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Abstract10

Designing an efficient yet accurate floating-point approximation of a mathematical function is an11

intricate and error-prone process. This warrants the use of formal methods, especially formal proof,12

to achieve some degree of confidence in the implementation. Unfortunately, the lack of automation13

or its poor interplay with the more manual parts of the proof makes it way too costly in practice.14

This article revisits the issue by proposing a methodology and some dedicated automation, and15

applies them to the use case of a faithful binary64 approximation of exponential. The peculiarity of16

this use case is that the target of the formal verification is not a simple modeling of an external17

code, it is an actual floating-point function defined in the logic of the Coq proof assistant, which is18

thus usable inside proofs once its correctness has been fully verified. This function presents all the19

attributes of a state-of-the-art implementation: bit-level manipulations, large tables of constants,20

obscure floating-point transformations, exceptional values, etc. This function has been integrated21

into the proof strategies of the CoqInterval library, bringing a 20× speedup with respect to the22

previous implementation.23
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1 Introduction31

The CoqInterval library1 provides a set of strategies for the Coq proof assistant that32

automatize the formal verification of enclosures of real-valued expressions. It is based on a33

formalization of rigorous polynomial approximations that are computed using an interval34

arithmetic with floating-point bounds [9]. Originally, the floating-point computations were35

performed one bit at a time in the logic of the Coq system. But now that hardware floating-36

point computations can be performed inside Coq proofs, CoqInterval’s strategies can delegate37

some computations to the floating-point unit of the processor, thus greatly speeding up the38

proof checking [10]. This makes it possible to formally verify the following approximation of39

Siegfried Rump’s integral, which is known to cause computer algebra systems to struggle40

1 https://coqinterval.gitlabpages.inria.fr/
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due to the large number of oscillations of the integrand, in a handful of seconds:41 ∫ 8

0
sin(x + exp x)dx = 0.3474± 10−6.42

Among numerous other things, this proof requires the ability to compute a floating-point43

enclosure of the mathematical value exp x for x some floating-point number. Thanks to a44

suitable abstraction of floating-point arithmetic [10], CoqInterval uses the same algorithm45

for both floating-point numbers computed in hardware and floating-point numbers slowly46

emulated in the logic of Coq.2 Having a single algorithm, and thus a single proof of correctness,47

for both implementations of floating-point arithmetic made the large formalization effort that48

went into adding hardware computations to CoqInterval much less tedious. The algorithm49

for computing an enclosure of exp x goes as follows. First, using the following mathematical50

identities, an argument reduction brings the input x into the interval [−2−8; 0]:51

exp x = (exp(−x))−1
52

exp x = (exp(x/2))2 (1)53

Second, the alternating series exp(−x) =
∑

(−x)n/n! is computed using interval arithmetic54

to a high enough order. Thanks to the use of interval arithmetic and an alternating series,55

the algorithm is guaranteed to compute an enclosure of the real number exp x. Third, the56

argument reduction is inverted to reconstruct the final interval result.57

By suitably choosing the order of truncation of the series, one can obtain arbitrarily58

tight enclosures of exp x, assuming that the precision of the floating-point arithmetic used59

to compute the interval bounds can be made accordingly large. This property is invaluable60

when used in conjunction with the original multi-precision floating-point arithmetic of61

CoqInterval. But for hardware floating-point numbers and their fixed precision of 53 bits,62

the property is pointless. The inadequacies of the implementation of exp then become63

prominent. First, Equation (1) means that computing an enclosure of exp x is not constant64

time, but proportional to the magnitude of x. Second, an alternating series is the worst way65

of approximating a value, as part of the computations performed at order i are immediately66

canceled by those at order i + 1 and thus have been performed in vain. Third, while interval67

arithmetic is correct by construction, hence very proof-friendly, it performs twice as many68

floating-point operations as needed.69

Outside of a formal system, a state-of-the-art approximation of the exponential function70

using hardware floating-point numbers would be implemented along the following guidelines [12,71

§6.2]. It would first perform a constant-time argument reduction using the following72

mathematical identity:73

exp x = exp(x− k · ln 2) · 2k with k = ⌈x/ ln 2⌋ ∈ Z.74

Then, a low-degree polynomial approximation of exp around 0 would be evaluated. Finally,75

the result reconstruction is trivial, as it is a multiplication by a power of two. The whole76

algorithm amounts to just a few tens of operations; it is thus extremely fast. The issue77

now is that one needs to formally verify the adequacy of the result, as it no longer derives78

from the use of interval arithmetic. In particular, if one wants to use such a state-of-the-art79

implementation of exp in place of the one currently in CoqInterval, the proof effort needs to80

be sufficiently light so that it is worth replacing a feature that is already good enough for81

most use cases.82

2 This emulation is still useful for proofs that require more than the 53 bits of precision provided by the
binary64 format.
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let iexp x =
if x < -0x1.74385446d71c4p9 then (0., 0x1.p-1074) else
if x > 0x1.62e42fefa39efp9 then (0x1.fffffffffff2ap1023, infinity) else
let k’ = x *. invLog2_64 +. 0x1.8p52 in
let k = k’ -. 0x1.8p52 in
let t = (x -. k *. log2_64h) -. k *. log2_64l in
let y = t *. (p1 +. t *. (p2 +. t *. (... + t *. p5))) in
let ki = int_of_float k’ - 0x18000000000000 in
let p0 = cst.(ki land 63) in
let lb = p0 +. (p0 *. y -. d) in
let ub = p0 +. (p0 *. y +. d) in
next_down (ldexp lb (ki asr 6)), next_up (ldexp ub (ki asr 6))

Figure 1 Guaranteed approximation of exponential in OCaml. The output is a pair of floating-
point numbers that enclose exp x. Symbols invLog2_64, log2_64h, log2_64l, d, cst, p1, p2, etc,
are predefined floating-point literals; in particular, d is about 3 · 2−58.

