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Abstract
Designing an efficient yet accurate floating-point approximation of a mathematical function is an
intricate and error-prone process. This warrants the use of formal methods, especially formal proof,
to achieve some degree of confidence in the implementation. Unfortunately, the lack of automation
or its poor interplay with the more manual parts of the proof makes it way too costly in practice.
This article revisits the issue by proposing a methodology and some dedicated automation, and
applies them to the use case of a faithful binary64 approximation of exponential. The peculiarity of
this use case is that the target of the formal verification is not a simple modeling of an external
code; it is an actual floating-point function defined in the logic of the Coq proof assistant, which is
thus usable inside proofs once its correctness has been fully verified. This function presents all the
attributes of a state-of-the-art implementation: bit-level manipulations, large tables of constants,
obscure floating-point transformations, exceptional values, etc. This function has been integrated
into the proof strategies of the CoqInterval library, bringing a 20× speedup with respect to the
previous implementation.
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1 Introduction

A mathematical library is a set of floating-point functions that are designed to approximate
mathematical functions. They are used in various domains, ranging from engineering to
scientific computing and experimental mathematics. For such applications, these functions
are required to be both accurate and fast to compute. To meet those requirements, the code
of such a floating-point function is usually intricate and its correctness is far from trivial [13].
This warrants verifying the latter formally, which can be long and tedious [7, 8].

Formally verified mathematical libraries can even be used for formal proofs. An example
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of such usage is the CoqInterval library,1 which provides a set of strategies for the Coq proof
assistant that automate the verification of enclosures of real-valued expressions. It is based on
a formalization of rigorous polynomial approximations that are computed using an interval
arithmetic with floating-point bounds [10]. Originally, the floating-point computations were
performed one bit at a time in the logic of the Coq system. Later, support for 63-bit integers
was added to Coq to speed up computation [5]. Even then, a formal verification of the
following approximation of Siegfried Rump’s integral—an example known to cause computer
algebra systems to struggle due to the large number of oscillations of the integrand—would
still take minutes to complete:∫ 8

0
sin(x + exp x)dx = 0.3474± 10−6.

Indeed, proving this approximation requires computing polynomial approximations of the
integrand on numerous subintervals of [0; 8], which itself requires computing enclosures of
the sine and exponential functions on many inputs.

To improve performance, recent work has added support for performing hardware floating-
point computations inside Coq proofs [11]. These built-in operations are axiomatized with
a purely computational specification, which has been formally proved to comply with the
IEEE 754 standard thanks to the Flocq library [3]. This makes it possible to both trust the
specification and use it for formal reasoning. Thanks to this new feature, the time needed to
verify the above approximation is reduced to just a few seconds.

This remains much slower than what could be achieved by state-of-the-art libraries [16,
§12]. Part of the reason is that we are performing computations inside the logic system, but
also that the code itself uses hardware floating-point numbers in a very naive way. To make
CoqInterval even more suitable for this kind of numerically intensive proofs, we would like to
improve on this last point by providing it with a mathematical library that is specialized for
hardware floating-point numbers and that is also formally verified. The work presented in
this article focuses on the implementation of the exponential function.

1.1 The original CoqInterval implementation
Prior to this work, CoqInterval would use a single algorithm for the exponential function,
but instantiated twice: once for floating-point numbers computed in hardware and once for
floating-point numbers slowly emulated in the logic of Coq.2 This was made possible thanks
to a suitable abstraction of floating-point arithmetic [11]. Having a single algorithm, and
thus a single proof of correctness, made the large formalization effort that went into adding
hardware computations to CoqInterval much less tedious.

CoqInterval’s original algorithm for computing an enclosure of exp x goes as follows. First,
using the following mathematical identities, an argument reduction brings the input x into
the interval [−2−8; 0]:

exp x = (exp(−x))−1

exp x = (exp(x/2))2 (1)

Second, the alternating series exp(−x) =
∑

(−x)n/n! is computed using interval arithmetic
to a high enough order. Thanks to the use of interval arithmetic and an alternating series,

1 https://coqinterval.gitlabpages.inria.fr/
2 While slow, this emulation of floating-point arithmetic is still useful for proofs that require more than

the 53 bits of precision provided by the binary64 format.

https://coqinterval.gitlabpages.inria.fr/
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Listing 1 Guaranteed approximation of exponential in OCaml. The output is a pair of floating-
point numbers that enclose exp x. Symbols invLog2_64, log2_64h, log2_64l, cst, p1, p2, etc, are
predefined floating-point literals.
let iexp x =

if x < -0x1.74385446d71c4p9 then (0., 0x1.p-1074) else
if x > 0x1.62e42fefa39efp9 then (0x1.fffffffffff2ap1023, infinity) else
let k’ = x *. invLog2_64 +. 0x1.8p52 in
let k = k’ -. 0x1.8p52 in
let t = (x -. k *. log2_64h) -. k *. log2_64l in
let y = t *. (p1 +. t *. (p2 +. t *. (... + t *. p5))) in
let ki = int_of_float k’ - 0x18000000000000 in
let p0 = cst.(ki land 63) in
let d = 0x1.25p-57 in
let lb = p0 +. (p0 *. y -. d) in
let ub = p0 +. (p0 *. y +. d) in
next_down (ldexp lb (ki asr 6)), next_up (ldexp ub (ki asr 6))

the algorithm is guaranteed to compute an enclosure of the real number exp x. Third, the
argument reduction is reversed to reconstruct the final interval result.

By suitably choosing the order of truncation of the series, one can obtain arbitrarily
tight enclosures of exp x, assuming that the precision of the floating-point arithmetic used
to compute the interval bounds can be made accordingly large. This property is invaluable
when used in conjunction with the original multi-precision floating-point arithmetic of
CoqInterval. But for hardware floating-point numbers and their fixed precision of 53 bits,
the property is pointless. The inadequacies of the implementation of exp then become
prominent. First, Equation (1) means that computing an enclosure of exp x is not constant
time, but proportional to the magnitude of x. Second, an alternating series is the worst way
of approximating a value, as part of the computations performed at order i are immediately
canceled by those at order i + 1 and thus have been performed in vain. Third, while interval
arithmetic is correct by construction, hence very proof-friendly, it performs twice as many
floating-point operations as needed.

