 for N ≥ 2 and a triangle inequality to conclude
the proof, with probability at least 1− 4e−u:∣∣∣Z̃(1) − TrΣ

∣∣∣ ≤ √2NVar[∥X1 − µ∥2]u
N − 1

+
8M2u

N − 1
+

8M2u

N − 1

≤ 2

√
2
Var[∥X1 − µ∥2]

N
u+ 32

M2u

N
.

□

Similarly as in the Gaussian setting, we can estimate ∥Σ∥2 using the U-statistic (59):

Proposition 16 (Blanchard and Fermanian, 2023, Prop. 13). Assume (BS) holds and
N ≥ 4. Then for all u ≥ 0:

P
[∣∣∣Z̃(2) −

√
TrΣ2

∣∣∣ ≥ 12M2

√
u

N

]
≤ 2e−u . (68)

Thanks to these concentration results, we are able to give a bound on the estimation
error of the test method for bounded data on the model of Proposition 4.

Proposition 17. Assume (BS) holds. Let α ∈ (0, 1/3). Consider the set of estimated
τ -neighbours ˜̃V τ,ς defined in (26), assume Nk ≥ aϕ2

kd
•
k log(8Bα

−1) for all k ∈ JBK, for
a big enough constant a (a = 576 works), and where ϕk :=M2/(TrΣk).
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For fixed τ > 0, ς ≥ 1, consider the weights ω̃♯ obtained by the modified plug-in( ˜̃V τ̃ ,3ς , s̃
2
)

for (V, s2) in (13), where

τ̃ :=

1 +
1

2

√
d̃•1

(√τ +√6τ̃ ◦min

)2
; τ̃ ◦min :=

80c20ς
(
log(8Bα−1)

)√
d̃•1

;

√
d̃•1 :=

N1s̃
2
1

Z̃
(2)
1

.

(69)
and c0 = 31. Then with probability at least 1 − 3α over the draw of the “tilde” sample
(X̃

(k)
• )k∈JBK, it holds

R1(ω̃
♯)

s21
≤
(
1 +

4√
mink d•k

)(
1 +

900
√
ς log(8Bα−1)

(d•1)
1
4
√
τ

)2

B
(
τ, ν(Vτ,ς)

)
,

where the expected risk is with respect to the main sample (X
(k)
• )k∈JBK.

Proof of Prop. 17. From Proposition 15 with u = log(8Bα−1) and a union bound
over tasks, with probability at least 1− α/2 it holds

∀k ∈ JBK :
∣∣∣Z̃(1)

k − ∥Σk∥1
∣∣∣ ≤ 2

√
2
∥Σk∥1M2u

Nk

+ 32
M2u

Nk

≤ 1

3
∥Σk∥2 (70)

where for the last inequality we used the assumption Nk ≥ 64aϕ2
kd

•
k log(8Bα

−1). Sim-
ilarly, from Proposition 16 with u = log(4Bα−1), with probability at least 1 − α/2 it
holds

∀k ∈ JBK :
∣∣∣Z̃(2)

k − ∥Σk∥2
∣∣∣ ≤ 12M2

√
u

N
≤ 1

6
∥Σk∥2. (71)

Therefore, as in the Gaussian case (see proof of Proposition 4), with η2 = 1/6 and
β = (1 + η2)/(1− η2) ≤ 3:

W̃ς ⊆ W3ς

Let τ ◦min = 80c20ςu(d
•
1)

−1/2, one can check that τ ◦min ≥ τ kmin for all k ∈ Vτ,ς . Indeed, in
bounded setting:

τ kmin ≤ 2c20

(
16u

1 + ς√
d•1

+ 4u2s−2
1

(
ϕ1s

2
1

N1

+
ϕks

2
k

Nk

))
≤ 2c20

(
32ςu√
d•1

+ 4u
1 + ς

d•1

)
≤ 80c20ςu√

d•1

where we have used that ς ≥ 1, the assumption on Nk and the expression of τ kmin

given by Proposition 11. We apply Proposition 11 to τ̃ defined in (69), then with high
probability:

Vτ̃−,ς ⊆ ˜̃V τ̃ ,3ς ⊆ Vτ̃+ , (72)

where τ̃± = (1± η1)
(√

τ̃ ±
√
τ ◦min

)
. We proceed to get bounds for τ̃±.
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Let us start with bounding the estimation error of d•1 by d̃•1: it holds√
d̃•1 =

N1s̃
2
1

Z̃
(2)
1

=
Z̃

(1)
1

Z̃
(2)
1

≤ 1 + η1
1− η2

√
d•1 ≤ 2

√
d•1,

where η1 = (d•1)
−1/2/3 ≤ 1/3. We deduce

τ̃ ◦min =
80c20ςu√

d̃•1

≥ 1

2
· 80c

2
0ςu√
d•1

= τ ◦min/2,

Furthermore, as η1 ≤ 1/3:
1

1− η1
= 1 +

η1
1− η1

≤ 1 +
1

2
√
d•1
.

Using the previous estimates we obtain

τ̃ :=

1 +
1

2

√
d̃•1

(√τ +√6ςτ̃ ◦min

)2
≥ 1

1− η1

(√
τ +

√
3ςτ ◦min

)2
.

It follows :
τ̃− = (1− η1)

(√
τ̃ −

√
3ςτ ◦min

)2 ≥ τ.

Now to get an upper bound on τ̃+, similarly to above we have√
d̃•1 ≥

1− η1
1 + η2

d•1 ≥
√
d•1
2

,

and thus τ̃ ◦min ≤ 2τ ◦min; it follows

τ̃+ = (1 + η1)
(√

τ̃ +
√

3ςτ ◦min

)2 ≤ (1 + 1

3
√
d•1

)(
1 +

1√
d•1

)
(
√
τ + 3

√
3ςτ ◦min)

2

= ξτ,

where ξ := (1 + 1/(3
√
d•1))(1 + 1/

√
d•1)(1 + 3

√
3ςτ ◦min/τ)

2.
With these estimates in hand the sandwiching property (72) implies

Vτ,ς ⊆ ˜̃V τ̃ ,3ς ⊆ Vξτ .

We use this property to apply Proposition (1) as earlier, and obtain

R1(ω̃)

s21
≤
(
1 + η

1− η

)
B(ξτ, ν(Vτ,ς)) ≤

(
1 +

1

2
√
mink d•k

)
ξB(τ, ν(Vτ,ς)).

Elementary estimates lead to(
1 +

1

2
√

mink d•k

)
ξ ≤

(
1 +

4√
mink d•k

)(
1 +

900
√
ς log(8Bα−1)

(d•1)
1
4
√
τ

)2

.
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□

C.4.3. Heavy-tailed setting. Similarly as in Sup. C.4.1 and C.4.2, we provide in this
section estimators of ∥∆k∥2, ∥Σk∥1 and ∥Σk∥2 but for heavy-tailed data. These estima-
tors can be directly used to estimate the neighbours Vτ,ς and the oracle weights to then
apply the testing approach in this setting.

Assumption (HT, Heavy-tailed setting). For all k ∈ JBK, Pk has a finite fourth
moment.

Consider a statistic T (N ;x1, . . . xN) in R, the Median of Blocks statistics MOBb(T )
for b a divisor of N is defined by the median of the statistics T a, 1 ≤ a ≤ b built from
a b-partition of x1, . . . xN :

MOBk(T ) := Median(T a, 1 ≤ a ≤ b)

where T a = T (N/b;xaN/b+1, . . . x(a+1)N/b). If b does not divide N , it suffices to parti-
tion the sample into sub-samples of size ⌊N/b⌋ and ⌈N/b⌉. If the original estimator
is constructed from different samples (e.g., (16)), each sample is partitioned into b
subsamples.

Proposition 18. Assume (HT) holds, let 0 ≤ u ≤ N and b = ⌈u⌉, let U(X(1)
• , X

(k)
• )

the estimator of ∥∆k∥2 defined in (16), then, with probability greater than 1− e−u/8:∣∣MOBb(U(X
(1)
• , X(k)

• ))− ∥∆k∥2
∣∣ ≤ 4

√
∆T

k

(
Σ1

N1

+
Σk

Nk

)
∆ku+ 4

(∥Σ1∥2
N1

+
∥Σk∥2
Nk

)
u .

(73)

In the kernel setting, the statistic U(X(1)
• , X

(k)
• ) is an estimator of the MMD distance

between P1 and Pk. (Lerasle et al., 2019 proposed a different robust estimator of
this quantity called MONK, but we focus here on the MOB estimator, which has the
advantage to be easier to compute and to study.)

Proposition 19. Assume (HT) holds, let 0 ≤ u ≤ N/4 and b = ⌈u⌉ :

P

[∣∣MOBb(Z
(1))− TrΣ

∣∣ ≥ C

√
Var[∥X1 − µ∥2]u

N
+ C

√
TrΣ2u

N

]
≤ e−u/8 ,

P

[∣∣∣∣√MOBb(Z(2))−
√
TrΣ2

∣∣∣∣ ≥ C

√
MXu

N

]
≤ e−u/8 ,

where Z(1) is defined in (58), Z(2) in (59), C > 0 is an absolute constant and MX =
E[∥X1 − µ∥4].

Proposition 18 and Proposition 19 are different consequences of Lemma 2 below.
Some more refined concentration bounds can be derived for MOB-type statistics (see,
e.g., Devroye et al., 2016; Minsker and Strawn, 2019), but the present results are
sufficient to show that in the (HT) setting suitable statistics satisfy Assumption (TSC)
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and (61)-(62).
Proof of Proposition 18. According to Lemma 2, we only need compute the variances
of the statistics Ũa,

Var
[
Ũk

]
= 4

√
∆T

k

(
Σ1

N1

+
Σk

Nk

)
∆k + 2Tr

(
Σ1

N1

+
Σk

Nk

)2

+ 2

( ∥Σ1∥2
N2

1 (N1 − 1)
+

∥Σi∥2
N2

i (Ni − 1)

)

≤ 4

√
∆T

k

(
Σ1

N1

+
Σi

Ni

)
∆k + 4

(∥Σ1∥2
N1

+
∥Σk∥2
Nk

)
=: ṽ(N1, Ni)

We apply Lemma 2 with N = N1 +Ni and v(N/u) := ṽ(N1/u,Nk/u). □
Proof of Proposition 19.

For Z(1) the concentration bound is deduced directly from the variance:

Var
[
Z(1)

]
=

Var[∥X − µ∥2]
N

+
2∥Σ∥22

N(N − 1)
.

For Z(2) we can first assume w.l.g. than X is centred. Then Z(2) can be developed
as:

(Z(2))2 =
1

N (2)

∑
i ̸=j

⟨Xi, Xj⟩2−
2

N (3)

∑
i ̸=j ̸=k

⟨Xi, Xj⟩⟨Xi, Xk⟩−
1

N (4)

∑
i ̸=j ̸=k ̸=q

⟨Xi, Xj⟩⟨Xk, Xq⟩ .

where n(p) = n(n− 1) . . . (n− p+ 1) for n ≥ p ∈ N. Let us first compute Var
[
(Z(2))2

]
:

Var
[
(Z(2))2

]
≤ 2

N (2)
E
[
⟨X,X ′⟩4

]
+

4(N − 2)

N (2)
E
[(
XTΣX

)2]
+

4

N (3)

(
(3!)M2

X + 2(N − 3)TrΣ4
)
+

4!

N (4)
M2

X

≤ C
∥Σ∥2∞MX

N
+ C

M2
X

N2

where C > 0 is some absolute constant. Then according to Lemma 2, for u ≤ N/4,
with probability grater than 1− e−u/8:∣∣MOBb((Z

(2))2)− TrΣ2
∣∣ ≤ C∥Σ∥∞

√
MXu

N
+ C

MXu

N
, (74)

Using that
∣∣∣√(a2 + b)+ − a

∣∣∣ ≤ min
(√
|b|, b

a

)
for a ∈ R+ and b ∈ R, (see, e.g.,

Lemma 15 of Blanchard and Fermanian, 2023), assuming (74), then∣∣∣MOBb(Z
(2))−

√
TrΣ2

∣∣∣ ≤ max
ε∈{−1,1}

∣∣∣∣∣∣
√

TrΣ2 + εC∥Σ∥∞
√
MXu

N
−
√
TrΣ2

∣∣∣∣∣∣+ C

√
MXu

N

≤ C
∥Σ∥∞√
TrΣ2

√
MXu

N
+ C

√
MXu

N
≤ C

√
MXu

N
.
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□

Lemma 2. Let T (N ;x1, . . . xN) a statistic build from N i.i.d. random variables such
that for all N ≥ N0:

E[T (N ;X1, . . . , XN)] = E[T ], Var[T (N ;X1, . . . , XN)] ≤ v(N),

where v : R+ → R+ is nonincreasing. Let 1 ≤ u ≤ N/(N0 + 1) and b = ⌈u⌉, then

P

[
|MOBb(T )− E[T ]| ≥

√
4v

(
N

4u

)]
≤ e−u/8 .

Proof of Lemma 2.
First assume that b|N . Let us denote Ta := T (N/b;x(a−1)N/b+1, . . . xaN/b) for a ∈ JbK.
Then for all a ∈ JbK, by Markov’s inequality:

P
[
|Ta − E[T ]| ≥

√
4v(N/k)

]
≤ 1

4
. (75)

Then, |MOBb(T )− E[T ]| ≥
√
4v(N/b) implies that at least b/2 of Ta satisfies

|Ta − E[T ]| ≥
√

4v(N/b) .

By independence of the Ta and Hoeffding’s inequality:

P
[
|MOBb(T )− E[T ]| >

√
4v(N/b)

]
≤ P

[
Bin
(
b,
1

4

)
≥ b

2

]
≤ e−b/8 ,

where Bin denotes the Binomial distribution. Because u ≤ b ≤ u + 1 and v is a
noninccreasing function, we can conclude:

e−b/8 ≤ e−u/8 , v

(
N

b

)
≤ v

(
N

u+ 1

)
≤ v

(
N

4u

)
.