Figure 1 shows the implementation we have devised, represented as an OCaml function83

for readability. (Its translation to Coq’s λ-calculus is straightforward.) Given a finite floating-84

point number x, the code computes a pair of floating-point numbers that enclose exp x. In85

particular, it uses the functions next_down and next_up to compute the predecessor and86

successor of a floating-point number.87

While the code seems to contain useless, if not adverse, floating-point computations, this is88

not the case. For example, k looks like it could be directly computed as x *. invLog2_64 by89

canceling 0x1.8p52 -. 0x1.8p52. This optimization would completely break the function,90

causing it to no longer approximate the exponential, not even roughly. Similarly, t should not91

be rewritten as x -. k *. (log2_64h +. log2_64l), and d should not be moved outside of92

the parentheses in the computations of lb and ub. So, not only does floating-point arithmetic93

not respect the usual algebraic laws of associativity and distributivity, floating-point experts94

actively rely on the lack of these laws to compute more accurate approximations.95

As for the accuracy of the code, one can get an intuitive feel of it by considering the96

distance between both components of the returned pair. Ideally, the distance should be one97

unit in the last place (ulp), as the components should be consecutive floating-point numbers98

for x ̸= 0. This property, called correct rounding [12, §12.3], is still an open research question99

for floating-point formats larger than binary32 and completely out of reach of a formal proof,100

as of today. So, the best we can hope to achieve is a distance of up to two ulps, that is,101

one component is optimal, while the other is off-by-one. If the constant d was zero, this102

would be the case. As it is not quite zero here, when exp x is close to the midpoint between103

two consecutive floating-point numbers, the distance might end up being three ulps. The104

proportion of inputs that cause a 3-ulp interval output is d · 251 ≃ 1/40.105

There have been several attempts at formally verifying this kind of state-of-the-art106

implementation using the Coq proof assistant, but they all have suffered from various107

shortcomings. It might have been that the floating-point arithmetic was modeled without any108

exceptional value [3, §6.2.3]. Indeed, when a computer-assisted proof is meant to complement109

a pen-and-paper proof, it is acceptable that it only focuses on the most intricate parts of the110

proof, which the absence of exceptional behavior is hardly ever. But, since this idealized111

arithmetic does not match the behavior of hardware floating-point numbers, it cannot be112

used here. Some later attempt solved the issue of the exceptional values [6], but it was still113
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targeting the verification of some code meant to run outside of Coq and thus did not need114

to cover all of its facets. For example, it was ignoring the first and last few steps of the115

algorithm, so as to focus on the important part. It was also assuming the existence of some116

higher-level functions like nearbyint, which are either missing or too slow in our setting.117

Moreover, it was ignoring the issue of accuracy on subnormal outputs, where it is ill-defined,118

but that we cannot just disregard. Finally, the code was not as intricate as the one presented119

in Figure 1: no array accesses, no mixed integer/floating-point operations, etc.120

The novelty of the work presented in this article is thus the full verification of a state-of-121

the-art floating-point implementation of a mathematical function. This verification really122

covers all the facets, since the algorithm is not just modeled, but it is an actual code that123

will effectively be run when checking subsequent Coq proofs, so absolutely no shortcuts can124

be taken. This article also presents all the automated strategies that were added to make125

this verification as painless as possible. Indeed, the exponential function is just the first step;126

the goal is to optimize all the mathematical functions of CoqInterval using the presented127

methodology.128

Section 2 reminds both the arithmetic language and the notion of well-behaved expression129

that were introduced in a previous work [6]. Section 3 explains how some strategies of130

CoqInterval have been improved to automatically verify properties involving tight bounds131

on rounding errors. Section 4 details the new features added to the arithmetic language132

and associated tools to tackle the algorithm of Figure 1: hardware floating-point numbers,133

conversions, macro-operations, array accesses, etc. Section 5 describes the methodology134

used to formally verify the correctness of exponential, as well as some unusual properties of135

floating-point arithmetic we ended up with. Section 6 explains how this work relates to some136

other works. Finally, Section 7 concludes with some benchmarks and some perspectives.137

2 Preliminaries138

This work is partly built on top of a framework for modeling floating-point expressions [6].139

In particular, that framework provides some facilities to automate the proof of the absence of140

exceptional behaviors, thus making it possible for the user to focus on a modeling of floating-141

point expressions as real numbers. This section reminds the features of that framework that142

are the most relevant to the presented work. Section 2.1 focuses on the expressions and their143

various interpretations, while Section 2.2 shows how one can jump between interpretations144

to ease the proof process.145

In the following, the unary operator ◦(·) designates a rounding operator from R to R; it146

returns the real number the nearest to the input that fits in the target floating-point format147

(with unlimited range) [3, §3.2.2]. This theoretical operator is at the core of the IEEE-754148

standard for floating-point arithmetic.149

2.1 Arithmetic expressions150

An arithmetic expression e is represented as the value of an inductive type corresponding to151

a typed abstract syntax tree, namely an expression tree [6]. The nodes of an expression tree152

correspond to arithmetic expressions, including floating-point operations, integer operations,153

and some functions such as nearbyint.154

The expression e can then be interpreted in several ways, two of which are relevant155

here. First, it can be interpreted as the floating-point number JeKflt that would be obtained156

according to the IEEE-754 standard. Second, e can be interpreted as the value JeKrnd obtained157

by performing all the operations on real numbers and rounding their results. For example, in158
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the case of the floating-point addition, we have Ju + vKrnd = ◦(JuKrnd + JvKrnd). In the case of159

integer operations, JeKflt performs computations modulo a power of two, while JeKrnd performs160

operations on unbounded integers, e.g, Ju + vKrnd = JuKrnd + JvKrnd. The first interpretation161

corresponds to the value actually computed by an implementation, and therefore the value162

on which we need to prove a correctness theorem. The second interpretation, however, is the163