1.2 The whole new algorithm
An approximation of the exponential function, as found in usual mathematical libraries,
does not suffer from these defects, as it is generally implemented along the following
guidelines [13, §6.2]. It would first perform a constant-time argument reduction using
the following mathematical identity:

exp x = exp(x− k · ln 2) · 2k with k = ⌈x/ ln 2⌋ ∈ Z.

where ⌈·⌋ denotes the nearest integer. Then, a low-degree polynomial approximation of
exp around 0 would be evaluated. Finally, the result reconstruction is trivial, as it is a
multiplication by a power of two. The whole algorithm amounts to just a few tens of
operations; it is thus extremely fast.

Listing 1 shows the implementation we have devised, represented as an OCaml function
for readability. (Its translation to Coq’s λ-calculus is straightforward.) Given a finite floating-
point number x, the code computes a pair of floating-point numbers enclosing exp x. In
particular, it uses the functions next_down and next_up to compute the predecessor and
successor of a floating-point number.

ITP 2024
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While the code seems to contain useless, if not adverse, floating-point computations, this is
not the case. For example, k looks like it could be directly computed as x *. invLog2_64 by
canceling 0x1.8p52 -. 0x1.8p52. This optimization would completely break the function,
causing it to no longer approximate the exponential, not even roughly. Similarly, t should not
be rewritten as x -. k *. (log2_64h +. log2_64l), and d should not be moved outside of
the parentheses in the computations of lb and ub. So, not only does floating-point arithmetic
ignore the usual algebraic laws of associativity and distributivity, but floating-point experts
actively rely on the lack of these laws to compute more accurate approximations.

1.3 Challenges of the formal verification

Contrarily to the previous algorithm, the adequacy of this new implementation of the
exponential no longer derives from the use of interval arithmetic, so the proof is no longer
straightforward. But at the same time, the proof effort needs to be sufficiently light so that
it is worth replacing a feature that is already good enough for most use cases.

There have been several attempts at formally verifying this kind of state-of-the-art
implementation using the Coq proof assistant, but they all have suffered from various
shortcomings. It might have been that the floating-point arithmetic was modeled without any
exceptional value [3, §6.2.3]. Indeed, when a computer-assisted proof is meant to complement
a pen-and-paper proof, it is acceptable that it only focuses on the most intricate parts of the
proof, which the absence of exceptional behavior is hardly ever. But, since this idealized
arithmetic does not match the behavior of hardware floating-point numbers, it cannot be
used here. Some later attempt solved the issue of the exceptional values [6], but it was still
targeting the verification of some code meant to run outside of Coq and thus did not need to
cover all of its facets. On the contrary, the algorithm shown in Listing 1 will effectively be
run when checking subsequent Coq proofs, so absolutely no shortcuts can be taken.

1.4 Contributions

This article proposes a fully proven, fast, and accurate implementation of the exponential
function for CoqInterval. The intricacy of this implementation corresponds to what is typically
found in the state of the art: tables of precomputed values, mixed floating-point integer
operations, etc. The proof covers all aspects of the correctness: the argument reduction, the
polynomial approximation, and the reconstruction. In addition, this article describes our
methodology for formally verifying floating-point approximations of mathematical functions.
In particular, we will present the automated strategies that were added to make this
verification as painless as possible.

Section 2 reminds both the arithmetic language and the notion of well-behaved expression
that were introduced in a previous work [6]. Section 3 explains how some strategies of
CoqInterval have been improved to automatically verify properties involving tight bounds
on rounding errors. Section 4 details the new features added to the arithmetic language
and associated tools to tackle the algorithm of Listing 1: hardware floating-point numbers,
conversions, macro-operations, array accesses, etc. Section 5 describes the methodology
used to formally verify the correctness of exponential, as well as some unusual properties of
floating-point arithmetic we ended up with. Section 6 explains how this work relates to some
other works. Finally, Section 7 concludes with some benchmarks and some perspectives.
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2 Preliminaries

This work is partly built on top of a framework for modeling floating-point expressions [6].
In particular, that framework provides some facilities to automate the proof of the absence of
exceptional behaviors, thus making it possible for the user to focus on a modeling of floating-
point expressions as real numbers. This section reminds the features of that framework that
are the most relevant to the presented work. Section 2.1 focuses on the expressions and their
various interpretations, while Section 2.2 shows how one can jump between interpretations
to ease the proof process.

In the following, the unary operator ◦(·) designates a rounding operator from R to R; it
returns the real number the nearest to the input that fits in the target floating-point format
(with unlimited range) [3, §3.2.2]. This theoretical operator is at the core of the IEEE-754
standard for floating-point arithmetic.

2.1 Arithmetic expressions
An arithmetic expression e is represented as the value of an inductive type corresponding to
a typed abstract syntax tree, namely an expression tree [6]. The nodes of an expression tree
correspond to arithmetic expressions, including floating-point operations, integer operations,
and some functions such as nearbyint.

The expression e can then be interpreted in several ways, two of which are relevant
here. First, it can be interpreted as the floating-point number JeKflt that would be obtained
according to the IEEE-754 standard. Second, e can be interpreted as the value JeKrnd obtained
by performing all the operations on real numbers and rounding their results. For example, in
the case of the floating-point addition, we have Ju + vKrnd = ◦(JuKrnd + JvKrnd). In the case of
integer operations, JeKflt performs computations modulo a power of two, while JeKrnd performs
operations on unbounded integers, e.g, Ju + vKrnd = JuKrnd + JvKrnd. The first interpretation
corresponds to the value actually computed by an implementation, and therefore the value
on which we need to prove a correctness theorem. The second interpretation, however, is the
one that is the more amenable to formal reasoning, as it is not susceptible to exceptional
behaviors such as overflows.

There are two features of expression trees that are of interest to us. The first one is the
support for let-binding operators, with binders represented by their de Bruijn indices, to
express sharing between sub-expressions and to guide proofs. The second one is the availability
of exact arithmetic operations, as they are commonly encountered in implementation of
mathematical functions. As far as J·Kflt is concerned, there is no difference in interpretation
between exact and inexact operations over floating-point numbers; they are performed as
mandated by the IEEE-754 standard. For J·Krnd, exact arithmetic operations, however, are
not rounded, which makes formal proofs, both manual and automatic, much simpler. This
raises the concern of whether such a proof about JeKrnd is meaningful, which Theorem 1 below
will tackle.