If b ∤ N , equation (75) is still verified with v
(⌊

N
b

⌋)
instead of v

(
N
b

)
and:⌊

N

⌈u⌉

⌋
≥ N

⌈u⌉ − 1 ≥ N

2⌈u⌉ if ⌈u⌉ ≤ N/2⌊
N

⌈u⌉

⌋
= 1 ≥ N

2⌈u⌉ if N ≥ ⌈u⌉ > N/2 .

We conclude using that ⌈u⌉ ≤ (u+ 1) ≤ 2u for u ≥ 1. □

Appendix D. Proofs for Section 4

D.1. Proof of Proposition 5. Let ω̂ ∈ argminω∈SB

(
L̂1(ω) + 16

√
u0Q̂1(ω)

)
. Denote

X−1 = (X
(k)
• )k ̸=1 the observed bag data except for the first bag, which corresponds to

the target task.
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First step : bound in conditional probability. As a first step, we obtain a
high-probability bound for L1(ω̂). For x ≥ 1, define the event A(x):

A(x) :=



√
qk ≤ c1(x)

√
q̂k + C

s21
de1

√
N1x, 2 ≤ k ≤ B, (a)√

q̂k ≤
(
1 +

√
2x

N1−1

)(√
qk +

s41
d•1
N1 +

s21
de1

√
2N1x

)
, 2 ≤ k ≤ B, (b)

|ŝ21 − s21| ≤ C
s21√
d•1N1

x , (c)

∥µ̂NE1 − µ1∥2 ≤ s21 + C
s21√
d•1
x , (d)

|⟨µ̂NEk − µ1, µ̂
NE
1 − µ1⟩| ≤

√
2 qk
N1
x, 2 ≤ k ≤ B, (e)


where qk = (µ̂NEk − µ1)

TΣ1(µ̂
NE
k − µ1) and c1(x) =

√
e exp(x/(N1 − 1)). For the whole

proof, the notation C will denote an absolute numeric constant whose value can change
between lines. The probability of the event A conditionally to X (−1) is bounded as:

P
[
Ac(x, y)|X (−1)

]
≤ (6B + 4)e−x. (76)

We combine a union bound with estimates for each individual bound: bounds (a) and
(b) are consequences of Proposition 20 with ν = µ̂NEk . For (a), we have used that√
qk ≤

√
qk + TrΣ2

1/N1. Bound (c) is a rewriting of Proposition 12. Bound (d) is a
consequence of Lemma 5 with X = µ̂NE1 −µ1, µ = 0, Σ = Σ1/N1; bounding

√
x by x, and

∥Σ1∥∞ by
√
TrΣ2

1. Finally (e) is deduced from Lemma 4 with X = ⟨µ̂NEk − µ1, µ̂
NE
1 − µ1⟩,

m = 0 and σ2 = qk.
From now on, assume that event A(x) holds. Then,

L1(ω̂) =

∥∥∥∥ B∑
k=1

ω̂k(µ̂
NE
k − µ̂NE1 ) + (µ̂NE1 − µ1)

∥∥∥∥2
=

∥∥∥∥ B∑
k=2

ω̂k(µ̂
NE
k − µ̂NE1 )

∥∥∥∥2 + 2
B∑

k=2

ω̂k

〈
µ̂NEk − µ̂NE1 , µ̂NE1 − µ1

〉
+
∥∥µ̂NE1 − µ1

∥∥2
=

∥∥∥∥ B∑
k=2

ω̂k(µ̂
NE
k − µ̂NE1 )

∥∥∥∥2 + 2
B∑

k=2

ω̂k

〈
µ̂NEk − µ1, µ̂

NE
1 − µ1

〉
+ (2ω̂1 − 1)∥µ̂NE1 − µ1∥2

= L̂1(ω̂) + 2
B∑

k=2

ω̂k

〈
µ̂NEk − µ1, µ̂

NE
1 − µ1

〉
+ (2ω̂1 − 1)

(
∥µ̂NE1 − µ1∥2 − s21

)
+ (2ω̂1 − 1)

(
s21 − ŝ21

)
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Using (e) and then (a) for the second term, (d) for the third and (c) for the last, we
get:

L1(ω̂) ≤ L̂1(ω̂) + 2c1(x)
√
2x

B∑
k=2

ω̂k

√
q̂k
N1

+ Cs21

(
x√
d•1

+
x

de1

)

≤
(
1 ∨ c1(x)

√
2x

8
√
u0

)
min
ω∈SB

L̂1(ω) + 16
√
u0

B∑
k=2

ωk

√
q̂k
N1

+ Cs21
x√
d•1
. (77)

The appearance of the minimum is a consequence of the definition of ω̂.
Second step : conditional bound in expectation. We can now deduce, from the

previous step, a bound in expectation conditionally to all samples expect the first one.
For any fixed ω ∈ SB, we first want to compare L̂1(ω) to its conditional expectation
E
[
L̂1(ω)

∣∣X (−1)
]

which is equal to the conditional expectation of the loss L1:

E
[
L̂1(ω)

∣∣X (−1)
]
=

∥∥∥∥ B∑
k=2

ωk(µ̂
NE
k − µ1)

∥∥∥∥2 + ω2
1s

2
1 = E

[
L1(ω)

∣∣X (−1)
]
.

For any fixed ω ∈ SB, as x ≥ 1:

L̂1(ω) =

∥∥∥∥ B∑
k=2

ωk(µ̂
NE
k − µ̂NE1 )

∥∥∥∥2 + (2ω1 − 1)ŝ21

=

∥∥∥∥ B∑
k=2

ωk(µ̂
NE
k − µ1) + (1− ω1)(µ1 − µ̂NE1 )

∥∥∥∥2 + (2ω1 − 1)ŝ21

= E
[
L1(ω)|X (−1)

]
+ 2(1− ω1)

B∑
k=2

ωk

〈
µ̂NEk − µ1, µ1 − µ̂NE1

〉
+ (1− ω1)

2
(
∥µ̂NE1 − µ1∥2 − s21

)
+ (2ω1 − 1)(ŝ21 − s21)

≤ E
[
L1(ω)|X (−1)

]
+ 2
√
2x

B∑
k=2

ωk

√
qk
N1

+ C
s21x√
d•1
, (78)

using (c), (d), (e) again. From (b), for all k ∈ JBK, and using again x ≥ 1:

√
q̂k ≤

(
1 +

√
2x

N1 − 1

)(√
qk +

s41
d•1
N1 +

s21
de1

√
2N1x

)

≤
(
1 +

√
2x

N1 − 1

)√
qk + C

(√
x+

x√
N1 − 1

)√
N1

d•1
s21. (79)
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Then, plugging (78) and (79) into (77) , for all ω ∈ SB, as x ≥ 1:

L1(ω̂) ≤
(
1 ∨ c1(x)

√
2x

8
√
u0

)[
E
[
L1(ω)|X (−1)

]
+

(
2
√
2x+ 16

√
u0

(
1 +

√
2x

N1 − 1

)) B∑
k=2

ωk

√
qk
N1

+
Cs21√
d•1

(
x+ C

√
u0

(√
x+

x√
N1 − 1

))]
.

By rearranging the terms and using that u0 ≤ N1 − 1 and x ≥ 1:

L1(ω̂) ≤
(
1 ∨ c1(x)

√
2x

8
√
u0

)[
E
[
L1(ω)|X (−1)

]
+ C

(√
u0 +

√
x
) B∑

k=2

ωk

√
qk
N1

+
Cs21√
d•1

(
√
u0x+ x)

]
=: ψ(x)P (x)

where ψ(x) := 1 ∨ c1(x)
√
2x

8
√
u0

and P is a degree 2 polynomial in
√
x with coefficients that

are constant conditionally to X (−1). We will denote the shifted version of ψ and P by
ψs and Ps, for v ≥ 0:

ψs(v) := ψ(v + log(6B + 4)) , Ps(v) = P (v + log(6B + 4)) . (80)

Both notations will be used depending on the case for the sake of readability. So for all
v ≥ 0

P
[
L1(ω̂) ≥ ψs(v)Ps(v)|X (−1)

]
≤ e−v.

thanks to (76) after taking x = v+log(6B+4) ≥ 1. Then there exists a random variable
ξ following an exponential distribution of parameter 1 conditionally to X (−1), such that
L1(ω̂) ≤ ψs(ξ)Ps(ξ) almost surely. Let us first simplify the expression of ψ, recalling that
by assumption (N1−1)/2 ≥ u0 ≥ log(17B) ≥ 1/2+ log(6B+4) ≥ 1/2+ log(10) ≥ 5/2,
then for x ≤ u0:

√
2c1(x) ≤

√
2 exp

(
1

2
+

u0
N1 − 1

)
≤
√
2 exp

(
1

2
+

1

2

)
≤
√
2e ≤ 8.

Thus, for x ≤ u0, ψ(x) = 1. For x ≥ u0, it holds c1(x) ≥
√
e ≥ 1, so that:

ψ(x) ≤ c1(x)
√
x√

u0
≤ exp

(
1

2
+
x− u0
N1 − 1

+
u0

N1 − 1

)√
x

u0

≤ e exp

(
x− log(6B + 4)

5

)√
x

u0
. (81)
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We can now bound the conditional expectation E
[
L1(ω̂)|X (−1)

]
separating the values

before and after u0:

E
[
L1(ω̂)|X (−1)

]
≤ E

[
ψs(ξ)Ps(ξ)|X (−1)

]
= E

[
ψs(ξ)Ps(ξ)(1ξ+log(6B+4)≤u0 + 1ξ+log(6B+4)>u0)|X (−1)

]
≤ Ps(u0 − log(6B + 4)) + E

[
ψs(ξ)Ps(ξ)1ξ+log(6B+4)>u0|X (−1)

]
≤ P (u0) + E

e exp(ξ/5)√ξ + log(6B + 4)

u0
Ps(ξ)1ξ+log(6B+4)>u0|X (−1)

 .
(82)

We have used that P (and Ps) is increasing on R+ (P is a polynomial with positive
coefficients) and the bound (81). The second term in (82) can be upper bounded
using Lemma 3, as

√
ξ + log(6B + 4)Ps(ξ) can be seen as a polynomial of degree 3

evaluated in
√
ξ + log(6B + 4). We apply (85) to this polynomial with a = log(6B+4),

δ = u0 − log(6B + 4), ρ = 1/5, d = 3 and γ = 1/2. As a ≥ log(10) ≥ 2 and δ ≥ 1/2,
the condition required by Lemma 85 is satisfied: (δ + a)(1− ρ) ≥ 2 ≥ 3/2 = γd. Then
it holds:

E

exp(ξ/5)√ξ + log(6B + 4)

u0
Ps(ξ)1ξ+log(6B+4)>u0|X (−1)


≤ C

√
u0
u0
Ps(u0 − log(6B + 4))e−(4/5)(u0−log(6B+4)) ≤ CP (u0)Be

−u0/2 . (83)

Combining (82) and (83) and replacing P (u0) by its value, we obtain:

E
[
L1(ω̂)|X (−1)

]
≤ E

[
L1(ω)|X (−1)

]
(1 +CBe−u0/2) +C

√
u0

B∑
k=2

ωk

√
qk
N1

+Cs21
u0√
d•1
.

Third step : unconditional bound. We now simply take the expectation with
respect to X (−1). From the previous bound, using Jensen’s inequality, for all ω ∈ SB:

E[L1(ω̂)] ≤ E[L1(ω)](1 + CBe−u0/2) + C
√
u0

B∑
k=2

ωk

√
E[qk]
N1

+ Cs21
u0√
d•1
.

We obtain (33) as E[qk] = qk. □

Lemma 3. Let ξ ∼ E(1) be an exponential random variable, and ρ, a, δ be positive real
numbers. Then for all p ≥ 0 such that p < (δ + a)(1− ρ), it holds:

E
[
(ξ + a)peρξ1ξ≥δ

]
≤
(
1− ρ− p

a+ δ

)−1

(δ + a)pe−δ(1−ρ) . (84)
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Let P a polynomial of degree d and γ > 0 such that γd < (δ + a)(1− ρ), then:

E
[
P ((ξ + a)γ)eρξ1ξ≥δ

]
≤
(
1− ρ− dγ

a+ δ

)−1

P ((δ + a)γ)e−δ(1−ρ) . (85)

Proof. As p < (δ + a)(1− ρ), then p < (δ + a)(1− ρ− ε) for all ε < 1− ρ− p/(a+ δ).
The function x 7→ F (x) := (x + a)pe(ρ−(1−ε))x on R+ attains its maximum in x∗ :=
p(1− ρ− ε)−1 − a and then decreases to 0. As x∗ < δ, we have F (x) ≤ F (δ) for all
x ≥ δ, thus:

E
[
(ξ + a)peρξ1ξ≥δ

]
= E

[
F (ξ)e(1−ε)ξ1ξ≥δ

]
≤ F (δ)E

[
e(1−ε)ξ1ξ≥δ

]
= (δ + a)pe−(1−ρ)δε−1 .

As the inequality is true for all ε < 1−ρ−p/(a+δ) we get (84). Equation (85) is obtained
by applying (84) to each of the monomials of degree k ≤ d as kγ ≤ dγ < (δ+a)(1− ρ),
upper bounding the first factor and summing. □

D.2. Proofs of Corollary 3 and Corollary 2.
Proof of Corollary 3. According to Proposition 5, for B = 2, µ2 = 0 and Σ2 = 0; for
all ω1 ∈ (0, 1):

R1(ω̂) ≤
(
(1− ω1)

2∥µ1∥2 + ω1s
2
1 + 2(1− ω1)η

)
(1 + Ce−u0/2) + Cs21

√
u0
de1
, ,

where η = C ∥µ1∥s1√
de1

√
u0. Let us choose ω1 = min

(
∥µ1∥2+η

∥µ1∥2+s21
, 1
)
. Then if η ≤ s21:

R1(ω̂) ≤ (1 + Ce−u0/2)
∥µ1∥2s21 + 2s21η − η2

∥µ1∥2 + s21
+ Cs21

√
u0
de1

≤ (1 + Ce−u0/2)
∥µ1∥2s21
∥µ1∥2 + s21

+ Cs21

√
u0
de1

2∥µ1∥s1
∥µ1∥2 + s21

+ Cs21

√
u0
de1

≤ (1 + Ce−u0/2)
∥µ1∥2s21
∥µ1∥2 + s21

+ Cs21

√
u0
de1
,

where we have used that 2ab ≤ a2 + b2. Otherwise, if η ≥ s21:

R1(ω̂) ≤ s21(1 + Ce−u0/2) + Cs21

√
u0
de1

≤ (1 + Ce−u0/2)
∥µ1∥2s21
∥µ1∥2 + s21

+ (1 + Ce−u0/2)
s41

∥µ1∥2 + s21
+ Cs21

√
u0
de1
.