one that is the more amenable to formal reasoning, as it is not susceptible to exceptional164

behaviors such as overflows.165

There are two features of expression trees that are of interest to us. The first one is the166

support for let-binding operators, with binders represented by their de Bruijn indices, to167

express sharing between sub-expressions and to guide proofs. The second one is the availability168

of exact arithmetic operations, as they are commonly encountered in implementation of169

mathematical functions. As far as J·Kflt is concerned, there is no difference in interpretation170

between exact and inexact operations over floating-point numbers; they are performed as171

mandated by the IEEE-754 standard. For J·Krnd, exact arithmetic operations, however, are172

not rounded, which makes formal proofs, both manual and automatic, much simpler. This173

rises the concern of whether such a proof about JeKrnd is meaningful, which Theorem 1 below174

will tackle.175

Let us illustrate these two features on the example of the argument reduction of the Cody-176

Waite exponential [4], variants of which are still widely used in modern implementations,177

including in the code shown in Figure 1:178

k ← nearbyint(x · C),179

t← x− k · c1 − k · c2,180
181

with c1 + c2 ≃ 1/C and c2 ≪ c1. Below is the formulation of this argument reduction as an182

expression tree.183

184

Let (NearbyInt (Op MUL (Var 0) (BinFl C)))185

(Op SUB186

(OpExact SUB (Var 1) (OpExact MUL (Var 0) (BinFl c1)))187

(Op MUL (Var 0) (BinFl c2)))188
189

Notice that both floating-point operations in x− k · c1 are annotated as exact operations190

by using the OpExact constructor. All the other operations are marked as potentially inexact191

(Op constructor). This gives the following value for JtKrnd:192

◦(x− k · c1 − ◦(k · c2)) with k = ⌊◦(x · C)⌉.193

2.2 Relation between interpretations194

As mentioned earlier, a correctness statement is about JeKflt, while a user only wants to have to195

deal with JeKrnd, as it is free of exceptional behaviors and contains fewer rounding operations.196

In order to bridge the gap between both interpretations, a predicate WB (for well-behaved)197

is defined recursively over expressions. For example, the proposition WB(Op DIV u v) is198

defined as199

WB(u) ∧WB(v) ∧ JvKrnd ̸= 0 ∧ |◦(JuKrnd/JvKrnd)| ≤ Ω200

with Ω the value of the largest finite floating-point number. In other words, for the floating-201

point division u/v to be well-behaved, it is sufficient that u and v are well-behaved, that the202

interpretation of v as a real number is non-zero, and that the division over real numbers,203
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once rounded, does not overflow the floating-point format. The predicate WB is defined204

in a similar way for the other inexact operations over floating-point numbers. For exact205

operations, the formula contains an additional conjunct that states that the result is exactly206

representable. For example, the proposition WB(OpExact ADD u v) is defined as207

WB(u) ∧WB(v) ∧ ◦(JuKrnd + JvKrnd) = JuKrnd + JvKrnd ∧ |JuKrnd + JvKrnd| ≤ Ω.208

The key result is that, if an expression e is well-behaved, then JeKflt is a finite floating-point209

number and it represents the real number JeKrnd. This is expressed by the following theorem:210

▶ Theorem 1. Given an expression e, WB(e)⇒ JeKflt finite ∧ JeKflt = JeKrnd.211

When applying Theorem 1, the user is left with a subgoal WB(e), which is painful to212

prove by hand. So, to ease the proof process, the framework proposes a proof strategy called213

simplify_wb, which tackles this subgoal by applying a procedure similar to CoqInterval’s214

interval strategy to every conjunct of WB(e) individually. In practice, one can expect all215

the conjuncts related to the absence of exceptional behaviors to be automatically proved.216

Conjuncts related to exact operations, e.g., ◦(JuKrnd + JvKrnd) = JuKrnd + JvKrnd, are however217

out of the scope of CoqInterval. So, the user will have to prove them either manually or218

using a dedicated tool like Gappa [3, §4.3].219

Note that, in order for simplify_wb to make use of the interval strategy of CoqInterval,220

the latter had to be enhanced with some support for rounding operators, as they appear in221

almost all the conjuncts of WB(e). This support was based on the so-called standard model222

of floating-point arithmetic. (Section 3.2 will propose a better approach.) For instance, given223

an enclosure u ∈ [u; u], CoqInterval would compute an enclosure of ◦(u) as follows, assuming224

a binary64 format:225

◦(u) ∈ [u− ε; u + ε] with ε = max
(
2−1075,−2−53 · u, +2−53 · u

)
. (2)226

3 Automated tools and rounding errors227

Since support for rounding operators had been added to CoqInterval to suit simplify_wb [6],228

it seemed like it could be used for more than just automatically proving some conjuncts of229

WB(e). In particular, it should be possible to automatically prove a bound on the error230

between a rounded expression and the ideal expression it supposedly approximates. Consider231

the code of Figure 1. An intermediate property that is needed to prove its correctness is the232

following one:233

∀t ∈ R, |t| ≤ 355 ·2−16 ⇒ |1+y−exp t| ≤ 2−58 with y = ◦(t ·◦(p1 +◦(t ·◦(p2 + . . .)))). (3)234

Prior to this work, the methodology to prove the bound would have been to decompose235

the expression 1 + y − exp t into two parts e1 + e2 [3, §6.2.3]: e1 = y − t · (p1 + t · (p2 + . . .)))236

and e2 = (1 + t · (p1 + t · (p2 + . . .)))− exp t. Expression e2 (no rounding operator) would then237

be bounded using the rigorous polynomial approximations of CoqInterval, while expression e1238

(no exponential) would be bounded using the Gappa tool [3, §4.3]. This would give a proof239

of the expected bound 2−58. Our goal is to perform this proof directly using CoqInterval,240

without any need for such algebraic manipulations nor the use of an external tool.241