Let us illustrate these two features on the example of the argument reduction of the Cody-
Waite exponential [4], variants of which are still widely used in modern implementations,
including in the code shown in Listing 1:

k ← nearbyint(x · C),
t← x− k · c1 − k · c2,

with c1 + c2 ≃ 1/C and c2 ≪ c1. Below is the formulation of this argument reduction as an
expression tree.

ITP 2024
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Let (NearbyInt (Op MUL (Var 0) (BinFl C)))
(Op SUB

(OpExact SUB (Var 1) (OpExact MUL (Var 0) (BinFl c1)))
(Op MUL (Var 0) (BinFl c2)))

Notice that both floating-point operations in x− k · c1 are annotated as exact operations
by using the OpExact constructor. All the other operations are marked as potentially inexact
(Op constructor). This gives the following value for JtKrnd:

◦(x− k · c1 − ◦(k · c2)) with k = ⌈◦(x · C)⌋.

2.2 Relation between interpretations
As mentioned earlier, a correctness statement is about JeKflt, while a user only wants to have to
deal with JeKrnd, as it is free of exceptional behaviors and contains fewer rounding operations.
In order to bridge the gap between both interpretations, a predicate WB (for well-behaved)
is defined recursively over expressions. For example, the proposition WB(Op DIV u v) is
defined as

WB(u) ∧WB(v) ∧ JvKrnd ̸= 0 ∧ |◦(JuKrnd/JvKrnd)| ≤ Ω

with Ω the value of the largest finite floating-point number. In other words, for the floating-
point division u/v to be well-behaved, it is sufficient that u and v are well-behaved, that the
interpretation of v as a real number is non-zero, and that the division over real numbers,
once rounded, does not overflow the floating-point format. The predicate WB is defined
in a similar way for the other inexact operations over floating-point numbers. For exact
operations, the formula contains an additional conjunct that states that the result is exactly
representable. For example, the proposition WB(OpExact ADD u v) is defined as

WB(u) ∧WB(v) ∧ ◦(JuKrnd + JvKrnd) = JuKrnd + JvKrnd ∧ |JuKrnd + JvKrnd| ≤ Ω.

The key result is that, if an expression e is well-behaved, then JeKflt is a finite floating-point
number and it represents the real number JeKrnd. This is expressed by the following theorem:

▶ Theorem 1. Given an expression e, WB(e)⇒ JeKflt finite ∧ JeKflt = JeKrnd.

When applying Theorem 1, the user is left with a subgoal WB(e), which is painful to
prove by hand. So, to ease the proof process, the framework proposes a proof strategy called
simplify_wb, which tackles this subgoal by applying a procedure similar to CoqInterval’s
interval strategy to every conjunct of WB(e) individually. In practice, one can expect all
the conjuncts related to the absence of exceptional behaviors to be automatically proved.
Conjuncts related to exact operations, e.g., ◦(JuKrnd + JvKrnd) = JuKrnd + JvKrnd, are however
out of the scope of CoqInterval. So, the user will have to prove them either manually or
using a dedicated tool like Gappa [3, §4.3].

Note that, in order for simplify_wb to make use of the interval strategy of CoqInterval,
the latter had to be enhanced with some support for rounding operators, as they appear in
almost all the conjuncts of WB(e). This support was based on the so-called standard model
of floating-point arithmetic. (Section 3.2 will propose a better approach.) For instance, given
an enclosure u ∈ [u; u], CoqInterval would compute an enclosure of ◦(u) as follows, assuming
a binary64 format:

◦(u) ∈ [u− ε; u + ε] with ε = max
(
2−1075,−2−53 · u, +2−53 · u

)
. (2)
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3 Automated tools and rounding errors

Consider the code of Listing 1. To verify its correctness, we need to prove the following
bound on the absolute error between the exponential function and its floating-point degree-5
polynomial approximation:

∀t ∈ R, |t| ≤ 355·2−16 ⇒ |1+y−exp t| ≤ 11·2−62 with y = ◦(t·◦(p1+◦(t·◦(p2+. . .)))). (3)

The traditional methodology to prove such a bound is as follows [3, §6.2.3]. One would
split the expression 1 + y − exp t into two parts e1 + e2, with e1 = y − t · (p1 + t · (p2 + . . .)))
and e2 = (1 + t · (p1 + t · (p2 + . . .)))− exp t. On one hand, expression e1, which contains only
arithmetic operations and rounding operators, can be bounded using the dedicated Gappa
tool [3, §4.3]. On the other hand, expression e2, which contains no rounding operator, can
be bounded using the rigorous polynomial approximations of CoqInterval [10]. Combining
the proofs of both bounds gives the final result.

Since support for rounding operators has been added to CoqInterval so that simplify_wb
could automatically prove conjuncts of WB [6], it should now be possible to perform this
kind of proof directly, without any need for such algebraic manipulations nor the use of
an external tool. Unfortunately, several issues arise when using the interval strategy on
Equation (3). Indeed, it is slightly more involved than the usual conjuncts of WB.

First of all, both sides of the subtraction are strongly correlated, since the left-hand side
1 + y was chosen among the best possible floating-point approximations of the right-hand
side exp t. This means that naive interval arithmetic, as used in Equation (2) to define the
enclosure of a rounding operator, will cause an overestimation of the final enclosure that is so
large that it becomes useless for proving anything interesting. On this example, the strategy
would only be able to prove that the error is bounded by 10−2, very far from the expected
bound of 11 · 2−62. So, the first step is to define rigorous polynomial approximations for
rounding operators (Section 3.1).

This is not sufficient though, as the strategy would only succeed in proving a bound of
24 ·2−62, which is already quite good, but not sufficient to prove the correctness of the code of
Listing 1. This overestimation is a consequence of using the standard model of floating-point
arithmetic to derive Equation (2), as it is a bit too naive. So, the second step is to prove
tighter bounds on rounding errors (Section 3.2).