We conclude using that s21 ≤ C ∥µ1∥2
de1

u0 in this case.

Proof of Corollary 2. Let τ ≥ 0, ς ≥ 1 be fixed. Let k be an element of Vτ,ς =
W(ς) ∩ Vτ with k ̸= 1. We start by upper bounding qk, with qk defined in (34). Since
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k ∈ W(ς), it holds TrΣ2
k ≤ ς2

N2
k

N2
1
TrΣ2

1, so that

TrΣ1Σk ≤
1

2

(
Nk

N1

TrΣ2
1 +

N1

Nk

TrΣ2
k

)
≤ 1 + ς2

2

Nk

N1

TrΣ2
1

≤ Nk

N1

(1 + ς2)(TrΣ1)
2

2d•1

= NkN1
ς2s41
d•1

.

Since k ∈ Vτ , it holds

∆T
kΣ1∆k

N1

≤ ∥Σ1∥∞
N1

∥∆k∥2 ≤
TrΣ1

N1

1

de1
τs21 =

τs41
de1
.

Joining these estimates, we get

qk
N1

≤ ∆T
kΣ1∆k

N1

+
TrΣ1Σk

N1Nk

≤ s41

(
τ

de1
+
ς2

d•1

)
.

Therefore, for ω a vector of the simplex SB having support in W (ς) ∩ Vτ , using de1 ≤ d•1
it holds

Q1(ω) =
∑
k≥2

ωk

√
qk
N1

≤ (1− ω1)
√
τ + ς2

s21√
de1
. (86)

We now choose the weight vector ω∗ = ω∗
Vτ,c

given by the oracle weights of (13), for the
set V = Vτ,ς . From Lemma 1, this gives rise to R1(ω

∗) ≤ B(τ, ν), where ν = ν(Vτ,ς);
furthermore we have the explicit expression

(1− ω∗
1) = λ(1− ν), where λ =

1

1 + τ(1− ν) ,

so that it holds (since ν ∈ [0, 1])

(1− ω∗
1)
√
τ =

(1− ν)√τ
1 + τ(1− ν) ≤ max

(
τ(1− ν)

1 + τ(1− ν) ,
√
τ(1− ν)

1 +
√
τ(1− ν)

)
≤ 1.

Plugging this into (86), we get Q1(ω
∗) ≤ 2ςs21/

√
de1, then (35) since the obtained

estimate holds for any τ ≥ 0, ς ≥ 1.

D.3. Proof of Proposition 6. We follow the same general canvas as in the proof of
Proposition 5.

First step : bound in conditional probability. Let us recall the definitions of
QBS(ω) and q̂k:

Q̂BS(ω) :=
M

N1

B∑
k=2

ωk∥µ̂NEk − µ̂NE1 ∥, q̂k =
1

N1 − 1

N1∑
p=1

〈
µ̂NEk − µ̂NE1 , X(1)

p − µ̂NE1
〉2
.



56 REFERENCES

We will need the following quantity q̂′k which is close to q̂k but easier to control:

q̂′k =
1

N1 − 1

N1∑
p=1

〈
µ̂NEk − µ1, X

(1)
p − µ̂NE1

〉2
.

The estimated weight vector ω̂ for the estimation of µ1 is chosen as

ω̂ ∈ ArgMin
ω∈SB

(
L̂1(ω) + 4

√
2u0Q̂1(ω) + 1424u0Q̂(ω)BS

)
.

Let u := u0 − logB, and define the events:

A1 =

{
∥µ̂NEk − µ1∥Σ1 ≤ 2

√
q̂′k + 711

∥µ̂NEk − µ1∥M√
N1

(u+ logB), 2 ≤ k ≤ B

}
,

A2 =

{∣∣∥µ̂NE1 − µ1∥2 − ŝ21
∣∣ ≤ C

s21√
d•1
u+ C

M2

N2
1

u2

}
,

and

A3 =

{〈
µ̂NEk − µ1, µ̂

NE
1 − µ1

〉
≤
√
2
u+ logB

N1

∥µ̂NEk − µ1∥Σ1

+
2∥µ̂NEk − µ1∥M

3N1

(u+ logB), 2 ≤ k ≤ B

}
,

where we recall that for ν a vector and Σ an operator, ∥ν∥2Σ := ⟨ν,Σν⟩. For i ∈ {1, 3},
P
[
Ai|X (−1)

]
≥ 1 − e−u and P

[
A2|X (−1)

]
≥ 1 − 2e−u because of Proposition 21 for A1,

Lemma 7 for A3 and for A2, because ∥µ̂NE1 − µ1∥2 − ŝ21 is a U-statistic:

∥µ̂NE1 − µ1∥2 − ŝ21 =
1

N1(N1 − 1)

N1∑
ℓ̸=p=1

〈
X

(1)
ℓ − µ1, X

(1)
p − µ1

〉
, (87)

the concentration is a direct consequence of Houdré and Reynaud-Bouret (2003) (or see
Proposition 9 in Blanchard and Fermanian (2023) for this specific statistic). Then the
event A = A1 ∩ A2 ∩ A3 conditionally to X (−1) is of probability greater than 1− 4e−u.
The differences between respectively q̂k and q̂′k for k ∈ JBK can be bounded indepen-
dently of k :

∣∣∣√q̂k −
√
q̂′k

∣∣∣ ≤
√√√√ 1

N1(N1 − 1)

N1∑
p=1

⟨µ̂NE1 − µ1, Xp − µ̂NE1 ⟩2 =: ∆q. (88)
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Assume A, then:

L1(ω̂) = L̂1(ω̂) + 2
B∑

k=2

ω̂k

〈
µ̂NEk − µ1, µ̂

NE
1 − µ1

〉
+ (2ω̂1 − 1)

(
∥µ̂NE1 − µ1∥2 − ŝ21

)
≤ L̂1(ω̂) + 2

B∑
k=2

ω̂k

(√
2
u+ logB

N1

∥µ̂NEk − µ1∥Σ1 +
2∥µ̂NEk − µ1∥M

3N1

(u+ logB)

)

+
Cs21√
d•1
u+

CM2

N2
1

u2,

where we have used the events A2 and A3. Then using the event A1, the bound (88)
and a triangle inequality we get:

L1(ω̂) ≤ L̂1(ω̂) + 4
√

logB + u
B∑

k=2

ω̂k

√
2q̂k
N1

+ 1424(logB + u)
B∑

k=2

ω̂k
M∥µ̂NEk − µ̂NE1 ∥

N1

+ C
∆q√
N1

√
logB + u+ C

∥µ̂NE1 − µ1∥M
N1

(logB + u) +
Cs21√
d•1
u+

CM2

N2
1

u2.

Using the choice of ω̂, conditionally to A:

L1(ω̂) ≤ min
ω∈SB

(
L̂1(ω) + 4

√
2u0Q̂(ω) + 1424u0Q̂

BS(ω)
)

+ C
∆q√
N1

√
logB + u+ C

∥µ̂NE1 − µ1∥M
N1

(logB + u) +
Cs21√
d•1
u+

CM2

N2
1

u2.

Second and third steps: bound in expectation. Let us bound some expectation
using Jensen’s inequality:

E
[√

q̂′k

]
≤
√
∥µk − µ1∥2Σ1

+
Tr(Σ1Σk)

Nk

, E[∆q] ≤ M
√
TrΣ1

N1

+

√
TrΣ2

1√
N1

. (89)

The expectation of
√
q̂k can be bounded using that

√
q̂k ≤

√
q̂′k + ∆q. We can now

bound the risk. Let ω ∈ SB:

R1(ω̂) ≤ E[L1(ω̂)1A] +M2P[Ac]

≤ L1(ω) + 4
√
2u0

B∑
k=2

ωk

E
[√

q̂k

]
√
N1

+ 1424u0

B∑
k=2

ωk
M(∥µk − µ1∥+ s1 + sk)

N1

+ C
E[∆q]√
N1

√
logB + u+ C

s1M

N1

(logB + u) + C
s21√
d•1
u+ C

M2

N2
1

u2 + 3M2e−u
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Because u ≥ 2 logN1, the last term is upper bounded by the previous one. Using (89)
and by bringing together the terms:

R1(ω̂) ≤ R1(ω) + 4
√

2(logB + u)Q(ω) + 1424(logB + u)
B∑

k=2

ωk
M(∥µk − µ1∥+ sk)

N1

+ C
s21√
d•1

(u+
√

logB + u) + C
Ms1
N1

(logB + u) + C
M2

N2
1

u2 , (90)

where Q is defined in (34). Let τ, ς > 0 and ω∗ = ω∗
Vτ,ς

be defined as in (13). Then as
in the proof of Corollary 2:

R1(ω
∗) = s21B(τ, ν(Vτ,ς)) , Q(ω∗) ≤ C

√
1 + ς2

de1
s21. (91)

Up to bound the third term in the upper bound (90), let us bound s2k for k ∈ Vτ,ς . On
the one hand:

s2k =
TrΣk

Nk

≤ 4M2

Nk

= 4TrΣ1
ϕ1

Nk

= 4s21
ϕ1N1

Nk

.

On the other hand, as k ∈ Vτ,ς ⊂ W(ς):

s2k =
TrΣk

Nk

=
√
d•k

√
TrΣ2

k

Nk

≤
√
d•kς

√
TrΣ2

1

N1

= s21ς

√
d•k
d•1
.

Combining these two bounds:

s2k ≤ 4s21min

(
ϕ1N1

Nk

, ς

√
d•k
d•1

)
.

As we assume Nk ≥ (d•k)
β, for k ∈ Vτ,ς :

s2k ≤ 4s21min

(
ϕ1N1

(d•k)
β
, ς

√
d•k
d•1

)
≤ 4s21max

d≥1
min

(
ϕ1N1

dβ
, ς

√
d

d•1

)
= 4s21(ϕ1N1)

1
1+2β

(
ς√
d•1

) 2β
1+2β

.

We can now bound the third term in (90). As ω∗
k = 0 for k /∈ Vτ,ς :

B∑
k=2

ω∗
k

M(∥µk − µ1∥+ sk)

N1

≤ M

N1

(1− ω∗
1)

√τs1 + 2s1(ϕ1N1)
1

2(1+2β)

(
ς√
d•1

) β
1+2β


≤ s21

(1− ω∗
1)

√
τϕ1

N1

+ 2ϕ
1+β
1+2β

1

(
ς

N1

√
d•1

) β
1+2β

 .
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As N1 ≥ (d•1)
β and (1− ω∗

1)
√
τ ≤ 1 (by definition of ω∗

1), we get:

B∑
k=2

ω∗
k

M(∥µk − µ1∥+ sk)

N1

≤ 2s21

 √ϕ1

(d•1)
β/2

+
ϕ

1+β
1+2β

1 ς
β

1+2β

(d•1)
β/2

. (92)

Injecting the bounds (91) and (92) into (90) leads to:

R1(ω̂)

s21
≤ min

τ>0,ς>0

B(τ, ν(Vτ,ς)) + Cς

√
u0
de1

+ Cu0
ϕ

1+β
1+2β

1 ς
β

1+2β

(d•1)
β/2


+ Cu0

√
ϕ1

(d•1)
β/2

+ C

√
u0
de1

+ C
u0√
d•1

+ C
u0
√
ϕ1√
N1

+ C
ϕ1u

2

N1

≤ min
τ>0,ς>0

B(τ, ν(Vτ,ς)) + Cς

√
u0
de1

+ Cu0
ϕ

1+β
1+2β

1 ς
β

1+2β

(d•1)
β/2

+ C

√
u0
de1

+ C
u0ϕ1

(d•1)
β/2

.

As ϕ
1+β
1+2β

1 ς
β

1+2β ≤ max(ϕ1, ς) ≤ ϕ1 + ς, we obtain:

R1(ω̂)

s21
≤ min

τ>0,ς>0

(
B(τ, ν(Vτ,ς)) + Cς max

(√
u0
de1
,

u0
(d•1)

β/2

))
+ C

√
u0
de1

+ C
u0ϕ1

(d•1)
β/2

.

□

D.4. Concentration inequalities.

D.4.1. Concentration for q̂. Consider first the Gaussian setting (GS).

Proposition 20. Let X1, . . . , XN i.i.d. Gaussian random vectors of distribution N (µ1,Σ1)

and ν ∈ Rd. Let q̂ = 1
N−1

∑N
k=1⟨µ̂NE1 − ν,Xk − µ̂NE1 ⟩2, then for all x ≥ 0:

P

[√
q̂ ≥

(
1 +

√
2x

N − 1

)(√
∥µ1 − ν∥2Σ1

+
TrΣ2

1

N
+ ∥Σ1∥∞

√
2x

N

)]
≤ 2e−x , (93)

and

P

[√
q̂ ≤ e−1/2−x/(N−1)

(√
∥µ1 − ν∥2Σ1

+
TrΣ2

1

N
− 2∥Σ1∥∞

√
2x

N

)]
≤ 2e−x , (94)

where ∥µ1 − ν∥2Σ1
= (µ1 − ν)TΣ1(µ1 − ν).

Proof. Let us consider the random vector Z ∈ RN with Zk = ⟨µ̂NE1 − ν,Xk − µ̂NE1 ⟩, then
q̂ = ∥Z∥2N/(N−1), where ∥·∥N is the Euclidian norm in RN . Conditionally to µ̂NE1 , Z is
a Gaussian vector of distribution N (0, e(µ̂NE1 )Γ), where e(µ̂NE1 ) = (µ̂NE1 − ν)TΣ1(µ̂

NE
1 − ν)

and Γ = IN − 1N1
T
N/N with 1N = (1, . . . , 1) ∈ RN . The eigenvalues of Γ are 1
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with multiplicity N − 1 and 0. So ∥Z∥2/e(µ̂NE1 ) has a χ2(N − 1) distribution. Then
conditionally to µ̂NE1 :

q̂ =
∥Z∥2
N − 1

∼ e(µ̂NE1 )

N − 1
χ2(N − 1) .