Unfortunately, several issues arise when using the interval strategy on Equation (3).242

First of all, both sides of the subtraction are strongly correlated by definition, since the243

left-hand side was chosen among the best possible floating-point approximations of the244

right-hand side exp t. This means that naive interval arithmetic, as used in Equation (2) to245
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define the enclosure of a rounding operator, will cause an overestimation of the final enclosure246

that is so large that it becomes useless for proving anything interesting. On this example,247

the strategy would only be able to prove that the error is bounded by 10−2, very far from the248

expected bound of 2−58. So, the first step is to define rigorous polynomial approximations249

for rounding operators (Section 3.1).250

This is not sufficient though, as the strategy would only succeed in proving a bound of251

about 1.5 · 2−58, which is already quite good, but not sufficient to prove the correctness of252

the whole code. This overestimation is a consequence of the simplicity of the standard model253

of floating-point arithmetic, as it often causes bounds on rounding errors to be overestimated.254

So, the second step is to prove tighter bounds (Section 3.2). In the context of simplify_wb,255

both issues were insignificant, since the goal was to automatically prove that some expression256

JeKrnd is bounded by Ω ≃ 21024, which is usually several hundreds of orders of magnitude257

larger than e.258

3.1 Rigorous polynomial approximations259

The correlation issue of naive interval arithmetic is well-known, and it is independent of260

rounding errors. In fact, even the interval evaluation of (a + x) · (b− x) would suffer from261

it, as a + x and b− x vary in opposite directions with respect to x. A first solution to this262

issue is to split the domain of x into smaller sub-intervals and to take the union of the263

enclosures of the whole expression on all these sub-intervals. This approach is very simple264

proof-wise, but it scales poorly computation-wise, so it should only be used as a last resort.265

A second solution is to compute enclosures whose bounds symbolically depend on x rather266

than being just numerical values. This approach scales better, but it requires a much larger267

formalization effort.268

CoqInterval provides both approaches [9]. In particular, the second approach is implemented269

using rigorous polynomial approximations. Instead of just computing a single interval [e; e]270

that encloses an expression e(x) for any x ∈ X, it computes a polynomial P and an interval ∆271

such that, for any x ∈ X, we have e(x)− P (x) ∈ ∆, which we denote by e ∈ (P, ∆)X . Those272

polynomial enclosures can then be composed. For example, if we have f ∈ (Pf , ∆f )X and273

g ∈ (Pg, ∆g)X , we also have f + g ∈ (Pf + Pg, ∆f + ∆g)X . This makes it possible to compute274

the polynomial enclosure of an arbitrary expression, by induction on its structure.275

Therefore, to benefit from the rigorous polynomial approximations of CoqInterval, we276

need to be able to compute a polynomial enclosure of ◦(u), given an enclosure u ∈ (P, ∆)X .277

To do so, we rewrite ◦(u(x)) into the sum [◦(u(x)) − u(x)] + u(x). For the left-hand side,278

we use the degree-0 enclosure ◦(u)− u ∈ (0, [−ε; ε])X with ε computed as in Equation (2).279

Then, by adding the original enclosure (P, ∆)X , we get a polynomial enclosure of ◦(u).280

This change to CoqInterval was straightforward, but it has shifted the perspective on281

rounding operators in the library. Indeed, the original implementation, which was designed282

for simplify_wb, computed an enclosure of ◦(u) given an enclosure of u. Then, the user283

could ask for an enclosure of ◦(u) − u, which would be correct but overestimated. The284

new implementation computes a tight enclosure of ◦(u) − u from an enclosure of u, from285

which it derives an enclosure of ◦(u). This change has been propagated up to the surface286

language, that is, CoqInterval now recognizes the expression ◦(u)− u as an atomic error for287

an expression u rather than a subtraction between two sub-expressions involving u.288
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3.2 Tighter error bounds289

By adding support for rounding operators, CoqInterval is now able to automatically prove290

Equation (3), but only if the rightmost bound is changed to 1.5 · 2−58. It fails for any tighter291

bound, especially for 2−58, which we need to prove the correctness of the implementation of292

Figure 1. As mentioned earlier, the issue comes from the simplicity of the standard model of293

floating-point arithmetic, which states that the absolute error between ◦(u) and u is bounded294

by 2−53 · |u|, assuming that u is in the normal range. While this is sensibly true for values295

of u slightly larger than a power of two, this is off by a factor two for values of u that are296

slightly smaller than a power of two. A better model of floating-point errors is to bound the297

absolute error between ◦(u) and u by 1
2 ulp(u). In other words, given an enclosure u ∈ [u; u],298

we have the following enclosure of the absolute error:299

◦(u)− u ∈ [− ε
2 ; ε

2 ] with ε = ulp(max(−u, u)).300

This has required us to implement in CoqInterval an overestimation of ulp and to prove301

that it was sound with respect to the non-computational definition found in the Flocq302

library. Not only is this new enclosure tighter, but it separates the concerns about the303

target format and the rounding direction. Regarding the target format, one just has to chose304

the corresponding definition for ulp. As a consequence, CoqInterval now supports not only305

the floating-point formats of Flocq, but also its fixed-point formats. As for the rounding306

direction, it is a matter of choosing the enclosing interval: [− ε
2 ; ε

2 ] for rounding to nearest,307

[0; ε] for rounding toward +∞, and so on.308

Thanks to these improvements, the interval strategy can now directly prove Equation (3).309