3.1 Rigorous polynomial approximations
The correlation issue of naive interval arithmetic is well-known, and it is independent of
rounding errors. In fact, even the interval evaluation of (a + x) · (b− x) would suffer from
it, as a + x and b− x vary in opposite directions with respect to x. A first solution to this
issue is to split the domain of x into smaller sub-intervals and to take the union of the
enclosures of the whole expression on all these sub-intervals. This approach is very simple
proof-wise, but it scales poorly computation-wise, so it should only be used as a last resort.
A second solution is to compute enclosures whose bounds symbolically depend on x rather
than being just numerical values. This approach scales better, but it requires a much larger
formalization effort.

CoqInterval provides both approaches [10]. In particular, the second approach is
implemented using rigorous polynomial approximations. Instead of just computing a single
interval [e; e] that encloses an expression e(x) for any x ∈ X, it computes a polynomial P

and an interval ∆ such that, for any x ∈ X, we have e(x)− P (x) ∈ ∆, which we denote by
e ∈ (P, ∆)X . Those polynomial enclosures can then be composed. For example, if we have

ITP 2024



7:8 End-to-End Formal Verification of a Fast and Accurate FP Approximation

f ∈ (Pf , ∆f )X and g ∈ (Pg, ∆g)X , we also have f + g ∈ (Pf + Pg, ∆f + ∆g)X . This makes
it possible to compute the polynomial enclosure of an arbitrary expression, by induction on
its structure.

Therefore, to benefit from the rigorous polynomial approximations of CoqInterval, we
need to be able to compute a polynomial enclosure of ◦(u), given an enclosure u ∈ (P, ∆)X .
To do so, we rewrite ◦(u(x)) into the sum [◦(u(x)) − u(x)] + u(x). For the left-hand side,
we use the degree-0 enclosure ◦(u)− u ∈ (0, [−ε; ε])X with ε computed as in Equation (2).
Then, by adding the original enclosure (P, ∆)X , we get a polynomial enclosure of ◦(u).

This change to CoqInterval was straightforward, but it has shifted the perspective on
rounding operators in the library. Indeed, the original implementation, which was designed
for simplify_wb, computed an enclosure of ◦(u) given an enclosure of u. Then, the user
could ask for an enclosure of ◦(u) − u, which would be correct but overestimated. The
new implementation computes a tight enclosure of ◦(u) − u from an enclosure of u, from
which it derives an enclosure of ◦(u). This change has been propagated up to the surface
language, that is, CoqInterval now recognizes the expression ◦(u)− u as an atomic error for
an expression u rather than a subtraction between two sub-expressions involving u.

3.2 Tighter error bounds
By adding support for rounding operators, CoqInterval is now able to automatically prove
Equation (3), but only if the rightmost bound is changed to 24 · 2−62. It fails for any tighter
bound, especially for 11 · 2−62, which we need to prove the correctness of the implementation
of Listing 1. As mentioned earlier, the issue comes from the simplicity of the standard
model of floating-point arithmetic, which states that the absolute error between ◦(u) and u

is bounded by 2−53 · |u|, assuming that u is in the normal range. While this is sensibly true
for values of u slightly larger than a power of two, this is off by a factor two for values of
u that are slightly smaller than a power of two. A better model of floating-point errors is
to bound the absolute error between ◦(u) and u by 1

2 ulp(u), where ulp denotes the unit in
the last place, which is the distance between |u| and its successor. In other words, given an
enclosure u ∈ [u; u], we have the following enclosure of the absolute error:

◦(u)− u ∈ [− ε
2 ; ε

2 ] with ε = ulp(max(−u, u)).

Not only is this new enclosure tighter, but it also makes the implementation and its proof
more generic, as it separates the concerns about the target format and the rounding direction.
Regarding the target format, one just has to choose the corresponding definition for ulp. As
a consequence, CoqInterval now supports not only the floating-point formats of Flocq, but
also its fixed-point formats. As for the rounding direction, it is a matter of choosing the
enclosing interval: [− ε

2 ; ε
2 ] for rounding to nearest, [0; ε] for rounding toward +∞, and so on.

Thanks to these improvements, the interval strategy can now directly prove Equation (3).
This proof only takes a tenth of a second using degree-10 polynomials (default degree for
interval). Note that the use of polynomial approximations, rather than the use of more
naive variants of interval arithmetic, is critical for this proof, as can be experienced by
reducing the degree. With degree 3, it takes about one second; with degree 2, it takes about
one minute; and with degree 1, it does not seem to terminate.

4 Supported formats and expressions

Since the goal of our work is to formally prove the function shown in Listing 1, we need several
new features that were missing from the earlier work on the Cody-Waite algorithm [6]. First
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of all, since our implementation relies on hardware support for both integer and floating-point
numbers, we need an interpretation of the expressions from Section 2 into the corresponding
types (Section 4.1). Since the implementation also uses an array of pre-calculated values to
reduce the degree of the polynomial approximation, the grammar of expressions has been
extended with array accesses (Section 4.2). Finally, as mentioned earlier, the algorithm takes
advantage of the inaccuracies and “flaws” of floating-point arithmetic to implement optimized
versions of nearbyint and int_of_float. Hence, to ease the proof of this algorithm, we
have added support for these optimized operations (Section 4.3).

4.1 Hardware operations
Similarly to JeKflt, we would like to define another interpretation JeKprim which represents
the computation of e using the hardware types provided by Coq’s standard library. The
PrimFloat module offers support for hardware floating-point numbers [11], while the
PrimInt63 module offers support for OCaml’s 63-bit integers [5]. Both modules provide
constants, basic operations (+, −, ×, /, etc.), comparisons (=, <, ≤), conversions, and some
miscellaneous functions (e.g., floating-point predecessor and successor functions). They also
provide axiomatized specifications for these hardware operations.

Since hardware floating-point numbers are just an instance of Flocq’s generic floating-point
numbers, we have derived the following variant of Theorem 1:

▶ Theorem 2. Given an expression e, WB(e)⇒ JeKprim finite ∧ JeKprim = JeKrnd.