Then according to Lemma 5 and Lemma 6, for all x ≥ 0:

P

[√
q̂

e(µ̂NE1 )
≥ 1 +

√
2x

N − 1

∣∣∣µ̂NE1
]
≤ e−x , P

[√
q̂

e(µ̂NE1 )
≤ e−1/2e−x/(N−1)

∣∣∣µ̂NE1
]
≤ e−x.

Let g = Σ
1/2
1 (µ̂NE− ν) ∼ N (Σ

1/2
1 (µ1− ν),Σ2

1/N), as ∥g∥2 = e(µ̂NE1 ), from Lemma 5 with
Σ

1/2
1 (µ1 − ν)→ µ and Σ2

1/N → Σ, we get that for all x ≥ 0:

P

[√
e(µ̂NE1 ) ≥

√
(µ1 − ν)TΣ1(µ1 − ν) +

TrΣ2
1

N
+ ∥Σ1∥∞

√
2x

N

]
≤ e−x ,

P

[√
e(µ̂NE1 ) ≤

√
(µ1 − ν)TΣ1(µ1 − ν) +

TrΣ2
1

N
− 2∥Σ1∥∞

√
2x

N

]
≤ e−x .

We have used that for all µ ∈ Rd, Σ ∈ Rd×d and x ≥ 0:(√
∥µ∥2 + TrΣ +

√
2∥Σ∥∞x

)2
≥
(
∥µ∥2 + TrΣ

)
+ 2
√

(TrΣ2 + 2µTΣµ)x+ 2∥Σ∥∞x ,(√
∥µ∥2 + TrΣ− 2

√
2∥Σ∥∞x

)2
+
≤
((
∥µ∥2 + TrΣ

)
− 2
√

(TrΣ2 + 2µTΣµ)x
)
+
,

as (a− b)2+ ≤ (a2 − ab)+ for a, b > 0.
Equations (93) and (94) are obtained by combining these concentration inequalities. □

In the bounded setting (BS), Proposition 21 gives a concentration bound for q̂′, which
is a slightly different statistic from q̂ because we consider µ1 − ν known for q̂′.

Proposition 21. Assume (BS), let ν ∈ Rd and q̂′ = 1
N−1

∑N
k=1⟨µ1 − ν,Xk − µ̂NE1 ⟩2.

Then for all u ≥ 1:

P
[
2
√
q̂′ ≤

√
(µ1 − ν)Σ1(µ1 − ν)− 711

∥µ1 − ν∥M√
N − 1

u

]
≤ e−u.

Proof. Let us first denote δ := µ1 − ν and Z ′ :=
√
q̂′. We are going to use Talagrand’s

inequality (Theorem 1). So let us first rewrite Z ′:

Z ′ = sup
∥v∥N=1

1√
N − 1

N∑
k=1

vk
〈
δ,Xk − µ̂NE1

〉
= sup

∥v∥N=1

1√
N − 1

N∑
k=1

⟨δ,Xk − µ1⟩
(
vk −

1

N

N∑
q=1

vq

)
.
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Let T = {v ∈ RN , ∥v∥N = 1} (or a countable dense subset) and define for v ∈ T :

Xv
k :=

1√
N − 1

⟨δ,Xk − µ1⟩
(
vk −

1

N

N∑
q=1

vq

)
,

then:

|Xv
k | ≤

2∥δ∥M√
N − 1

, sup
v∈T

N∑
k=1

E
[
(Xv

k )
2
]
≤ δTΣδ

N − 1
≤ 4∥δ∥2M2

N − 1
.

Using Theorem 1, with probability greater than 1− e−u, u ≥ 1:

Z ′ ≥ E[Z ′](1− ε)− C(ε) ∥δ∥M√
N − 1

u ,

where C(ε) = 8(2 + ε−1) for some ε > 0. We just need to lower bound E[Z ′] by√
E[(Z ′)2] =

√
δTΣ1δ. For that, using again Talagrand’s inequality, it exists an expo-

nential random variable ξ ∼ E(1) such that:

Z ′ ≤ E[Z ′](1 + ε) + C(ε)
∥δ∥M√
N − 1

ξ

Then:

E
[
(Z ′)2

]
≤ E

[(
E[Z ′](1 + ε) + C(ε)

∥δ∥M√
N − 1

ξ

)2
]

≤
(
E[Z ′](1 + ε) +

√
2C(ε)

∥δ∥M√
N − 1

)2

,

and we get that (1 + ε)E[Z ′] ≥
√

E[(Z ′)2] −
√
2C(ε) ∥δ∥M√

N−1
. Putting together the two

bounds, we get a first lower bound for Z ′: for u ≥ 1 and probability greater than
1− e−u:

Z ′ ≥
√
δTΣ1δ

1− ε
1 + ε

− C(ε)
(√

2
1− ε
1 + ε

+ 1

) ∥δ∥M√
N − 1

u . (95)

Let us choose ε = 1/3 to conclude. □

D.4.2. Classical concentration inequalities.
Concentration inequalities for Gaussian random variables.

Lemma 4. Let X ∼ N (m,σ2), then for all x ≥ 0:

P
[
|X −m| ≥

√
2σ2x

]
≤ 2e−x

Proof. It is a direct consequence of the Chernoff bound (Chernoff, 1952). □
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Lemma 5. [Concentration of Gaussian vectors] Let X ∼ N (µ,Σ), then for all x ≥ 0:

P
[
∥X∥2 ≥

(
∥µ∥2 + TrΣ

)
+ 2
√

(TrΣ2 + 2µTΣµ)x+ 2∥Σ∥∞x
]
≤ e−x ,

P
[
∥X∥2 ≤

(
∥µ∥2 + TrΣ

)
− 2
√

(TrΣ2 + 2µTΣµ)x
]
≤ e−x ,

Proof. The Lemma is a consequence of Lemma 1 of Laurent and Massart (2000) and
Lemma 8.1 of Birgé (2001). □

Lemma 6. [Lower bound for χ2] Let Z ∼ χ2(n), then for all x ≥ 0:

P
[
Z ≤ ne−(1+2x/n)

]
≤ e−x .

Proof. Let δ ∈ (0, 1), λ ∈ R+:

P[Z ≤ nδ] = P
[
e−λZ ≥ e−nλδ

]
≤ E

[
e−λZ

]
enλδ = exp

(
−n
2
(log(1 + 2λ)− 2λδ)

)
where the inequality is due to Markov. Fix λ = (−1 + δ−1)/2 > 0, then:

P[Z ≤ nδ] ≤ exp
(
−n
2
(− log(δ) + δ − 1)

)
≤ exp

(
−n
2
(− log(δ)− 1)

)
Let us choose δ = exp(−1− 2x/n) to conclude the proof. □

Concentration inequalities for bounded random variables.

Lemma 7. [Bernstein’s concentration inequality] Let X1, . . . , XN i.i.d. real centred
random variables bounded by M such that E[X2

1 ] ≤ σ2, then for all x ≥ 0:

P

[
N∑
i=1

Xi ≥
√
2Nσ2x+

2Mx

3

]
≤ e−x

Proof. See for instance Vershynin (2018), Exercise 2.8.5. □

Theorem 1. [Talagrand’s inequality] Let X t
1, ..., X

t
n independant random variables in-

dexed by t ∈ T (T countable) in R and L > 0 such that for all t ∈ T , i ≤ n,

E
[
X t

i

]
= 0 , |X t

i | ≤ L (96)

Let

Z := sup
t∈T

n∑
i=1

X t
i , σ2 = sup

t∈T

n∑
i=1

E
[
(X t

i )
2
]

then for all x ≥ 0 and ε ∈ (0, 1):

P
[
Z ≥ E[Z](1 + ε) + 2

√
2σ2x+ 2Lx(1 + 8ε−1)

]
≤ e−x (97)

P
[
Z ≤ E[Z](1− ε)− 2

√
4σ2x− 4Lx(1 + 8ε−1)

]
≤ e−x (98)

Proof. See for instance Massart (2000). □
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Appendix E. Proofs for Section 5

E.1. Proof of Proposition 7. This proof follows the same scheme as the Pinsker’s
bound (Pinsker, 1980 or see Tsybakov, 2008 for a recent version).

The proof is provided for V = B but can be directly adapted for V < B by assuming
µk independent of µ1 for k > V when constructing the distribution Q (100).

Let us first restrict ourselves to the case where µ1 is in a ball around 0:

inf
µ̂1

sup
µi∈B(µ1,

√
τs1)

R1(µ̂1) ≥ inf
µ̂1

sup
µ1∈B(0,

√
βs1)

µi∈B(µ1,
√
τs1)

R1(µ̂1).

Then the infimum over the estimators is now attained for an estimator µ̂1 bounded
by 2
√
βs1. Indeed, any estimator µ̂ further perform less well than the deterministic

estimator µ̂ = 0. If ∥µ̂∥ > 2
√
βs1:

∥µ̂− µ1∥ ≥ ∥µ̂∥ − ∥µ1∥ >
√
βs1 > ∥0− µ1∥ . (99)

We introduce now the probability measure Q:

µ1
Q∼ N (0, αβs21Σ) , µ2 = . . . = µB = µ◦

Q∼ N (µ1, ατs
2
1Σ) , (100)

where β > 0 and α ∈ (0, 1). Let A be the event {∥µ1∥2 ≤ βs21, ∥µ◦ − µ1∥2 ≤ τs21} and
EQ denote the expectation over the distribution Q, then:

inf
µ̂1

sup
µi∈B(µ1,τs1)

R1(µ̂1) ≥ inf
µ̂1:∥µ̂1∥≤2

√
βs1

sup
µ1∈B(0,

√
βs1)

µi∈B(µ1,
√
τs1)

R1(µ̂1) (101)

≥ inf
µ̂1:∥µ̂1∥≤2

√
βs1

1

Q(A)

∫
A

R1(µ̂1)dQ(ν, µ1, . . . , µB)

≥ inf
µ̂1

EQ[R1(µ̂1)]− sup
µ̂1:∥µ̂1∥≤2

√
βs1

EQ[R1(µ̂1)1Ac ]

=: I − r ,

Let us now bound I and r.
Lower bound for I : The first infimum (term I) is attained for µ̂1 = E

[
µ1|X(1)

• , . . . , X
(B)
•

]
.

Let us calculate µ̂1.

E
[
µ1|µ◦, X

(1)
• , . . . , X(B)

•
]
= E

[
µ1|µ◦, X

(1)
•
]
=
(
(αβ)−1 + 1 + (ατ)−1

)−1
(
µ̂NE1 +

1

ατ
µ◦

)
,

E
[
µ◦|µ1, X

(1)
• , . . . , X(B)

•
]
=
(
(ατ)−1 + ∥ρ∥2

)−1

(
1

ατ
µ1 +

B∑
k=2

ρ2kµ̂
NE
k

)
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where ρ = (s1/sk)k ̸=1 and ∥ρ∥2 =∑B
k=2 ρ

2
k. Combining these two expressions we get:

E
[
µ1|X(1)

• , . . . , X(B)
•
]
=
(
(αβ)−1 + 1 + (ατ)−1

)−1

×
(
µ̂NE1 +

1

ατ

(
(ατ)−1 + ∥ρ∥2

)−1

(
1

ατ
E
[
µ1|X(1)

• , . . . , X(B)
•
]
+

B∑
k=2

ρ2kµ̂
NE
k

))
,

and then:

E
[
µ1|X(1)

• , . . . , X(B)
•
]
=

(
(αβ)−1 + 1 +

∥ρ∥2
1 + ατ∥ρ∥2

)−1
(
µ̂NE1 +

1

1 + ατ∥ρ∥2
B∑

k=2

ρ2kµ̂
NE
k

)
,

Let us first notice that:

E
[
µ1|X(·)

•
]
− µ1 =

(
(αβ)−1 + 1 +

∥ρ∥2
1 + ατ∥ρ∥2

)−1

×
[
(µ̂NE1 − µ1) +

1

1 + ατ∥ρ∥2
B∑

k=2

ρ2k(µ̂
NE
k − µ◦) +

∥ρ∥2
1 + ατ∥ρ∥2 (µ◦ − µ1)−

1

αβ
µ1

]
Using that µ̂NE1 − µ1, µ̂NEk − µ◦ (for k ̸= 1), µ◦ − µ1 and µ1 are pairwise independent we
get that:

E[∥µ̂1 − µ1∥2]
s21

=

(
(αβ)−1 + 1 +

∥ρ∥2
1 + ατ∥ρ∥2

)−2

×
[
1 +

1

(1 + ατ∥ρ∥2)2
B∑

k=2

ρ4kρ
−2
k +

ατ∥ρ∥4
(1 + ατ∥ρ∥2)2 +

1

αβ

]
After simplification:

I = s21

(
(αβ)−1 + 1 +

∥ρ∥2
1 + ατ∥ρ∥2

)−1

(102)

Upper bound for r: Using the triangle and Cauchy-Schwartz inequalities we have:

r = sup
µ̂1:∥µ̂1∥≤2

√
βs1

E
[
∥µ̂1(X

(k)
• , k ∈ JBK)− µ1∥21Ac

]
(103)

≤ E
[
2
(
4βs21 + ∥µ1∥2

)
1Ac

]
≤ 8βs21P[Ac] + 2

√
E[∥µ1∥4]P[Ac]

≤ 2s21

(
4β +

√
3αβ

)√
P[Ac] ≤ 20βs21

√
P[Ac]

It stays to show the exponential decrease of P[Ac]. Let ξ ∼ N (0,Σ):

P
[
∥µ1∥2 ≥ βs21

]
= P

[
∥µ◦ − µ1∥2 ≥ τs21

]
= P

[
∥ξ∥2 ≥ α−1

]
≤ exp

(
−d

e
1

2

(√
2

α
− 1− 1

))
.
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This follows from the concentration of the norm of Gaussian vectors (Lemma 5). By
union bound we get that:

r ≤ 30s21β exp

(
−d

e
1

4

(√
2

α
− 1− 1

))
.