This proof only takes a tenth of a second using degree-10 polynomials (default degree for310

interval). Note that the use of polynomial approximations, rather than the use of more311

naive variants of interval arithmetic, is critical for this proof, as can be experienced by312

reducing the degree. With degree 3, it takes about one second; with degree 2, it takes about313

one minute; and with degree 1, it does not seem to terminate.314

4 New features315

Since the goal of our work is to formally prove the function shown in Figure 1, we need several316

new features that were missing from the earlier work on the Cody-Waite algorithm [6]. First317

of all, since our implementation relies on hardware support for both integer and floating-point318

numbers, we need an interpretation of the expressions from Section 2 into the corresponding319

types (Section 4.1). Since the implementation also uses an array of pre-calculated values to320

reduce the degree of the polynomial approximation, expressions have been extended with321

support for array accesses (Section 4.2). Finally, as we mentioned earlier, the algorithm takes322

advantage of the inaccuracies and “flaws” of floating-point arithmetic to implement optimized323

versions of nearbyint and int_of_float. Hence, to ease the proof of this algorithm, we324

have added support for these optimized operations (Section 4.3).325

4.1 Hardware operations326

Similarly to JeKflt, we would like to define another interpretation JeKprim which represents327

the computation of e using the hardware types provided by Coq’s standard library. The328

PrimFloat module offers support for hardware floating-point numbers [10], while the329

PrimInt63 module offers support for OCaml’s 63-bit integers [5]. Both modules provide330

constants, basic operations (+, −, ×, /, etc.), comparisons (=, <, ≤), conversions, and some331
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miscellaneous functions (e.g., floating-point predecessor and successor functions). They also332

provide axiomatized specifications for these hardware operations.333

Since hardware floating-point numbers are just an instance of Flocq’s generic floating-point334

numbers, we have derived the following variant of Theorem 1:335

▶ Theorem 2. Given an expression e, WB(e)⇒ JeKprim finite ∧ JeKprim = JeKrnd.336

There are two things to note about the definition of JeKprim. First, not all operations can337

be performed directly on hardware types. Fused multiply-add (FMA), for example, is not338

yet provided by the PrimFloat module. Therefore, to complete the definition of JeKprim, we339

emulate these missing operations using the Flocq library (i.e., convert the operands to the340

formalized Flocq types, compute the result using Flocq’s operations, and convert it back to341

the hardware type).342

Second, we have made our integers 32-bit wide, so that we can use Coq’s 63-bit hardware343

integers to compute JeKprim while maintaining our ability to export verified algorithms as C344

programs. For 32-bit integer expressions, WB(e) hence requires JeKrnd to remain inside the345

[−231; 231 − 1] range.346

4.2 Array accesses347

The implementation of Figure 1 starts with an argument reduction that is very similar to348

Cody & Waite’s, but based on a slightly different identity:349

exp(x) = exp
(

x− k · ln 2
64

)
· 2k/64 with k =

⌈
x · 64

ln 2

⌋
. (4)350

This makes the reduced argument much smaller, but it also means that the reconstruction351

is not a simple multiplication by an integer power of 2 anymore. To multiply by 2k/64 for352

some integer k, we first compute the Euclidean division of k by 64, in other words find kq353

and kr such that k = kq ·64 +kr and 0 ≤ kr ≤ 63. Since there are only finitely many different354

values of kr, we pre-compute a correct rounding of 2kr/64 for each value of kr and store the355

results in a table cst. Therefore, to multiply by 2k/64, we first multiply by cst.[kr] and356

then by 2kq (see Figure 1).357

We have defined cst using the Coq standard library PArray, which provides persistent358

arrays [5]. To ease proofs, we have added a constructor ArrayAcc to the type of expressions359

to represent accesses to tables of constants. The constructor takes as argument an array a of360

hardware floating-point numbers and an integer expression i and is interpreted as follows:361

JArrayAcc a iKprim := a.[JiKprim].362

For an access to be well-behaved, we need the index to be well-behaved and smaller than363

the length of the array, and all the entries of the array to be finite floating-point numbers.364

4.3 Macro-operations365

As we can see in Equation (4), the argument reduction also requires the nearbyint function.366

This poses a problem as the latter is not provided by the PrimFloat module. Since we only367

need to compute the exponential on inputs in the [−746; 710] range, we can use the following368

trick3 to compute the integer part:369

⌈f⌋ = ◦(◦(f + 1.5 · 252)− 1.5 · 252).370

3 If |f | ≤ 251 then f + 1.5 · 252 is between 252 and 253 with ulp(252) = 1, which means the result of the
addition is rounded to the nearest integer.
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Using the language of abstract expressions, we could simply represent this sequence of371

operations as Op SUB (Op ADD t (BinFl 0x1.8p52)) (BinFl 0x1.8p52). However, that372

would not be very helpful in proofs because it leaves us the tedious work of showing that those373

operations behave as nearbyint. Instead, we want to treat those operations as if they were374

one single nearbyint operation. For this, we define a new constructor FastNearbyint in375

the language whose interpretation as a floating-point expression is the sequence of operations376

above, but whose interpretation as a rounded expression is the integer part:377

JFastNearbyint eKflt/prim := JeKflt/prim ⊕ 0x1.8p52⊖ 0x1.8p52,

JFastNearbyint eKrnd := ⌈JeKrnd⌋.
378

Since these interpretations are no longer in one-to-one correspondence, proving Theorems 1379

and 2 for these constructors required significantly more work on our part. This, however,380

saves the user from having to do the work themselves. Note that the macro-operation only381

works for inputs |t| ≤ 251, so WB(FastNearbyint e) must contain a conjunct |JeKrnd| ≤ 251
382

for the theorems to hold.383

The macro-operation we have just defined computes the integer part as a floating-point384

number, but the algorithm in Figure 1 also needs it as an integer. Hence, we define another385

constructor FastNearbyintToInt which extracts the mantissa4 after adding 1.5 · 252:386

⌈f⌋Z = mantissa(◦(f + 0x1.8p52))− 3 · 251.387

5 Application388

We now have all the ingredients to state and prove the correctness of the algorithm shown in389