There are two things to note about the definition of JeKprim. First, not all operations can
be performed directly on hardware types. Fused multiply-add (FMA), for example, is not
yet provided by the PrimFloat module. Therefore, to complete the definition of JeKprim, we
emulate these missing operations using the Flocq library (i.e., convert the operands to the
formalized Flocq types, compute the result using Flocq’s operations, and convert it back to
the hardware type).

Second, we have made our integers 32-bit wide, so that we can use Coq’s 63-bit hardware
integers to compute JeKprim while maintaining our ability to export verified algorithms as C
programs. For 32-bit integer expressions, WB(e) hence requires JeKrnd to remain inside the
[−231; 231 − 1] range.

4.2 Array accesses
The implementation of Listing 1 starts with an argument reduction that is very similar to
Cody & Waite’s, but based on a slightly different identity:

exp(x) = exp
(

x− k · ln 2
64

)
· 2k/64 with k =

⌈
x · 64

ln 2

⌋
. (4)

This makes the reduced argument much smaller, but it also means that the reconstruction
is not a simple multiplication by an integer power of 2 anymore. To multiply by 2k/64 for
some integer k, we first compute the Euclidean division of k by 64, in other words find kq

and kr such that k = kq ·64 +kr and 0 ≤ kr ≤ 63. Since there are only finitely many different
values of kr, we pre-compute the floating-point number closest to 2kr/64 for each value of kr

and store the results in a table cst. Therefore, to multiply by 2k/64, we first multiply by
cst.[kr] and then by 2kq (see Listing 1).

We have defined cst using the Coq standard library PArray, which provides persistent
arrays [5]. To ease proofs, we have added a constructor ArrayAcc to the type of expressions
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to represent accesses to tables of constants. The constructor takes as argument an array a of
hardware floating-point numbers and an integer expression i and is interpreted as follows:

JArrayAcc a iKprim := a.[JiKprim].

For an access to be well-behaved, we need the index to be well-behaved and smaller than
the length of the array, and all the entries of the array to be finite floating-point numbers.

4.3 Macro-operations
As we can see in Equation (4), the argument reduction also requires the nearbyint function.
This poses a problem as the latter is not provided by the PrimFloat module. Since we only
need to compute the exponential on inputs in the [−746; 710] range, we can use the following
trick3 to compute the integer part:

⌈f⌋ = ◦(◦(f + 1.5 · 252)− 1.5 · 252). (5)

Using the language of abstract expressions, we could simply represent this sequence of
operations as Op SUB (Op ADD f (BinFl 0x1.8p52)) (BinFl 0x1.8p52). However, that
would not be very helpful in proofs because it leaves us the tedious work of showing that those
operations behave as nearbyint. Instead, we want to treat those operations as if they were
one single nearbyint operation. For this, we define a new constructor FastNearbyint in
the language whose interpretation as a floating-point expression is the sequence of operations
above, but whose interpretation as a rounded expression is the integer part:

JFastNearbyint eKflt/prim := JeKflt/prim ⊕ 0x1.8p52⊖ 0x1.8p52,

JFastNearbyint eKrnd := ⌈JeKrnd⌋.

Since these interpretations are no longer in one-to-one correspondence, proving Theorems 1
and 2 for these constructors required significantly more work on our part. This, however, saves
the user from having to do the work themselves. Note that Equation (5) is only meaningful
for inputs |f | ≤ 251, so WB(FastNearbyint e) contains a conjunct |JeKrnd| ≤ 251.

The macro-operation we have just defined computes the integer part as a floating-point
number, but the algorithm in Listing 1 also needs it as an integer. Hence, we define another
constructor FastNearbyintToInt which extracts the mantissa4 after adding 1.5 · 252:

⌈f⌋Z = mantissa(◦(f + 0x1.8p52))− 3 · 251.

5 Application: a state-of-the-art exponential

We now have all the ingredients to state and prove the correctness of the algorithm shown in
Listing 1. It is stated as follows, with x the floating-point input, and with flb and fub the
components of the pair computed by the algorithm:

▶ Theorem 3. If x is finite, then flb ≤ exp x ≤ fub.

3 If |f | ≤ 251 then f + 1.5 · 252 is between 252 and 253 with ulp(252) = 1, which means the result of the
addition is rounded to the nearest integer.

4 For hardware numbers, we have implemented it as normfr_mantissa (fst (frshiftexp f)).
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Proof of this theorem for large positive and negative values of x is straightforward,
as those are the cases where the exponential either overflows or degenerates to 0. This
section presents the methodology we have followed for proving the correctness theorem for
x ∈ [−745.13; 709.78].

For a given floating-point input x, to find an enclosure of exp x, our algorithm performs
only one approximation y, but then subtracts (resp. adds) an error term d to find the
lower (resp. upper) bound of the enclosure. Correctness of the algorithm therefore relies on
whether d is big enough to cancel out the inaccuracy of the approximation. For this reason,
an essential step in our proof is to find some ε such that any choice of d with |d| > ε makes
◦(◦(p0 · y) + d) an upper bound of exp(x− k ln 2/64)− 2kr/64 (and similarly for the lower
bound). The value we have experimentally found for ε is characterized by the following
lemma:

▶ Lemma 4. For any finite floating-point number d such that |d| ≤ 2−52, we have∣∣∣2kr/64 + ◦(◦(p0 · y) + d)− (exp(x− kq ln 2) + d)
∣∣∣ < ε ≃ 1.14 · 2−57.

The proof of this lemma is too intricate to be comprehensively explained. Instead, we
will illustrate our methodology on the parts that verify the argument reduction and the
polynomial evaluation (Section 5.1). We will also show part of the proof for the reconstruction
as it involves some unusual facts about floating-point arithmetic (Section 5.2).

5.1 Illustration of the methodology
Among other facts about the argument reduction, we need to prove that the computation of
ki causes no exceptional behaviors and that it is indeed an integer part equal to k despite
its convoluted code. To do so in the Coq proof, we have defined an abstract expression ki’
whose interpretation in the hardware numbers—namely, Jki’Kprim—is the value stored in ki,
and whose interpretation in the rounded real numbers—namely, Jki’Krnd—is k. Then we can
use Theorem 2 to transform a goal about ki into a goal about k.