Conclusion : The lower bound finally obtained is :

inf
µ̂1

sup
µi∈B(µ1,τs1)

R1(µ̂1)

s21
≥
(
(αβ)−1 + 1 +

∥ρ∥2
1 + ατ∥ρ∥2

)−1

− 30β exp

(
−d

e
1

4

(√
2

α
− 1− 1

))
,

where α ∈ (0, 1) and β ∈ R+ are two free parameters. We can choose β = de1/ log d
e
1

and α = 2
1+(1+8β−1)2

, then:

β exp

(
−d

e
1

4

(√
2

α
− 1− 1

))
= β exp

(
−2de1
β

)
=

1

de1 log d
e
1(

(αβ)−1 + 1 +
∥ρ∥2

1 + ατ∥ρ∥2
)−1

−
(
1 +

∥ρ∥2
1 + ατ∥ρ∥2

)−1

≥ −(αβ)−1 ≥ −41log d
e
1

de1
.

and(
1 +

∥ρ∥2
1 + ατ∥ρ∥2

)−1

−
(
1 +

∥ρ∥2
1 + τ∥ρ∥2

)−1

= −(1− α) τ∥ρ∥2
1 + τ∥ρ∥2

∥ρ∥2
1+ατ∥ρ∥2

1 + ∥ρ∥2
1+ατ∥ρ∥2

1

1 + ∥ρ∥2
1+τ∥ρ∥2

≥ −(1− α) ≥ −40log d
e
1

de1

where we recall ∥ρ∥2 =∑B
i=1

s21
s2i
− 1 = (ν(Vτ ))

−1 − 1. Hence:(
1 +

∥ρ∥2
1 + τ∥ρ∥2

)−1

= B(τ, ν(Vτ ))

By combining these three inequalities, we get that:

inf
µ̂1

sup
µi∈B(µ1,τs1)

R1(µ̂1)

s21
≥ B(τ, ν(Vτ ))− 111

log de1
de1

E.2. Proof of Proposition 8. Let C be a fixed J-partition of the means (µk)k∈JBK
and denote ζ = diam(C). Let us focus first on a specific group j ∈ JJK and task k ∈ Cj.
Denote τj,k = ζ2j /s

2
k and νj,k = s2(Cj)/s2k. Consider the vector of oracle weights ω∗

k

given by (13), wherein the target task 1 is replaced by k everywhere, and the subset of
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neighbouring tasks is taken as Cj ⊆ Vτj,k . Lemma 1 then states Rk(ω
∗
k)/s

2
k ≤ B(τj,k, νj,k).

As a consequence, according to Proposition 5, it holds

Rk(ω̂k)

s2k
≤ (1 + CBe−u0)

(
B(τj,k, νj,k) + C

√
u0
Qk(ω

∗
k)

s2k

)
+ C

u0√
d•1
.

The rest of the proof is dedicated to bounding the terms Qk(ω
∗
k)s

−1
k (and their sum

over k ∈ Cj). Denote ω∗
k,ℓ the ℓ-th component of ω∗

k. It holds

Qk(ω
∗
k)

s2k
= s−2

k

∑
ℓ∈Cj\{k}

ω∗
k,ℓ

√
(µℓ − µk)TΣk(µℓ − µk)

Nk

+
TrΣℓΣk

NℓNk

≤ s−2
k

∑
ℓ∈Cj\{k}

ω∗
k,ℓ

∥Σk∥1/2∞√
Nk

√
ζ2j + s2ℓ

≤ 1√
dek

(
(1− ω∗

k,k)
√
τj,k +

νj,ksk
1 + τj,k(1− νj,k)

∑
ℓ∈Cj\{k}

s−1
ℓ

)

≤ 1√
dek

(
(1− ω∗

k,k)
√
τj,k + νj,ksk

∑
ℓ∈Cj

s−1
ℓ

)
, (104)

where we have used: ∥µℓ−µk∥ ≤ ζj as tasks k and ℓ are in the group Cj; (∥Σk∥∞/Nk)
1/2 =

sk/
√
dek; and the explicit expression (13) for the oracle weights ω∗

k,ℓ for group Cj. For
the first term of (104), for all k ∈ Cj we have:

(1− ω∗
k,k)
√
τj,k =

1− νj,k
1 + τj,k(1− νj,k)

√
τj,k ≤

√
τj,k

1 + τj,k
≤ 1 .

For the second term of (104), introduce the vector ρ := (s−1
ℓ )ℓ∈Cj and observe that

νj,k = ρ2k/∥ρ∥22, thus, when summing over k ∈ Cj:∑
k∈Cj

(
νj,ksk

∑
ℓ∈Cj

s−1
ℓ

)
=
∑
k∈Cj

ρk
∥ρ∥1
∥ρ∥22

=
∥ρ∥21
∥ρ∥22

≤ |Cj|.

We deduce from the above estimates:∑
k∈Cj

Qk(ω
∗
k)

s2k
≤ 2|C|j

mink(dek)
1/2
,

implying

1

B

B∑
k=1

Q(ω∗
k)

s2k
≤ 2

mink(dek)
1/2
.
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Therefore for any J-partition C, since d•k ≥ dek:

1

B

B∑
k=1

Rk(ω̂k)

s2k
≤
(
1 + CBe−u0

)(
1

B

J∑
j=1

∑
j∈Cj

B(τj,k, νj,k) + C ′ u0
mink∈JBK(dek)

1/2

)
.

□

E.3. Proof of Proposition 9. The proof follows the same steps as the proof of Propo-
sition 7. Let C a J-partition of JBK, ζ ∈ RJ

+ and Σ a definite positive matrix in Rd×d.
W.l.g. we can assume that TrΣ = 1. In a first time, we are going to lower bound the
minimax risk for the estimation of µ1 that we can assume to be in the cluster 1 (1 ∈ C1).

If for j ∈ JJK the means of Cj are in a ball of radius ζj/2, then two means are at a
distance at most ζj:

inf
µ̂1

sup
P∈Pmult(C,ζ,Σ,s2)

R1(µ̂1) ≥ inf
µ̂1

sup
∃ν1,...,νJ∈Rd

µk∈B(νj ,ζj/2),∀k∈Cj

R1(µ̂1).

For simplicity, the supremum over the vectors means µk is used to denote the supremum
over the Gaussian distributions Pk = N (µk, s

2
kΣ).

We can restrict ourself in the case where the centres νj are in a ball around 0 of radius√
β:

inf
µ̂1

sup
∃ν1,...νJ∈Rd

µk∈B(νj ,ζj/2),∀k∈Cj

R1(µ̂1) ≥ inf
µ̂1

sup
∃ν1,...νJ∈B(0,

√
β)

µk∈B(νj ,ζj/2),∀k∈Cj

R1(µ̂1)

Let α ∈ (0, 1), β > 0, we introduce now the probability measure Q = Q(α, β) on
(Rd)B+J such that a random vector (ν1, . . . , νJ , µ1, . . . , µB) ∈ (Rd)B+J follows the dis-
tribution Q if:

νj
Q∼ N (0, αβΣ) for k ∈ JN K, µk

Q∼ N (νj, α
ζ2j
4
Σ) for k ∈ Cj.

Hence, considering the events Hj := {∥νj∥2 ≤ β, ∥µk − νj∥2 ≤ ζ2j /4, k ∈ Cj}, H :=

∩J
j=1Hj, as in the equations (101):

inf
µ̂1

sup
P∈Pmult(C,ζ,Σ,s2)

R1(µ̂1) ≥ inf
µ̂1

EQ[R1(µ̂1)|H].

The distribution Q can be decomposed into a product of J probability measure: Q =⊗J
j=1Qj where Qj is the distribution of (νj, (µk)k∈Cj). By independence, the Bayes

estimator of µ1 only consider the means of C1 and following equations (101) we get:

inf
µ̂1

sup
P∈Pmult(C,ζ,Σ,s2)

R1(µ̂1) ≥ inf
µ̂1

EQ1 [R1(µ̂1)|H1] ≥
1

Q(H1)
(I1 − r1) ,

where
I1 := inf

µ̂1

EQ1 [R1(µ̂1)] , r1 := sup
µ̂1:∥µ̂1∥≤2

√
β+ζ1

EQ
[
R1(µ̂1)1Hc

1

]
(105)
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We have used that the infimum is attained for an estimator µ̂1 bounded by 2
√
β + ζ1,

because the estimator µ̂ = 0 beats the estimators outside that ball (as in (99)).
Lower bound for I1 : The infimum is attained for µ̂1 = E

[
µ1|X(k)

• k ∈ C1
]
. Let us

calculate µ̂1. We will denote in the rest of the proof ζ̃j := ζj/2:

E
[
µ1|ν1, X(k)

• k ∈ C1
]
= E

[
µ1|ν1, X(1)

•
]
=

αζ̃21

s21 + αζ̃21
µ̂NE1 +

s21

s21 + αζ̃21
ν1 ,

E
[
ν1|X(k)

• k ∈ C1
]
=

(
(αβ)−1 +

∑
i∈C1

(
αζ̃21 + s2k

)−1
)−1∑

k∈C1

1

αζ̃21 + s2k
µ̂NEk

Combining these two expressions:

E
[
µ1|X(k)

• k ∈ C1
]
=

αζ̃21

s21 + αζ̃21
µ̂NE1 +

s21

s21 + αζ̃21

(
(αβ)−1 +

∑
k∈C1

(
αζ̃21 + s2k

)−1
)−1∑

k∈C1

1

αζ̃21 + s2k
µ̂NEk

Let κ1 :=
(
(αβ)−1 +

∑
k∈C1

(
αζ̃21 + s2k

)−1
)−1

, we can first notice that:

E
[
µ1|X(·)

•
]
− µ1 =

[
αζ̃21

s21 + αζ̃21
+

κ1s
2
1

(s21 + αζ̃1)2

]
(µ̂NE1 − µ1)

+
κ1s

2
1

s21 + αζ̃21

∑
k∈C1\{1}

1

αζ̃21 + s2k
(µ̂NEk − ν1)

− s21

s21 + αζ̃21

(
1− κ1s

2
1

s21 + αζ̃21

)
(µ1 − ν1)−

κ1s
2
1

s21 + αζ̃21

1

αβ
ν1 .

Using that µ̂NEk − ν1 for k ∈ C1\{1}, µ̂NE1 − µ1, µ1 − ν1 and ν1 are pairwise independent
we get that:

E
[
∥µ̂1 − µ1∥2

]
=

[
αζ̃21

s21 + αζ̃21
+

κ1s
2
1

(s21 + αζ̃1)2

]2
s21 +

κ21s
4
1

(s21 + αζ̃21 )
2

∑
k∈C1\{1}

1

αζ̃21 + s2k

+
s41

(s21 + αζ̃21 )
2

(
1− κ1s

2
1

s21 + αζ̃21

)2

αζ̃21 +
κ21s

4
1

(s21 + αζ̃21 )
2

1

αβ
.

After simplification:
I1
s21

=
αζ̃21

s21 + αζ̃21
+

κ1s
2
1

(s21 + αζ̃21 )
2

(106)
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Upper bound for r1 : By the same arguments of equations (103):

sup
µ̂1:∥µ̂1∥≤2

√
β+ζ1

E
[
∥µ̂1(X

(k)
• , k ∈ C1)− µ1∥21Hc

1

]
≤ 20(β + ζ21 )

√
P[Hc

1]

From Lemma 5, for all k ∈ C1:

P
[
∥ν1∥2 ≥ β

]
= P

[
∥µk − ν1∥2 ≥ ζ21/2

]
≤ exp

(
−d

e

2

(√
2

α
− 1− 1

))
,

and by union bound we get that :

r1 ≤ 20(β + ζ21 )
√
|C1|+ 1 exp

(
−d

e

4

(√
2

α
− 1− 1

))
.

where de = TrΣ/∥Σ∥∞.
Compound bound. We recall that Q =

⊗J
j=1 Qj where Qj is the distribution of

(νj, µk for k ∈ Cj). Then let µ̂ = (µ̂k)k∈JBK ∈ (Rd)B be an estimator of the vectors
(µk)k∈JBK:

inf
µ̂

sup
P∈Pmult(C,ζ,Σ,s2)

1

B

B∑
k=1

Rk(µ̂k)

s2k
≥ inf

µ̂

1

Q(H)

∫
H

1

B

B∑
k=1

Rk(µ̂k)

s2k
dQ(ν1, . . . , νN , µ1, . . . , µB)

= inf
µ̂

1

B

J∑
j=1

∑
k∈Cj

Q(H−j)

Q(H)

∫
Hj

Rk(µ̂k)

s2k
dQj(νj, (µℓ)ℓ∈Cj)

where we recall Hj = {∥νj∥2 ≤ β, ∥µk − νj∥2 ≤ ζ̃2j ,∀k ∈ Cj}, H =
⋂J

j=1Hj and
H−j =

⋂
ℓ̸=j Hℓ. Using that Q(H−j)/Q(H) = Qj(Hj)

−1 ≥ 1 and that the infimum over
estimators µ̂ of the sum is the sum of the infimum over estimators µ̂k, we get that:

inf
µ̂

sup
P∈Pmult(C,ζ,Σ,s2)

1

B

B∑
k=1

Rk(µ̂k)

s2k
≥ 1

B

J∑
j=1

∑
k∈Cj

(Ik − rk)

≥ 1

B

J∑
j=1

∑
k∈Cj

αζ̃2j

s2k + αζ̃2j
+

κjs
2
k

(s2k + αζ̃2j )
2
− 20

B

(
J∑

j=1

|Cj|3/2
β + ζ̃2j
s2(Cj)

)
exp(−dec(α)) (107)

where κj =
(
(αβ)−1 +

∑
k∈Cj

(
αζ̃2j + s2k

)−1
)−1

and c(α) =
(√

2
α
− 1− 1

)
/4 .