Figure 1. To simplify notation in this section, whenever a floating-point value f is finite (i.e.,390

neither ±∞ nor NaN), we denote by f the real value it represents.391

We state the correctness of the algorithm as follows, with x the input, and with flb and392

fub respectively the lower and upper bounds of the output:393

▶ Theorem 3. If x is finite, then flb ≤ exp x ≤ fub.394

Proof of this theorem for large positive and negative values of x is straightforward,395

as those are the cases where the exponential either overflows or degenerates to 0. This396

section presents the methodology we have followed for proving the correctness theorem for397

x ∈ [−745.13; 709.78].398

For a given input x, to find an enclosure of exp x, our algorithm performs only one399

approximation y, but then subtracts (resp. adds) an error term d to find the lower (resp.400

upper) bound of the enclosure. Correctness of the algorithm therefore relies on whether d is401

big enough to cancel out the inaccuracy of the approximation. For this reason, an essential402

step in our proof is to find some ε such that any choice of d with |d| > ε makes ◦(◦(p0 ·y) + d)403

an upper bound of exp(x− k ln 2/64)− 2kr/64 (and similarly for the lower bound). The value404

we have experimentally found for ε is characterized by the following lemma:405

▶ Lemma 4. Let d a finite floating-point number such that |d| ≤ 2−52. Then406 ∣∣∣2kr/64 + ◦(◦(p0 · y) + d)− (exp(x− kq ln 2) + d)
∣∣∣ < ε ≃ 3 · 2−58.407

4 For hardware numbers, we have implemented it as normfr_mantissa (fst (frshiftexp f)).
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Since the proof of this lemma is rather intricate, we will just illustrate our methodology408

on the piece of code that performs the argument reduction (Section 5.1). We will also show409

part of the proof for the reconstruction as it involves some unusual facts about floating-point410

arithmetic (Section 5.2).411

5.1 Illustration of the methodology412

Among other facts about the argument reduction, we need to prove that the computation of413

ki causes no exceptional behaviors and that it is indeed an integer part equal to k despite414

its convoluted code. To do so in the Coq proof, we have defined an abstract expression ki’415

whose interpretation in the hardware numbers—namely, Jki’Kprim—is the value stored in ki,416

and whose interpretation in the rounded real numbers—namely, Jki’Krnd—is k. Then we can417

use Theorem 2 to transform a goal about ki into a goal about k.418

In practice, we not only want to transform the goal, but we also want to assert some419

property on the transformed subexpression. Hence, we have implemented a strategy420

assert_float which takes as argument a predicate Q, looks for an expression of the form421

JeKprim, and applies the following corollary of Theorem 2:422

WB(e) =⇒ Q(JeKrnd) =⇒ (∀x, x = JeKrnd ∧Q(x) =⇒ G(x)) =⇒ G(JeKprim).423

The strategy also invokes simplify_wb to discharge as many conjuncts of WB(e) as possible.424

When using this strategy, the Coq proof usually looks as follows:425

426

set (ki’ := FastNearbyintToInt (Op MUL (Var 0) InvLog2_64)).427

change (normfr_mantissa _ - _)428

with (evalPrim ki’ [:x:]). (* Var 0 is mapped to x *)429

assert_float (fun ki => -68736 <= ki <= 65536).430

{ ... proof of the assertion ... }431
432

We have used the assert_float strategy 8 times in the proof. Here is another example433

of its usage to state the main property about the reduced argument t, which contains exact434

operations just like in the original Cody-Waite algorithm (see Section 2.1):435

436

set (t’ := Op SUB (OpExact SUB (Var 1) ...) ...).437

change (x - _ - _) with (evalPrim t’ [:k, x:])).438

assert_float (fun t => abs t <= 355 / 65536439

/\ abs (t - (x - k * ln 2) <= 65537 * pow2 (-77)).440
441

Contrary to the other uses of assert_float in the proof, simplify_wb is not able to442

completely discharge the subgoal WB(t). So we have to manually prove the remaining443

conjuncts, which are the proof obligations of exact operations:444

◦(k · c1) = k · c1 ∧ ◦(x− k · c1) = x− k · c1.445

The proof of both equalities relies on bit-counting reasoning, which Gappa is specifically446

designed for [3, §4.3.4]. But since we do not want to introduce a dependency over Gappa in447

CoqInterval, we have performed this reasoning by hand.448

5.2 Correctness of reconstruction449

At this point in the proof, thanks to Lemma 4, we know 2kr/64+yℓ ≤ exp x·2−kq ≤ 2kr/64+yu,450

with yℓ and yu some intermediate floating-point results. To complete the proof, we need to451
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deduce the following enclosure:452

flb = pred(◦(◦(p0 + yℓ) · 2kq )) ≤ exp x ≤ succ(◦(◦(p0 + yu) · 2kq )) = fub.453

To do so, we want to factor out the multiplication by 2kq , but the possibility that the454

result might fall into the subnormal range makes this factorization impossible. So we have455

proved the following lemma:456

▶ Lemma 5. Let y be a binary64 floating-point number greater than 2−1021. Then, for any457

integer k, pred(◦(y · 2k)) ≤ pred(y) · 2k and succ(◦(y · 2k)) ≥ succ(y) · 2k.458

By transitivity, we are thus left to prove the following inequalities:459

pred(◦(p0 + yℓ)) ≤ 2kr/64 + yℓ ∧ 2kr/64 + yu ≤ succ(◦(p0 + yu)).460

These inequalities hold because the predecessor and successor functions are enough to461

compensate both the error between p0 and 2kr/64 and the rounding error of the final addition.462

Indeed, there are two cases, depending on the value of kr:463

If kr = 0, then p0 = 1. So, the first inequality reduces to pred(◦(1 + yℓ)) ≤ 1 + yℓ, which464

is a general property of the predecessor function. Proof of the upper bound is similar.465