In practice, we not only want to transform the goal, but we also want to assert some
property on the transformed subexpression. Hence, we have implemented a strategy
assert_float which takes as argument a predicate Q, looks for an expression of the form
JeKprim, and applies the following corollary of Theorem 2:

WB(e) =⇒ Q(JeKrnd) =⇒ (∀x, x = JeKrnd ∧Q(x) =⇒ G(x)) =⇒ G(JeKprim).

The strategy also invokes simplify_wb to discharge as many conjuncts of WB(e) as possible.
When using this strategy, the Coq proof usually looks as follows:
set (ki’ := FastNearbyintToInt (Op MUL (Var 0) InvLog2_64)).
change (normfr_mantissa _ - _)

with (evalPrim ki’ [:x:]). (* Var 0 is mapped to x *)
assert_float (fun ki => -68736 <= ki <= 65536).
{ ... proof of the assertion ... }

We have used the assert_float strategy 8 times in the proof. Here is another example
of its usage to state the main property about the reduced argument t, which contains exact
operations just like in the original Cody-Waite algorithm (see Section 2.1):
set (t’ := Op SUB (OpExact SUB (Var 1) ...) ...).
change (x - _ - _) with (evalPrim t’ [:k, x:])).
assert_float (fun t => abs t <= 355 / 65536

/\ abs (t - (x - k * ln 2) <= 65537 * pow2 (-77)).
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Contrary to the other uses of assert_float in the proof, simplify_wb is not able to
completely discharge the subgoal WB(t). So we have to manually prove the remaining
conjuncts, which are the proof obligations of exact operations:

◦(k · c1) = k · c1 ∧ ◦(x− k · c1) = x− k · c1.

The proof of both equalities relies on bit-counting reasoning, which Gappa is specifically
designed for [3, §4.3.4]. But to avoid introducing a dependency over Gappa just to prove
these two conjuncts, we have performed this reasoning by hand.

As a last illustration, let us consider Equation (3), which bounds the error caused by both
the polynomial approximation and its floating-point evaluation. The corresponding proof
script looks as follows. For the sake of readability, we have removed a few administrative
steps (e.g., unfolding of definitions) from the script.

change (Papprox t’) with (evalPrim g0 [:t’:]).
assert_float (fun y => abs y <= 0.0055

/\ abs (1 + y - exp t) <= 11 * pow2 (-62)).
{ split.

- interval.
- interval with (i_taylor t, i_bisect t, i_prec 80). }

Thanks to the automation provided by assert_float and interval, in just a few lines,
we have proved that none of the floating-point operations had any exceptional behavior,
that the image of the floating-point function was bounded, and more importantly, that
its error was bounded too. More generally, if a user needed to prove the correctness of a
simple floating-point implementation with no intricate argument reduction (e.g., a piece-wise
polynomial approximation), that would be the whole of the script.

5.2 Correctness of reconstruction
At this point in the proof, thanks to Lemma 4, we know 2kr/64+yℓ ≤ exp x·2−kq ≤ 2kr/64+yu,
with yℓ and yu some intermediate floating-point results. To complete the proof, we need to
deduce the following enclosure:

flb = pred(◦(◦(p0 + yℓ) · 2kq )) ≤ exp x ≤ succ(◦(◦(p0 + yu) · 2kq )) = fub.

To do so, we want to factor out the multiplication by 2kq , but the possibility that the
result might fall into the subnormal range makes this factorization impossible. So we have
proved the following lemma:

▶ Lemma 5. Let y be a binary64 floating-point number greater than 2−1021. Then, for any
integer k, pred(◦(y · 2k)) ≤ pred(y) · 2k and succ(◦(y · 2k)) ≥ succ(y) · 2k.

By transitivity, we are thus left to prove the following inequalities:

pred(◦(p0 + yℓ)) ≤ 2kr/64 + yℓ ∧ 2kr/64 + yu ≤ succ(◦(p0 + yu)).

These inequalities hold because the predecessor and successor functions are enough to
compensate both the error between p0 and 2kr/64 and the rounding error of the final addition.
Indeed, there are two cases, depending on the value of kr:

If kr = 0, then p0 = 1. So, the first inequality reduces to pred(◦(1 + yℓ)) ≤ 1 + yℓ, which
is a general property of the predecessor function. Proof of the upper bound is similar.
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If kr ̸= 0, then we have 1.01 < p0 < 1.99. Therefore, 1.001 < ◦(p0 +yℓ) < 1.999 and hence
pred(◦(p0 + yℓ)) = ◦(p0 + yℓ)− 2−52. Moreover, we have |p0 − 2kr/64| ≤ 2−53. Similarly,
|◦(p0 + yℓ)− (p0 + yℓ)| ≤ 2−53. As a consequence,

pred(◦(p0 + yℓ)) = 2kr/64 + yℓ + (p0 − 2kr/64) + (◦(p0 + yℓ)− (p0 + yℓ))− 2−52

≤ 2kr/64 + yℓ + 2−53 + 2−53 − 2−52 = 2kr/64 + yℓ

which completes the proof for the lower bound. Proof of the upper bound is similar.

6 Related work

While there had been some earlier works to formalize hardware arithmetic operators [17],
formal verification of mathematical libraries really started with the impressive work by John
Harrison. Among other things, he used the HOL Light system to prove the correctness of a
binary32 approximation of the exponential function which presents many similarities with
our own algorithm [7]. But being a binary32 function, it could nowadays be validated by
sheer exhaustive testing. So, perhaps more interesting is Harrison’s subsequent work on the
formal verification of the implementation of sin and cos for IA-64 architectures, as it sets the
bar even higher [8]. Indeed, these approximations perform 80-bit floating-point computations
and are accurate to 0.574 ulp for inputs smaller than 263. They use an intricate argument
reduction: first a pre-reduction, followed by a 3-term Cody-Waite reduction, resulting in a
double-binary80 reduced argument. Then a degree-17 polynomial is evaluated, followed by
a simple reconstruction of the result so as to take the lower part of the reduced argument
into account. During both the argument reduction and the reconstruction, several floating-
operations are actually exact and need to be considered as such, in order to be able to prove
anything interesting about the result. Our methodology could be used to automate various
parts of this proof, but the representation of the reduced argument as a non-evaluated sum of
two floating-point numbers would presumably warrant adding a few more macro-operations
to our expression language, e.g., a FastTwoSum operator [14, §1.3].