Conclusion : Let de →∞ in (107), then:

lim
de→∞

inf
µ̂

sup
P∈Pmult(C,ζ,Σ,s2)

1

B

B∑
k=1

Rk(µ̂k)

s2k
≥ 1

B

J∑
j=1

∑
k∈Cj

αζ̃2j

s2k + αζ̃2j
+

κjs
2
k

(s2k + αζ̃2j )
2
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Let α→ 1 and β →∞, then:

lim
de→∞

inf
µ̂

sup
P∈Pmult(C,ζ,Σ,s2)

1

B

B∑
k=1

Rk(µ̂k)

s2k
≥ 1

B

J∑
j=1

∑
k∈Cj

ζ̃2j

s2k + ζ̃2j
+

s2k

s2k + ζ̃2j

1∑
ℓ∈Cj

s2k+ζ̃2j

s2ℓ+ζ̃j
2

(108)
We conclude by remarking that for all j ∈ JJK:∑

ℓ∈Cj

s2k + ζ̃2j

s2ℓ + ζ̃2j
= 1 +

∑
ℓ∈Cj\{k}

s2k + ζ̃2j

s2ℓ + ζ̃2j
≤ 1 +

∑
ℓ∈Cj\{k}

s2k + ζ̃2j
s2ℓ

Then:

1

B

J∑
j=1

∑
k∈Cj

ζ̃2j

s2k + ζ̃2j
+

s2k

s2k + ζ̃2j

1∑
ℓ∈Cj

s2k+ζ̃2j

s2ℓ+ζ̃j
2

≥ 1

B

J∑
j=1

∑
k∈Cj

ζ̃2j

s2k + ζ̃2j
+

s2k

s2k + ζ̃2j

1

1 +
∑

ℓ∈Cj\{k}
s2k+ζ̃2j
s2ℓ

= L∗(s,C, ζ/2).

□

E.4. Proof of Proposition 10. We start with the following elementary bounds on
the function B (for τ ≥ 0, ν ∈ [0, 1])

B(τ, ν) ≤ τ + ν

1 + τ
≤ max

(
1,

τ

1 + τ
+ ν

)
. (109)

Now consider the quantity Aj := |Cj|−1∑
k∈Cj B(τj,k, νj,k). Observe that

∑
k∈Cj νj,k = 1

and τj,k = νj,kBj, where Bj := ζ2j /s
2(Cj). Thus

Aj := |Cj|−1
∑
k∈Cj

B(Bjνj,k, νj,k) ≤ (Bj + 1)|Cj|−1
∑
k∈Cj

νj,k
1 +Bjνj,k

.

where we have used the first inequality in (109). By concavity of t 7→ t/(1 + t) we
conclude to

Aj ≤
Bj|Cj|−1 + |Cj|−1

1 +Bj|Cj|−1
=
τ̄j + |Cj|−1

1 + τ̄j
,

and thus to (44) by summation over j ∈ JJK. Now using the second inequality in (109),
we obtain∑

j∈JJK

|Cj|
B

τ̄j + |Cj|−1

1 + τ̄j
≤
∑
j∈JJK

|Cj|
B

min

(
1,

τ̄j
1 + τ̄j

+ |Cj|−1

)
≤ min

(
1,

τ̄∗
1 + τ̄∗

+
J

B

)
,

where we have used the second inequality in (109) and the biconcave character of the
function (x, y) 7→ min(1, y + x/(1 + x)); thus establishing (45). Assume now that all
risks and the diameters are equal, i.e. s2k = s2 and ζj = ζ for k ∈ JBK and j ∈ JJK.
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Then for all j ∈ JJK and k ∈ JBK, s2(Cj) = s2, τ j,k = ζ2/s2 = τ and νj,k = |Cj|−1. Using
the elementary bound

B(τ, ν) ≥ τ

1 + τ
+

ν

(1 + τ)2
,

we thus have in this case

L∗(s,C, ζ) = 1

B

J∑
j=1

∑
k∈Cj

B(τj,k, νj,k) =
1

B

J∑
j=1

∑
k∈Cj

B
(
τ , |Cj|−1

)
≥ 1

B

J∑
j=1

∑
k∈Cj

(
τ

1 + τ
+
|Cj|−1

(1 + τ)2

)

=
τ

1 + τ
+
J

B

1

(1 + τ)2
, (110)

Finally, since for τ ≥ 0, ν ∈ [0, 1]:
τ

1 + τ
+

ν

(1 + τ)2
≥ max

(
τ

1 + τ
,

1

(1 + τ)2

(
τ

1 + τ
+ ν

))
≥ max

(
τ

1 + τ
,

1

(1 + τ)2

)
min

(
1,

τ

1 + τ
+ ν

)
≥ 0.38min

(
1,

τ

1 + τ
+ ν

)
,

we conclude that in the case of equal risks and diameters the upper bound (45) and the
lower bound (110) differ by a factor at most 1/0.38 ≤ 2.7.

□

Appendix F. About the constant ϕ in the translation-invariant kernel
setting

In this section, we investigate the distribution-dependent constant ϕ = M2/(TrΣ)
in the (BS) setting (i.e., for data bounded in norm by the constant M). This constant
comes into play in the risk bounds for our methods, in relation to sufficient sample sizes,
see e.g. Props. 17, 6. Rewriting TrΣ = E

[
∥X − E[X]∥2

]
yields a direct interpretation

of ϕ, namely it is the ratio between the known bound on ∥X∥ and the “variance” of X;
in other words, ϕ is all the bigger as the variable X is more concentrated in relation to
the size of its support.

We are interested in an understanding more detailed than this simple observation in
the situation of kernel mean embedding (KME), which was our primary motivation for
investigating the (BS) setting. Namely, in that situation the user might choose between
different kernels and their associated Hilbert space mappings, in particular choosing or
tuning the “kernel bandwidth”. Even if kernels under consideration are all bounded by
the same constant, different kernels may give rise to different constants ϕ for the same
underlying data distribution.
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We look into this issue under the following general conditions:
(K1) the original data takes values in Z = Rℓ, and the data whose means we wish

to estimate have been obtained via a Hilbert space mapping X = Φκ(Z), Φκ :
Rℓ → H, associated to the kernel κ(z, z′) = ⟨Φκ(z),Φκ(z

′)⟩.
(K2) κ is a translation-invariant kernel on Rℓ, of the form κ(z, z′) = F (z− z′), where

F : Rℓ → R, with M2 := F (0).
(K3) For any u ∈ Rℓ, the function λ 7→ F (λu) is nonincreasing on R+. Furthermore,

there exist constants h > 0, c ≤ 1 such that

F (u) ≤M2

(
1− c∥u∥

2

h2

)
, for all u ∈ Rℓ s.t. 0 ≤ ∥u∥ ≤ h. (111)

Observe that (K1)-(K2) imply that the mapped data X satisfies (BS); as for (K3),
it means that the kernel is locally upper bounded by a strongly concave function in
a neighbourhood of 0 of size h. The latter quantity can therefore interpreted as a
proxy bandwidth for the kernel; and if F1 satisfies (111) for h = 1 then the rescaled
kernel function Fh(u) := F1(u/h) satisfies (111) for the bandwidth parameter h > 0.
The classical Gaussian, exponential, and Matérn kernels, for example, satisfy such
conditions.

Proposition 22. Assume (K1)-(K2)-(K3) hold, and that the distribution P of the
original data Z in Rℓ satisfies the following norm moment condition for some p ≥
1, C > 0:

E[ξ2p]
E[ξp]2

≤ C, where ξ := ∥Z − E[Z]∥. (112)

Then it holds

ϕ =
M2

E
[
∥X − E[X]∥2

] ≤ 4.2
2
p
+2pC

c
max

(
1,

h

2E[∥Z − E[Z]∥p]
1
p

)2

.

Assume p = 2 to simplify (we allowed for other values of p in the moment con-
dition (112) mainly with the possible value p = 1 in mind, which makes the con-
dition weaker; the discussion below can be readily adapted to other values of p).
This result shows that, provided the bandwidth parameter h is chosen of the order
of σZ := E

[
∥Z − E[Z]∥2

] 1
2 or smaller, the constant ϕ for the mapped data is bounded

independently of h. The bound depends on (1) the strong concavity parameter c of
the upper bound on the (unit scaled) kernel function in a neighbourhood of the ori-
gin, and (2) the norm moment ratio (112) of the original data distribution. Since
E[ξ4] ≤ E[ξ2]∥ξ∥2L∞ , in the case where the original data is itself bounded in norm by a
constant R, (112) holds with C = (R/σZ)

2. Thus, if the original X data is bounded, the
distribution of the mapped data Z under the above conditions “inherits” the constant
ϕ from that of the original data, up to factors. However, the norm moment condition
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is much milder than a boundedness condition and can also accommodate unbounded
distributions with heavy tails of the original data.

Proof of Proposition 22.
For Z,Z ′ ∼ P independent, denote D := ∥Z − Z ′∥, θ := min

(
hp

E[Dp]
, 1
2

)
, and tp :=

θE[Dp] = min
(
hp, E[D

p]
2

)
, it holds

∥E[Φκ(Z)]∥2/M2 =M−2E[⟨Φκ(Z),Φκ(Z
′)⟩]

=M−2E[F (Z − Z ′)]

≤ 1− c t
2

h2
P[Dp > tp]

≤ 1− cE[D
p]

2
p

h2
θ

2
p (1− θ)2E[D

p]2

E[D2p]

≤ E
[
∥Φκ(Z)∥2

]
M2

− c

4
min

(
1,

E[Dp]
2
p

2
2
ph2

)
E[Dp]2

E[D2p]
,

where the first inequality stems from (K3); the second comes from the Paley-Zygmund
inequality; and we used θ ≤ 1

2
for the third. Since E

[
∥Φκ(Z)∥2

]
− ∥E[Φκ(Z)]∥2 =

E
[
∥X∥2

]
− ∥E[X]∥2 = E

[
∥X − E[X]∥2

]
, we deduce

M2

E
[
∥X − E[X]∥2

] ≤ 4.2
2
p

c
max

(
1,

h

∥D∥Lp(P )

)2(
E[D2p]

E[Dp]2

)
.

Finally, note that

E
[
D2p

]
= E

[
∥Z − Z ′∥2p

]
≤ E

[
(∥Z − E[Z]∥+ ∥Z ′ − E[Z ′]∥)2p

]
≤ 22pE

[
∥Z − E[Z]∥2p

]
,

and by Jensen’s inequality

E[∥Z − E[Z]∥p] = E
[
∥Z − E[Z ′]∥p

]
≤ E

[
∥Z − Z ′∥p

]
= E[Dp].

(Observe that the equality E
[
∥Z − Z ′∥2

]
= 2E

[
∥Z − E[Z]∥2

]
holds, so the constants

in the first, resp. second inequality above can be improved for the special cases p = 1,
resp. p = 2.) □

Appendix G. Description of the tested Methods

The tested methods propose KME estimations of the form

µ̂mi :=
∑
j∈JBK

ωm
ij · µ̂NEj ,

where the definition of the weighting ωm
ij depends on the applied method m.
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G.1. State-of-the-Art Approaches.
(i) NE considers each bag individually.

ωNE
ij =

{
1, for i = j

0, otherwise.

(ii) R-KMSE (Muandet, Sriperumbudur, et al., 2016) estimates each KME individu-
ally but shrinks it towards 0. The amount of shrinkage is data dependent

ωR-KMSE
ij =

{
1− λi

1+λi
, for i = j

0, otherwise

where
λi =

ϱi − ρi
(1/Ni − 1)ϱi + (Ni − 1)ρi

with ϱi = 1/Ni

∑Ni

n=1 κ(Z
(i)
n , Z

(i)
n ) and ρi = 1/N2

i

∑Ni

n,n′=1 κ(Z
(i)
n , Z

(i)
n′ ).

(iii) MTA const (Feldman et al., 2014) was initially proposed for the estimation for
multiple real means. We adapted the approach such that it can be applied to
the estimation of multiple kernel means

ωMTA const
ij =

((
I +

γ

B
Ŝ · L(A)

)−1
)

ij

. (113)

Here, Ŝ = diag
(
(ŝ2i )i∈JBK

)
, as defined in (3), can be estimated as

ŝ2i =
1

2N2
i (Ni − 1)

Ni∑
n ̸=n′

κ
(
Z(i)

n , Z(i)
n

)
− 2κ

(
Z(i)

n , Z
(i)
n′

)
+ κ
(
Z

(i)
n′ , Z

(i)
n′

)
, (114)

which corresponds to (30), and L(A) denotes the graph Laplacian of task-
similarity matrix A. For MTA const the similarity is assumed to be constant,
i.e., A = a · (11T ) with a = 1

B(B−1)

∑
i,j∈JBK

∥∥µ̂NEi − µ̂NEj ∥∥2H. The optimal value for
model parameter γ may be found using model optimization. As default value
we propose γ = 1.

G.2. AGG Approaches. The aggregation approaches form a convex combination of
possibly all bags whose weights are found directly by minimization of quantities related
to the squared risk.

(iv) AGG orth is based on the constraint optimization problem

ωi· = argmin
wi·

E

∥∥∥∥∥∥
∑
j∈JBK

wijµ̂
NE
j − µi

∥∥∥∥∥∥
2

H

 s.t.
∑
j∈JBK

ωij = 1 , ∀i, j ∈ JBK : ωij ≥ 0.

Using Lagrangian multipliers the optimal solution can be derived as

ωi· ≃
(
S + Λ(i)

)(−1)
1 (115)
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where S = diag
(
(s2i )i∈JBK

)
and Λ(i) ∈ RB×B with Λ

(i)
j,j′ = ⟨µj − µi, µj′ − µi⟩H.

Central assumption of AGG orth is Λ(i)
j,j′ = ⟨µj − µi, µj′ − µi⟩H = 0 for all j ̸= j′

such that Λ(i) becomes a diagonal matrix with Λ(i) = diag
((
∥µj − µi∥2H

)
j∈JBK

)
.