If kr ≠ 0, then we have 1.01 < p0 < 1.99. Therefore, 1.001 < ◦(p0 + yℓ) < 1.999 and466

hence pred(◦(p0 + yℓ)) = ◦(p0 + yℓ)− 2−52. Since p0 is a correct rounding of 2kr/64, we467

have |p0 − 2kr/64| ≤ 2−53. Similarly, |◦(p0 + yℓ)− (p0 + yℓ)| ≤ 2−53. As a consequence,468

pred(◦(p0 + yℓ)) = 2kr/64 + yℓ + (p0 − 2kr/64) + (◦(p0 + yℓ)− (p0 + yℓ))− 2−52

≤ 2kr/64 + yℓ + 2−53 + 2−53 − 2−52 = 2kr/64 + yℓ
469

which completes the proof for the lower bound. Proof of the upper bound is similar.470

6 Related works471

While there had been some earlier works to formalize hardware arithmetic operators [15],472

formal verification of mathematical libraries really started with the impressive work by John473

Harrison. Among other things, he used the HOL Light system to prove the correctness of474

the IA-64 implementation of sin and cos for floating-point inputs smaller than 263. This475

implementation relies on 80-bit floating-point arithmetic and is accurate to 0.574 ulp [7]. It476

uses an intricate argument reduction: first a pre-reduction, followed by a 3-term Cody-Waite477

reduction, resulting in a double-binary80 reduced argument. Then a degree-17 polynomial is478

evaluated, followed by a simple reconstruction of the result so as to take the lower part of the479

reduced argument into account. During both the argument reduction and the reconstruction,480

several floating-operations are actually exact and need to be considered as such, in order to481

be able to prove anything interesting about the result. Our methodology could be used to482

automate various parts of this proof, but the representation of the reduced argument as a483

non-evaluated sum of two floating-point numbers would presumably warrant adding a few484

more macro-operations to our expression language, e.g., a FastTwoSum operator [13, §1.3].485

A more recent work is the large verification using the Coq proof assistant of the power486

function of the CORE-MATH library by Laurence Rideau and Laurent Théry [8]. This487

includes the correctness of an exponential function whose implementation shares some488

similarities with ours, but it is a lot more subtle, since both input and output are double-489

binary64 numbers. Their formalization, however, ignores the issue of exceptional behaviors490
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and just assumes that numbers can be arbitrarily large, as is traditionally the case in491

pen-and-paper proofs. Again, our methodology could help transition to a complete proof,492

especially since they are already making heavy use of CoqInterval.493

Regarding the use of hardware floating-point numbers in the Coq proof assistant, Érik494

Martin-Dorel and Pierre Roux have implemented and verified a checker for semi-definite495

positive matrices [10]. The algorithm performs a Choleski decomposition using floating-point496

arithmetic on a slightly perturbed input matrix. The correctness theorem states, that if497

this decomposition succeeds, then a Choleski decomposition using exact arithmetic would498

have succeeded on the original input matrix, which guarantees that it was indeed semi-499

definite positive. The perturbation, and hence the correctness proof, depends on the ability500

to compute a bound on the rounding error of the floating-point decomposition [14]. Our501

approach would have been of little help for that use case, as the algorithm and the error502

bound highly depend on the dimension of the matrix.503

Regarding the automation of proofs of bounds on rounding errors in a proof assistant, one504

can cite the FPTaylor tool, which can generate proofs for HOL Light [16]. Given a floating-505

point expression, it computes an affine form that encloses it, using elementary rounding errors506

as variables of the affine form. The strength of that tool is that the coefficients of the affine507

form are kept as symbolic expressions rather than intervals. This approach separates the508

concerns between the global optimizer used for computing enclosures and the formalization509

of affine forms for floating-point arithmetic. Indeed, enclosures of the symbolic expressions510

are only needed when they occur in terms of order 2 or more, as these terms cannot be511

represented as part of the affine form. Therefore, the verification of these enclosures can be512

done in a rather naive way, since they are only used for higher-order error term and thus do513

not have to be tight. It should be noted that FPTaylor supports both the standard model514

of floating-point arithmetic and a tighter model (see Section 3.2), but it can only generate515

proofs for the former. Moreover, the global optimizer used to compute the enclosures in516

FPTaylor is not the same as the one used to verify them in HOL Light, which might cause517

difficulties if the latter procedure is not strong enough or too slow.518

A similar tool is PRECiSA, which targets the PVS proof assistant [11]. As with FPTaylor,519

errors are kept as symbolic expressions, and a global optimizer is used to compute their520

enclosures. Higher-order error terms, however, are not eliminated as computations progress,521

which might cause some performance issues compared to FPTaylor. PRECiSA, however,522

uses a tight formal model of floating-point errors, and the tool can detect exact subtractions523

(Sterbenz’ lemma). Moreover, it supports conditional expressions, including the cases where524

rounding causes a different branch to be taken.525

Finally, one should mention the VCFloat2 tool, which targets the Coq proof assistant [1].526

As with the previous two tools, the error is kept as a symbolic expression. Before being fed527

to a global optimizer (namely CoqInterval), this expression is first simplified by expanding it528

through distributivity and discarding the sub-expressions that cancel. This expansion might529

cause some performance issues, due to combinatorial explosion. A user-provided threshold is530

used to further discard negligible terms, at the expense of a potentially worse error bound. It531

can also use a technique similar to Gappa to reduce the correlation between sub-expressions,532

and thus improve the tightness of the computed enclosures. The tool uses the standard533

model of floating-point errors, but the user can annotate operations that are supposed to534

be exact and the tool will verify that the conditions hold (Sterbenz’ lemma). Moreover,535

the tool supports user-defined operations, which means that it can easily be extended with536

double-word arithmetic, as long as the user has formalized it beforehand.537
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7 Conclusion538

In this article, we have presented a floating-point approximation of the exponential function,539

its mechanized proof of correctness, and the tools we have developed to ease the verification540

work. One peculiarity of this work is that the verified code is not just modeled using the541