A more recent work is the large verification using the Coq proof assistant of the power
function of the CORE-MATH library by Laurence Rideau and Laurent Théry [9]. This
includes the correctness of an exponential function whose implementation shares some
similarities with ours, but it is a lot more subtle, since both input and output are double-
binary64 numbers. Their formalization, however, ignores the issue of exceptional behaviors
and just assumes that numbers can be arbitrarily large, as is traditionally the case in
pen-and-paper proofs. Again, our methodology could help transition to a complete proof,
especially since they are already making heavy use of CoqInterval.

Regarding the use of hardware floating-point numbers in the Coq proof assistant, Érik
Martin-Dorel and Pierre Roux have implemented and verified a checker for semi-definite
positive matrices [11]. The algorithm performs a Choleski decomposition using floating-point
arithmetic on a slightly perturbed input matrix. The correctness theorem states that, if
this decomposition succeeds, then a Choleski decomposition using exact arithmetic would
have succeeded on the original input matrix, which guarantees that it was indeed semi-
definite positive. The perturbation, and hence the correctness proof, depends on the ability
to compute a bound on the rounding error of the floating-point decomposition [15]. Our
approach would have been of little help for that use case, as the algorithm and the error
bound highly depend on the dimension of the matrix.

Regarding the automation of proofs of bounds on rounding errors in a proof assistant, one
can cite the FPTaylor tool, which can generate proofs for HOL Light [18]. Given a floating-
point expression, it computes an affine form that encloses it, using elementary rounding errors
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as variables of the affine form. The strength of that tool is that the coefficients of the affine
form are kept as symbolic expressions rather than intervals. This approach separates the
concerns between the global optimizer used for computing enclosures and the formalization
of affine forms for floating-point arithmetic. Indeed, enclosures of the symbolic expressions
are only needed when they occur in terms of order 2 or more, as these terms cannot be
represented as part of the affine form. Therefore, the verification of these enclosures can be
done in a rather naive way, since they are only used for higher-order error term and thus do
not have to be tight. It should be noted that FPTaylor supports both the standard model
of floating-point arithmetic and a tighter model (see Section 3.2), but it can only generate
proofs for the former. Moreover, the global optimizer used to compute the enclosures in
FPTaylor is not the same as the one used to verify them in HOL Light, which might cause
difficulties if the latter procedure is not strong enough or too slow.

A similar tool is PRECiSA, which targets the PVS proof assistant [12]. As with FPTaylor,
errors are kept as symbolic expressions, and a global optimizer is used to compute their
enclosures. Higher-order error terms, however, are not eliminated as computations progress,
which might cause some performance issues compared to FPTaylor. PRECiSA, however,
uses a tight formal model of floating-point errors, and the tool can detect exact subtractions
(Sterbenz’ lemma). Moreover, it supports conditional expressions, including the cases where
rounding causes a different branch to be taken.

Finally, one should mention the VCFloat2 tool, which targets the Coq proof assistant [1].
As with the previous two tools, the error is kept as a symbolic expression. Before being fed
to a global optimizer (namely CoqInterval), this expression is first simplified by expanding it
through distributivity and discarding the sub-expressions that cancel. This expansion might
cause some performance issues, due to combinatorial explosion. A user-provided threshold is
used to further discard negligible terms, at the expense of a potentially worse error bound. It
can also use a technique similar to Gappa to reduce the correlation between sub-expressions,
and thus improve the tightness of the computed enclosures. The tool uses the standard
model of floating-point errors, but the user can annotate operations that are supposed to
be exact and the tool will verify that the conditions hold (Sterbenz’ lemma). Moreover,
the tool supports user-defined operations, which means that it can easily be extended with
double-word arithmetic, as long as the user has formalized it beforehand.

7 Conclusion

In this article, we have presented a floating-point approximation of the exponential function,
its mechanized proof of correctness, and the tools we have developed to ease the verification
work. One peculiarity of this work is that the verified code is not just modeled using the
Coq proof assistant, it can actually run in the logic of the system and therefore be used to
perform proofs by computations. Indeed, the correctness theorem tells how the result of
the approximation can be used as a lower/upper bound of the mathematical exponential.
The specification of the code of Listing 1 and its correctness proof take about 600 lines
of Coq script;5 Lemma 5 is about 130 lines; extending the proof of Theorem 1 to support
macro-operations and arrays takes about 500 lines; the tighter bounds on rounding errors
take about 200 lines. This work was integrated in release 4.10.0 of CoqInterval.

5 https://gitlab.inria.fr/coqinterval/interval/-/blob/interval-4.11.0/src/Interval/Float_
full_primfloat.v

https://gitlab.inria.fr/coqinterval/interval/-/blob/interval-4.11.0/src/Interval/Float_full_primfloat.v
https://gitlab.inria.fr/coqinterval/interval/-/blob/interval-4.11.0/src/Interval/Float_full_primfloat.v
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7.1 Integration to CoqInterval and performances
As explained in the introduction, the CoqInterval library provides an interval extension
of the exponential function that can use the floating-point unit of the processor to speed
up proof checking [11]. Its implementation, however, is based on a truncated power series,
which is effective but rather naive, compared with the implementations that can be found in
mathematical libraries targeting hardware floating-point formats. We have thus plugged our
verified implementation in place of the original one. Consider the following Coq script.

Goal forall x, 10 <= x <= 11 -> Rabs (exp x - exp x) <= 0x1p-6.
Proof. intros x Hx. interval with (i_bisect x, i_depth 30). Qed.

It states that, for any real number x between 10 and 11, the difference between exp x

(mathematical exponential) and itself is less than 2−6. From a mathematical point of view,
this statement is useless, since it could be trivially proved by rewriting exp x− exp x to zero,
but it is a good way to exercise the computations performed by CoqInterval. Indeed, the way
the interval strategy is invoked, it will not try to use anything fancier than naive interval
arithmetic. As a consequence, because exp x is strongly correlated with itself, the formal
proof generated by the tactic ends up considering around 6.7 million sub-intervals of the
input enclosure x ∈ [10; 11] (and as many interval evaluations of the exponential function).