An unbiased estimation of ∥µj − µi∥2H is given by (16) which in the kernel setting
translates to

ˆMMD
2
(µi, µj) =

Ni∑
n̸=n′

κ(Z
(i)
n , Z

(i)
n′ )

Ni(Ni − 1)
+

Nj∑
m̸=m′

κ(Z
(j)
m , Z

(j)
m′ )

Nj(Nj − 1)

− 2

Ni∑
n=1

Nj∑
m=1

κ(Z
(i)
n , Z

(j)
m )

NiNj

. (116)

Eq. (115) reduces to

ωAGG orth
ij =

1

ŝ2j + γ · ˆMMD
2
(µi, µj)

.

We add a multiplicative constant γ for more flexibility, whose value is either
found by model optimization or γ = 13 taken as default. If the distances between
bags is inhomogeneous, e.g., the data set contains close but also far distant
unrelated bags, higher values of γ might be advisable. Finally the weights are
normalised such that they sum to one.

(v) AGG egd is based on Q-Aggregation and resembles (36)

ωAGG egd
i· = argmin

wi·

L̂i + cqQ̂i + c1
∑
j∈JBK

wij

√
TrΣ2

j

Nj

+ c2
∑
j∈JBK

w2
ij

√
TrΣ2

j

Nj

,
L̂i =

∥∥∥∥∥∥
∑
j∈JBK

wij

(
µ̂NEj − µ̂NEi

)∥∥∥∥∥∥
2

H

+ s2i (2wii − 1) , Q̂i =
∑
j∈JBK

wij

√
∆̂T

j Σi∆̂j

Ni

,

such that
∑

j∈JBK ωij = 1 and ∀i, j ∈ JBK : ωij ≥ 0. There is no instantiation
of Q̂BS. It is required for the theoretical results to hold on bounded data which
is less regularised than Gaussian data. In practice, we add two regularization
terms instead. The c1 term favours sparse results whereas the c2 regularization
leads to diffuse, small weights. Their effect can be compared to that of ℓ1- and
ℓ2-regularization respectively. Distant means are penalised by the cq term.

The optimization over the probability simplex is done by exponentiated gra-
dient descent (Kivinen and Warmuth, 1997) with gradient

∇ωAGG egd
i· = 2

(
Λ(i) + c2 diag(ϑ)

)
ωi· + 2Si· + cqϱ

(i) + c1ϑ,
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where Si· denotes the i-th column of matrix S = diag((s2i )i∈JBK), ϑ and ϱ(i) are
B-dimensional vectors and defined as ϑj =

√
TrΣ2

j/Nj and ϱ
(i)
j =

√
∆̂T

j Σi∆̂j/Ni.
We propose the following estimators for these terms: ŝ2i is estimated as shown
in (114). Matrix Λ̌(i) is a biased estimator of Λ(i) with Λ̌

(i)
j,j′ = ⟨µ̂NEj −µ̂NEi , µ̂NEj′ −µ̂NEi ⟩

that can be computed as

Λ̌
(i)
j,j′ =



0, for i = j, or i = j′, or i = j = j′

1
NjNj′

∑Nj
m

∑Nj′
m′ κ(Z

(j)
m ,Z

(j′)
m′ )

− 1
NjNi

∑Nj
m

∑Ni
n κ(Z

(j)
m ,Z

(i)
n )

− 1
NiNj′

∑Ni
n

∑Nj′
m′ κ(Z

(i)
n ,Z

(j′)
m′ )

+ 1
NiNi

∑Ni
n

∑Ni
n′ κ(Z

(i)
n ,Z

(i)
n′ )

, otherwise.
(117)

Vector ϑ is based on TrΣ2
j . Let X1, X2, X3, X4 denote independent copies,

then

Σ = E[(X − E(X))(X − E(X))T ] =
1

2
E[(X1 −X2)(X1 −X2)

T ]

such that

Σ2 =
1

4
E[(X1 −X2)(X1 −X2)

T (X3 −X4)(X3 −X4)
T ].

By linearity of the trace, we then have

Tr(Σ2) =
1

4
E
[
Tr
(
(X1 −X2)(X1 −X2)

T (X3 −X4)(X3 −X4)
T
)]

=
1

4
E[(X1 −X2)

T (X3 −X4) · (X3 −X4)
T (X1 −X2)]

= E[⟨X1, X3⟩2 − ⟨X1, X3⟩⟨X2, X3⟩ − ⟨X1, X3⟩⟨X1, X4⟩+ ⟨X1, X3⟩⟨X2, X4⟩].

For Ni ≥ 4 an unbiased estimation for Tr(Σ2
i ) is then given by

1

Ni(Ni − 1)

Ni∑
n1 ̸=n2

κ(Z(i)
n1
, Z(i)

n2
)
2

− 2

Ni(Ni − 1)(Ni − 2)

Ni∑
n1 ̸=n2 ̸=n3

κ(Z(i)
n1
, Z(i)

n2
)κ(Z(i)

n1
, Z(i)

n3
)

+
1

Ni(Ni − 1)(Ni − 2)(Ni − 3)

Ni∑
n1 ̸=n2 ̸=n3 ̸=n4

κ(Z(i)
n1
, Z(i)

n2
)κ(Z(i)

n3
, Z(i)

n4
),

and we recover (59). However this estimator has computational complexity
O(N4

i ) and is infeasible in practice. Instead, we propose in Algorithm 1 a
subsampling strategy that gives an approximation which operates in O(Ni).
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Algorithm 1 Approximation of estimation of Tr(Σ2
i )

Require: data Z(i)
• , bag size Ni, number of repetitions r

1: # initialise
2: t1 ← 0
3: t2 ← 0
4: t3 ← 0
5: # first term can be calculated directly in linear time
6: t1 ←

∑Ni

n,n′ k(Z
(i)
n , Z

(i)
n′ )

2 −∑Ni

n k(Z
(i)
n , Z

(i)
n )2

7: # other terms are approximated in r iterations
8: for 1 to r do
9: # select four distinct samples

10: n1, n2, n3, n4 ← randint(1, Ni, 4)
11: # approximate second and third term
12: t2 ← t2 + κ(Z

(i)
n1 , Z

(i)
n2 ) · κ(Z(i)

n1 , Z
(i)
n3 )

13: t3 ← t3 + κ(Z
(i)
n1 , Z

(i)
n2 ) · κ(Z(i)

n3 , Z
(i)
n4 )

14: end for
15: # normalise and add
16: trSi ← t1/(Ni(Ni − 1))− 2t2/r + t3/r
17: return trSi

For the vector ϱ(i) we need an estimation of ∆̂T
j Σi∆̂j for which we propose a

biased estimate

dSd(i)
j =

1

Ni − 1

Ni∑
n=1

 1

Nj

Nj∑
m=1

κ(Z(i)
n , Z(j)

m )− 1

Ni

Ni∑
n′=1

κ(Z(i)
n , Z

(i)
n′ )

2

− Ni

Ni − 1

 1

NiNj

Ni∑
n=1

Nj∑
m=1

κ(Z(i)
n , Z(j)

m )− 1

NiNi

Ni∑
n=1

Ni∑
n′=1

κ(Z(i)
n , Z

(i)
n′ )

2

(118)

Note that estimator dSd(1)
j is a rewriting of q̂j (31) in the kernel setting. For

translation invariant kernels we obtain a less biased estimate

dSd(i)
j =

1

Ni − 1

Ni∑
n=1

 1

Nj

Nj∑
m=1

κ(Z(i)
n , Z(j)

m )− 1

Ni − 2

Ni∑
n′=1

κ(Z(i)
n , Z

(i)
n′ )

2

− Ni

Ni − 1

 1

NiNj

Ni∑
n=1

Nj∑
m=1

κ(Z(i)
n , Z(j)

m )− 1

Ni(Ni − 2)

Ni∑
n=1

Ni∑
n′=1

κ(Z(i)
n , Z

(i)
n′ )

2

.

Its computational complexity is in O(Ni
2).

The final procedure of AGG egd is shown in Algorithm 2. We suggest cq =
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Algorithm 2 AGG egd

Require: matrix Λ̌(i) (Eq. (117)), vectors trS (Alg. 1), dSd(i) (Eq. (118)), (ŝj)j∈JBK
(Eq. (114)), model parameters cq, c1, c2, learning rate η, maximum nr. of iterations
tmax

1: # initialise
2: ϑ̃j ← (trSj)

1/2/Nj , ∀j ∈ JBK

3: ϱ̌(i)j ← (dSd(i)
j /Ni)

1/2
, ∀j ∈ JBK

4: ω(0)
i· ← 1

5: # until maximum nr. of iterations or convergence

6: while t ≤ tmax and
(
ω
(t−1)
i − ω(t)

i

)2
> 10−8 do

7: # compute gradient
8: ∇ω(t−1)

i· ← 2
(
Λ̌(i) + c2 diag(ϑ̃)

)
ω
(t−1)
i· + 2Ŝi· + cqϱ̌

(i) + c1ϑ̃

9: # perform exponentiated gradient descent
10: ω

(t)
i· ← ω

(t−1)
i· · exp {−η(t) · ∇ω(t−1)

i· }
11: # normalise
12: ω

(t)
i· ←

ω
(t)
i·

1Tω
(t)
i·

13: end while
14: # estimated optimal weight vector for bag i

15: return ω
(t)
i·

1.4, c1 = 1, c2 = 4 and r = 100, tmax = 500, η(t) = 50/(1 + (t/B)) as default
parameter values.

G.3. STB Approaches. The similarity test based approaches shrink the estimation
only towards neighbouring means. Neighbors are found as described in Cor. 1,

Wi =
{
j ∈ JBK :

√
Tr(Σ2

j )/Nj ≤ 5 ·
√

Tr(Σ2
i )/Ni

}
Vi =

{
j ∈ Wi : ∥µi − µj∥2H ≤ τ · s2i

}
. (119)

In practice the quantities are estimated. Alg. 1 provides an approximation of Tr(Σ2
i ).

Eq. (114) shows an unbiased estimate for s2i and (116) for ∥µi − µj∥2H.
(vi) STB weight (Marienwald et al., 2021) assigns a uniform weight to all neighbours

except for ωii which is higher

ωSTB weight
ij =


γ + 1−γ

|Vi| , for i = j
1−γ
|Vi| , for i ̸= j, j ∈ Vi
0, otherwise.

STB weight was proposed for balanced bags and under independence of test and
data, for which it has strong theoretical results (cf. Theorem 3.1 of Marienwald
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et al. (2021)). The optimal values of τ and γ are found by model optimization
or τ = 2.2, γ = 0.2 taken as default. Larger values of τ allow higher distances
between µi and its neighbours, thus, potentially increase the number of neigh-
bours and the bias of the estimation. Higher γ values put emphasis on µi, i.e.,
ωii > ωij for i ̸= j, and the solution reduces to NE for γ = 1.

(vii) STB opt corresponds to Lemma 1 and minimises an upper bound on the risk

ωSTB opt
i· = argmin

wi·

{
τs2i (1− wii)

2 +
∑
j∈Vi

w2
ijs

2
j

}
,

such that
∑

j∈JBK ωij = 1 and ∀i, j ∈ JBK. ωij ≥ 0. Using Lagrangian multipliers
the optimal solution is (cf. (13))

ωSTB opt
ij =


λiνi + (1− λi), for i = j

λiνj, for i ̸= j, j ∈ Vi
0, otherwise.

where νj := s−2
j /

∑
j′∈Vi

s−2
j′ and λi := (1 + γτ(1− νi))(−1). An unbiased estimator

for s2i is given in (114). The additional multiplicative constant γ allows for more
flexibility and tends to put emphasis on ωii. Model optimization can be used to
find suitable values for τ and γ. Otherwise, we recommend τ = 2.2, γ = 0.2 as
default values.

(viii) STB orth performs the similarity test and applies AGG orth on neighbouring
means

ωSTB orth
ij =

{
ωAGG orth
ij , for j ∈ Vi

0, otherwise.

The similarity test merely functions as a safeguard here and excludes high dis-
tant neighbours and does not play such a central role as for the other STB
methods. Therefore, τ can be fixed to a large value, e.g., τ := 5. Even though
ωAGG orth
ij is reduced when ∥µi − µj∥2H is high, AGG orth does not perform well

when there are many high distant neighbours. Their weights accumulate and
reduce the weights of important bags because of the normalization step. The
similarity test alleviates this problem.

Either model optimization can be used to find suitable values for τ and γ,
or their default values τ := 5, γ = 3 can be chosen. Note that, compared to
STB weight and STB opt, τ is larger which highlights the fact that here the
similarity test only excludes distant bags. Because of this safeguard, γ, which
penalises large distances, can be reduced (γ = 2.2 vs γ = 13 for AGG orth).

(ix) STB egd performs the similarity test and applies AGG egd on neighbouring
means

ωSTB egd
ij =

{
ωAGG egd
ij , for j ∈ Vi

0, otherwise.
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Analogous to the discussion of STB orth the similarity test functions as a safe-
guard to exclude high distant neighbours. It can also be seen as another in-
strument to replace Q̂BS (see also discussion of AGG egd). STB egd relies on
several model parameters. We recommend to set r = 100, tmax = 500, η(t) =
50/(1 + (t/B)) and τ := 5, cq = 1, c1 = 1, c2 = 5 as default. Compared to the
default values of AGG egd, diffuse weights should be favoured whereas regular-
ization based on the distances (cq) or sparse weights (c1) become less important
because of the preselection of neighbouring means.

G.4. Experimental Results for Additional Methods. The results of R-KMSE (Muan-
det, Sriperumbudur, et al., 2016), STB weight (Marienwald et al., 2021), AGG orth,
and AGG egd can be found in Figure 3 and Figure 4. R-KMSE estimates each KME
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Figure 3. Decrease in estimation error compared to NE in percent on
Gaussian data settings (a) and (b) resp. Higher is better. The bars (right
axis) in (b) show the bag sizes for the bags 1 to 50 which vary between
10 and 300. Compare with Fig. 1

individually and only provides marginal improvement over NE. The performance of STB
weight is comparable to that of STB opt, however, it gives less accurate estimations
of large bags in setting (b). STB weight assumes equal variances of the estimations,
thus, can not handle imbalanced bags. Its weights estimation of large bags might be
corrupted by small bags with high variance. Comparing the performances of the aggre-
gation methods AGG orth and AGG egd with STB orth and STB egd resp. shows that
the similarity test is beneficial and functions as a safeguard to discard distant bags.
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Figure 4. Decrease in estimation error compared to NE in percent
on the flow cytometry data. Higher is better. The number next to the
boxplot quantifies the median which is also depicted as a line. The mean
is visualised as a circle. From left to right: results on individual cell types
1, 2, 3, 4, 7, 8, 9, and all cell types jointly. The performance of AGG orth
is partly occluded which allows a more detailed display of the remaining
results. Its mean is ≈ −30, Q1 ≈ −60, and its lower whisker ends at
≈ −140. Compare with Fig. 2

The same observations can be made on the cytometry data. Especially on ’All’
cell types, the importance of the similarity test can be noted. AGG orth considers
the distance between the bags in the definition of the weights. However, due to the
normalization

∑
j ω

AGG orth
ij = 1 small weights ωAGG orth

ij of many distant bags j can
accumulate and thereby reduce the impact of important weights. The similarity test
preselects only close means and eliminates this problem.

G.5. Default Model Parameter Values. The presented models have up to four
data dependent model parameters and three hyperparameters. Parameter tuning is
possible, whenever the user wishes to estimate the (kernel) means of bags of size N
but also has bags of much larger size N ′ ≫ N . For the optimization, e.g., in form of
cross-validation, subsets of size N are sampled from the N ′ bags. A method-specific
parameter combination is then tested on all bags of size N , while the test error is
(only) computed wrt. the N ′ bags (again, a proxy true mean can be estimated using
the complete N ′ samples).

In most practical applications this scheme is not possible. For this reason we propose
default values that we observed to perform well in various settings. Table G.5 shows
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an overview. To determine these values we considered the Clustered setting (1). We

Table 2. Summary of the default parameter values of each method.

Method Parameter(s) Method Parameter(s)

SOTA STB
NE ∅ STB weight τ = 2.2
R-KMSE ∅ γ = 0.2
MTA const γ = 1. STB opt τ = 2.2

γ = 0.2
AGG STB orth τ := 5.

AGG orth γ = 13. γ = 3.
AGG egd cq = 1.4 STB egd τ := 5.

c1 := 1. cq := 1.
c2 = 4. c1 := 1.
r := 100 c2 = 5.
tmax := 500 r := 100
η(t) := 50/(1 + (t/B)) tmax := 500

η(t) := 50/(1 + (t/B))

generated additional independent training samples on which we ran cross-validation to
determine for each radius an optimal set of parameter values (25 repetitions). Most
default values correspond to their optimal choices for radius= 1.5. We chose a radius of
1.5 because it presents a balance between overlapping and yet distinct clusters. It also
corresponds to a setting which is close to practice and for which multi-task averaging
approaches generally promise an improvement over the naive estimation.

The methods based on egd form a peculiarity as the selection procedure did not
uncover suitable parameter values. For STB egd we fixed cq = c1 = 1 because the
values selected by CV were too low (cq) or even zero (c1) at radius 1.5. Because the
similarity test selects only close neighbours, the distance controlled by parameter cq,
i.e., ∆̂T

j Σi∆̂j, is small. Still, we found the term to be important in practice and, hence,
fix cq = 1. Regularization by the c1-term leads to sparse weights. For the artificial data,
the found neighbours are relatively homogeneous, therefore, no sparse solution must be
acquired. However, we found c1 = 1 to be better in more general settings. The same
argument holds for AGG egd for which we had to fix c1 = 1 as well.

We fixed τ := 5 for STB orth and STB egd, because their similarity test merely
functions as a precaution to discard high-distant bags. As shown by the theoretical
discussion, the AGG methods are equivalent to the STB methods with optimally selected
τ .

We did not optimise for the hyperparameters r, tmax and η(t). For larger values of r the
approximation in Alg. 1 becomes more accurate. It also leads to a higher computational
complexity. We found r = 100 to be a good trade-off. The same trade-off can be
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observed for tmax. However, we found that for the artificial data egd converged usually
before tmax = 500 was reached. For the selection of η(t) we follow the recommendation
given in Collins et al. (2008) and LeCun et al. (1998). Figures 5-6 show the effect
of the model parameter choice on the performance for each method. STB weight is
highly affected by improper parameter choices, whereas the new STB methods are more
stable. Specifically, the effect of τ plateaus. Even for small τ , an improvement over NE
can be observed. When the AGG methods are complemented with a preselection of bags
(similarity test as safeguard), the methods become more robust. Compared to the c2-
and cq-terms of AGG egd and STB egd, the c1-term has only little effect. This lets us
conclude that ℓ1-regularization is not as important as ℓ2-regularization of the weights.
Furthermore, it seems that an improper value of one parameter can be alleviated if the
remaining parameters are chosen correctly.

For completeness, we also report the optimised (again by cross-validation on iid
training data) model parameter values for the Imbalanced setting in Table G.5.

Table 3. Summary of the optimised parameter values of each method
for the imbalanced setting.

Method Parameter(s) Method Parameter(s)

SOTA STB
NE ∅ STB weight τ = 1.4
R-KMSE ∅ γ = 0.05
MTA const γ = 1.1 STB opt τ = 1.4

γ = 0.1
AGG STB orth τ = 3.9

AGG orth γ = 5. γ = 2.
AGG egd cq = 0. STB egd τ = 2.7

c1 = 3.5 cq = 0.
c2 = 14. c1 = 2.9
r := 100 c2 = 34.
tmax := 500 r := 100
η(t) := 50/(1 + (t/B)) tmax := 500

η(t) := 50/(1 + (t/B))

Finally, Figure 7 shows the results on the artificial Gaussian data with optimised
model parameters which can be compared to the results with the default parameters
shown in Figures 1 and 3. The performance of MTA const is unchanged because the
optimised and default values of γ are similar. For STB weight, STB opt and STB
orth their optimised model parameters differ from their default counterparts for small
radii, so that we observe a performance difference respectively. Even though the cross-
validation values of STB orth vary with the radius, the performance difference is only
small which suggests that STB orth is stable for its parameter choice. The range
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of suitable values of AGG orth is large as can be seen in the marginal performance
difference even though the value of γ fluctuates between 7 and 14. However, when
we also consider the poor performance on the cytometry data, it can be seen that it
is sensitive to improper choices of γ (very larger values for γ, e.g., γ = 85, improve
the performance on cytometry). Unsurprisingly, the performance difference is most
noticeably for AGG egd and STB egd for which we manually forced the values of cq or
c1. Note, however, that c1 is of clear importance for the Imbalanced data (optimal
values are non-zero), and we observe an improvement on the cytometry data if cq and
c1 are non-zero. This justifies the decision to choose non-zero values for cq and c1 in
more general settings.

G.6. Computational Complexity. Based on the previous Section, we can give esti-
mations of the computational complexity of each method. We first identify the com-
plexities of prerequisites on which the methods are based on (items (a)-(g)). Then we
analyse each approach individually, where the stated complexity relates to the calcu-
lation of the weighting matrix, i.e., all pairwise weights (items (i)-(ix)). Table G.6.4
summarises the total complexities as the combination of all required operations.

G.6.1. Prerequisites.
(a) Intra-task kernel matrices κ(Zi, Zi) and inter-task kernel matrices κ(Zi, Zj):

Requires: -
Complexity: O(B2N2D)
Before we analyse the computations of the weights, we note that the kernel
mean embedding is not computed explicitly. Instead, it occurs only in terms of
inner products with other KMEs (kernel trick). A kernelised multiple instance
problem is usually also not completed with the computation of the KMEs. The
computations are required as intermediate step as part of, e.g., statistical testing
or distributional learning. We conclude that the computation of the intra-bag
kernel matrices κ(Zi, Zi) and that of the inter-bag kernel matrices κ(Zi, Zj) for
all pairs i, j ∈ JBK is done anyway, and not just required for the computation
of the weights of a multi-task averaging approach.

For simplicity we assume that N = max (Ni)i∈JBK. The complexity of the
computation of all kernel matrices depends on the kernel choice. If it is mostly
defined by the complexity of matrix multiplications of the data matrices, e.g.,
linear, Gaussian kernel, etc., it can be assumed to be in O(B2N2D).

Except for the approximation of Tr(Σ2) (Algorithm 1) and the estimations of
the naive variance s2 and ∆̂T

j Σi∆̂j (Eq (118)), the methods rely on the kernel ma-
trices only in term of their sums,

∑Ni

n=1

∑Nj

m=1 κ(Z
(i)
n , Z

(j)
m ) and

∑Ni

n̸=n′ κ(Z
(i)
n , Z

(i)
n′ ).

This reduces the memory consumption from B2N2 to B2+B because the kernel
matrices do not have to be stored but only their sums.

(b) Distance matrix ˆMMD
2
(µi, µj), Eq. (116):

Requires: (a)
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Complexity: O(B2)

Once (a) is precomputed, the distances ˆMMD
2
(µi, µj), Eq. (116), can be com-

puted in linear time for all pairs i, j ∈ JBK. The complexity is then in O(B2).
(c) Naive risk ŝ2i , Eq. (114):

Requires: (a) intra-task kernel matrices
Complexity: O(BN2)
Performs linear operations, e.g., sum and elementwise multiplication of N ×N
kernel matrices for every bag individually.

(d) trSi, Algorithm 1:
Requires: (a) intra-task kernel matrices
Complexity: O(BN2r)
As seen in Algorithm 1, the first term can be calculated explicitly (line 6) in
O(N2) and the other terms must be approximated in r iterations.

(e) dSd(i)
j , Eq. (118):

Requires: (a)
Complexity: O(B2N2)
The first sum of (118) is computed explicitly on N×N kernel matrices for every
pair i, j ∈ JBK individually, O(B2N2). The second sum can be computed more
efficiently, as it operates only on the sums of the kernels, which requires O(B2).

G.6.2. State-of-the-Art Approaches.
(i) NE:

Requires: -
Complexity: -

(ii) R-KMSE:
Requires: (a) intra-task kernel matrices
Complexity: O(B)
Performs linear operations on the precomputed sums of the intra-task kernel
matrices.

(iii) MTA const:
Requires: (b), (c)
Complexity: O(B3)
The similarity matrix is constant but data dependent and computes the sum of
the naive distance matrix, i.e., is in O(B2). The calculation of the Laplacian also
operates linearly on B ×B matrices. Finally, the computation of the weighting
matrix performs a matrix multiplication and a matrix inversion which both
require O(B3).

G.6.3. AGG Approaches.
(iv) AGG orth:

Requires: (b), (c)
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Complexity: O(B2)
Only elementwise multiplications and sums are required for the computation of
the weights.

(v) AGG egd:
Requires: (a), (c), (d), (e)
Complexity: O(B4tmax)
Algorithm 2 is performed for each bag individually. The biased estimation of
Λ̌, Eq. (117), can be computed in O(B2). Line 2 to 4 are linear operations on
vectors. The weights are then iteratively updated at most tmax times. In each
iteration the gradient is computed in O(B2) (matrix-vector multiplication), and
egd and normalization are performed in O(B). In total, the computational com-
plexity of the weighting matrix is then in O(B · (B2 +B + tmax · (B2 +B))) =
O(B3tmax).

G.6.4. STB Approaches.

(f) STB safeguard Wi, Eq. (119):
Requires: (d)
Complexity: O(B2)
Before neighbours are found, bags with a very large variance are excluded as a
safeguard. Because the inequality is checked for every pair of bags, the com-
plexity is in O(B2).

(g) STB neighbours Vi, Eq. (119):
Requires: (b), (c)
Complexity: O(B2)
The similarity test is performed for every pair of bags such that the complexity
is in O(B2).

(vi) STB weight:
Requires: (f), (g)
Complexity: O(B2)
The computation of the weighting matrix only requires elementwise operations,
i.e., sums and multiplications.

(vii) STB opt:
Requires: (c), (f), (g)
Complexity: O(B2)
The computation of the weighting matrix only requires elementwise operations,
i.e., sums and multiplications.

(viii) STB orth:
Requires: (f), (g), (iv)
Complexity: O(B2)
STB orth combines the similarity test with AGG orth. Its computational com-
plexity is the sum of both approaches accordingly.
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(ix) STB egd:
Requires: (f), (g), (v)
Complexity: O(B3tmax)
The computational complexity is composed of finding the neighbours and of AGG
egd.

Table 4. Summary of the individual and total computational complex-
ities. The total complexity is the sum of the complexities of all required
computations. Task (a) does not affect the total complexity because its
computation is required not only for the estimation of the KMEs.

Task Individual Required Computations Total

PREREQUISITES

(a) O(B2N2D) (a) O(B2N2D)
(b) O(B2) (a), (b) O(B2)
(c) O(BN2) (a), (c) O(BN2)
(d) O(BN2r) (a), (d) O(BN2r)
(e) O(B2N2) (a), (e) O(B2N2)

SOTA

(i) - (i) -
(ii) O(B) (a), (ii) O(B)
(iii) O(B3) (b), (c), (iii) O(BN2 +B3)

AGG

(iv) O(B2) (b), (c), (iv) O(BN2 +B2)
(v) O(B3tmax) (a), (c), (d), (e), (v) O(BN2r +B2N2 +B3tmax)

STB

(f) O(B2) (d), (f) O(BN2r +B2)
(g) O(B2) (b), (c), (g) O(BN2 +B2)
(vi) O(B2) (f), (g), (vi) O(BN2r +B2)
(vii) O(B2) (c), (f), (g), (vii) O(BN2r +B2)
(viii) O(B2) (f), (g), (iv), (viii) O(BN2r +B2)
(ix) O(B3tmax) (f), (g), (v), (ix) O(BN2r +B2N2 +B3tmax)
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Figure 6. Decrease in estimation
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Figure 7. Decrease in estimation error compared to NE in percent on
Gaussian data settings (a) and (b) resp. Higher is better. The model
parameters of the methods were optimised on iid training samples using
cross-validation. The bars (right axis) in (b) show the bag sizes for the
bags 1 to 50 which vary between 10 and 300. Compare with Fig. 1, 3.
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