Using the original implementation, this computationally intensive proof takes about 160
seconds to be checked by the Coq proof assistant on an Intel 13th-generation 4GHz processor.
With the implementation verified in this work, the proof is checked in less than 8 seconds.
Taking the average of three runs, the speedup is 20.5×. Since the argument reduction of the
original implementation is more costly the further away from zero the input is, the speedup
can grow even larger, up to 24×.

As for the accuracy of the new implementation, one can get an intuitive feel of it by
considering the distance between the bounds of the output interval. Ideally, it should be one
ulp (except for the input 0), meaning that the bounds of the interval should be consecutive
floating-point numbers. This property, called correct rounding [13, §12.3], is still an open
research question for floating-point formats larger than binary32 and completely out of reach
of a formal proof, as of today. So, the best we can hope to achieve is a distance of up to two
ulps, that is, one component is optimal, while the other is off-by-one. In the code shown in
Listing 1, if the constant d was zero, this would be the case. As it is not quite zero here,
when exp x is close to the midpoint between two consecutive floating-point numbers, the
distance might end up being three ulps. The proportion of inputs that cause a 3-ulp interval
output is roughly d · 251 ≃ 1/60.

7.2 Real-life performances
Being able to perform about one million faithful interval evaluations of exponential per second
inside the logic of Coq is impressive, but it is nowhere near the actual throughput of the
floating-point unit of the processor. Indeed, disregarding any concern about the guaranteed
accuracy of a mathematical library, one should expect a state-of-the-art implementation
to take 25–50 cycles to compute two floating-point approximations of exponential6 (and
thus one interval enclosure), so about 100× faster than what we currently achieve in the
logic of Coq. There are several reasons for the remaining gap. First of all, the code of our
implementation is not directly run by the processor, but interpreted by a virtual machine.

6 https://core-math.gitlabpages.inria.fr/
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Listing 2 Floating-point exponential in OCaml.
let fexp x =

if x < -0x1.74385446d71c4p9 then 0. else
if x > 0x1.62e42fefa39efp9 then infinity else
if x <> x then nan else
let k’ = x *. invLog2_64 +. 0x1.8p52 in
...
let p0 = cst.(ki land 63) in
ldexp (p0 +. p0 *. y) (ki asr 6)

Second, this bytecode interpreter boxes floating-point numbers, and thus performs a large
amount of memory allocations. Third, while our code only performs computations on values,
the interpreter still needs to account for the possibility of open terms (e.g., free variables)
appearing as operands to the floating-point computations.

The first issue can be worked around by using the native_compute machinery of the Coq
system, which compiles the code using the OCaml compiler and then executes it directly [2].
This machinery also partially avoids the second issue, since the compiler can optimize away
the boxing of some intermediate floating-point results. But the third issue is still present
and makes it hard to avoid pessimization in the generated code. As a consequence, this only
improves proof checking by a factor 3× to 4× for the longer proofs.

To get a better feel of the actual performances of our implementation, we can instead
implement the function directly in OCaml, as shown in Listing 2. This is roughly the same
code as Listing 1, except that the original last three lines, which were computing an enclosure
of exp x, have been replaced by a single floating-point value: ldexp (p0 +. p0 *. y) (ki
asr 6). Accordingly, the first few lines return a single value for the exceptional cases. The
code is run on about 1.5 · 109 inputs uniformly distributed among those that lead to a finite
output. Compiling the code with OCaml 5.1.1, we get that the floating-point exponential
from the GNU C Library is about 1.45× faster than our implementation.

Even if the GNU C Library has been heavily tuned, this is still a rather large gap. Part
of the reason is its use of the FMA operation. This ternary operation computes ◦(x · y + z)
at once, which halves the number of operations performed during the argument reduction
and the polynomial evaluation. Modifying our code accordingly, this reduces its slowdown
to 1.32×. When translating the code to C and compiling it with GCC, the slowdown is
brought down to 1.24×. Obviously, using FMAs in place of multiplications and additions
invalidates the correctness proof, since they do not compute the same values (notice the lack
of rounding operator around the product). Fortunately, the proof can be easily adapted.
Indeed, exact operations during the argument reduction are still exact when performed with
an FMA, and having a more accurate polynomial evaluation only makes the proof simpler.
Note that, while our framework supports reasoning about the FMA operation, it is not one
of the native floating-point operations provided by the Coq system, so it cannot be used to
speed up the implementation of CoqInterval. One would instead have to use larger tables, as
does the GNU C Library, so as to reduce the degree of the polynomial approximation.

7.3 Future works
First, it should be noted that, while the GNU C Library does not implement correct rounding
either, it is nonetheless slightly more accurate than our implementation. In about 20% of
cases, the code of Listing 2 returns a floating-point result that is off by one, while for the
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GNU C Library, the probability is 10−5. In the context of CoqInterval, this hardly matters,
since we want to compute an enclosure of the mathematical result rather than the nearest
floating-point number. But for a mathematical library, people might prefer a code that is
experimentally a bit more accurate to a code whose correctness has been formally verified.
Most of the inaccuracy comes from the factor p0. There are two ways to improve it, both of
which require adding a new table along cst. In the first approach, the new table contains
the error on p0, which can then be reintroduced in the computation. In the second approach,
the new table tells how to shift the input, such that the error on p0 becomes negligible.

A natural extension of this work is to convert all the other mathematical functions
of CoqInterval to use some state-of-the-art implementation when hardware floating-point
numbers are used as interval bounds. For functions such as log and arctan, our approach
should work without difficulty, as they are quite similar to exp. For trigonometric functions
such as sin and cos, the situation is slightly different. First of all, they are not monotone, so
considering the lower and upper bounds of the input interval separately might be counter-
productive; it might be better to perform a simultaneous argument reduction on both bounds.
Second, the Cody-Waite approach to argument reduction does not scale well to extremely
large inputs, while some other algorithms for argument reduction take advantage of the
periodicity of the trigonometric functions [13, §11.4].
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