Coq proof assistant, it can actually run in the logic of the system and therefore be used to542

perform proofs by computations. Indeed, the correctness theorem tells how the result of543

the approximation can be used as a lower/upper bound of the mathematical exponential.544

The specification of the code of Figure 1 and its correctness proof take about 600 lines of545

Coq script;5 Lemma 5 is about 130 lines; extending the proof of Theorem 1 to support546

macro-operations and arrays takes about 500 lines; the tighter bounds on rounding errors547

take about 200 lines. This work was integrated in release 4.10.0 of CoqInterval.548

7.1 Integration to CoqInterval and performances549

As explained in the introduction, the CoqInterval library provides an interval extension550

of exponential that can use the floating-point unit of the processor to speed up proof551

checking [10]. Its implementation, however, is based on a truncated power series, which552

is effective but rather naive, compared with the implementations that can be found in553

mathematical libraries targeting hardware floating-point formats. We have thus plugged our554

verified implementation in place of the original one. Consider the following Coq script.555

556

Goal forall x, 10 <= x <= 11 -> Rabs (exp x - exp x) <= 0x1p-6.557

Proof. intros x Hx. interval with (i_bisect x, i_depth 30). Qed.558
559

It states that, for any real number x between 10 and 11, the difference between exp x560

(mathematical exponential) and itself is less than 2−6. From a mathematical point of view,561

this statement is useless, since it could be trivially proved by rewriting exp x− exp x to zero,562

but it is a good way to exercise the computations performed by CoqInterval. Indeed, the way563

the interval strategy is invoked, it will not try to use anything fancier than naive interval564

arithmetic. As a consequence, because exp x is strongly correlated with itself, the formal565

proof generated by the tactic ends up considering around 6.7 million sub-intervals of the566

input enclosure x ∈ [10; 11] (and as many interval evaluations of exponential).567

Using the original implementation of exponential, this computationally intensive proof568

takes about 160 seconds to be checked by the Coq proof assistant on an Intel 13th-generation569

4GHz processor. With the implementation verified in this work, the proof is checked in less570

than 8 seconds. Taking the average of three runs, the speedup is 20.5×. Since the argument571

reduction of the original implementation is more costly the further away from zero the input572

is, the speedup can grow even larger, up to 24×.573

7.2 Real-life performances574

Being able to perform about one million faithful interval evaluations of exponential per second575

inside the logic of Coq is impressive, but it is nowhere near the actual throughput of the576

floating-point unit of the processor. Indeed, disregarding any concern about the guaranteed577

accuracy of a mathematical library, one should expect a state-of-the-art implementation578

5 https://gitlab.inria.fr/coqinterval/interval/-/blob/master/src/Interval/Float_full_
primfloat.v

https://gitlab.inria.fr/coqinterval/interval/-/blob/master/src/Interval/Float_full_primfloat.v
https://gitlab.inria.fr/coqinterval/interval/-/blob/master/src/Interval/Float_full_primfloat.v
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let fexp x =
if x < -0x1.74385446d71c4p9 then 0. else
if x > 0x1.62e42fefa39efp9 then infinity else
if x <> x then nan else
...
ldexp (p0 +. p0 *. y) (ki asr 6)

Figure 2 Floating-point exponential in OCaml.

to take 25–50 cycles to compute two floating-point approximations of exponential6 (and579

thus one interval enclosure), so about 100× faster than what we currently achieve in the580

logic of Coq. There are several reasons for the remaining gap. First of all, the code of our581

implementation is not directly run by the processor, but interpreted by a virtual machine.582

Second, this bytecode interpreter boxes floating-point numbers, and thus performs a large583

amount of memory allocations. Third, while our code only performs computations on values,584

the interpreter still needs to account for the possibility of open terms (e.g., free variables)585

appearing as operands to the floating-point computations.586

The first issue can be worked around by using the native_compute machinery of the Coq587

system, which compiles the code using the OCaml compiler and then executes it directly [2].588

This machinery also partially avoids the second issue, since the compiler can optimize away589

the boxing of some intermediate floating-point results. But the third issue is still present590

and makes it hard to avoid pessimization in the generated code. As a consequence, this only591

improves proof checking by a factor 3× to 4× for the longer proofs.592

To get a better feel of the actual performances of our implementation, we can instead593

implement the function directly in OCaml, as shown in Figure 2. This is roughly the same594

code as Figure 1, except that the original last three lines, which were computing an enclosure595

of exp x, have been replaced by a single floating-point value: ldexp (p0 +. p0 *. y) (ki596

asr 6). Accordingly, the first few lines return a single value for the exceptional cases. The597

code is run on about 1.5 · 109 inputs uniformly distributed among those that lead to a finite598

output. Compiling the code with OCaml 5.1.1, we get that the floating-point exponential599

from the GNU C Library is about 1.45× faster than our implementation.600

Even if the GNU C Library has been heavily tuned, this is still a rather large gap. Part601

of the reason is its use of the FMA operation. This ternary operation computes ◦(x · y + z)602

at once, which halves the number of operations performed during the argument reduction603

and the polynomial evaluation. Modifying our code accordingly, this reduces its slowdown604

to 1.32×. When translating the code to C and compiling it with GCC, the slowdown is605

brought down to 1.24×. Obviously, using FMAs in place of multiplications and additions606

invalidates the correctness proof, since they do not compute the same values (notice the lack607

of rounding operator around the product). Fortunately, the proof can be easily adapted.608

Indeed, exact operations during the argument reduction are still exact when performed with609

an FMA, and having a more accurate polynomial evaluation only makes the proof simpler.610

Note that, while our framework supports reasoning about the FMA operation, it is not one611

of the native floating-point operations provided by the Coq system, so it cannot be used to612

speed up the implementation of CoqInterval. One would instead have to use larger tables, as613

does the GNU C Library, so as to reduce the degree of the polynomial approximation.614

6 https://core-math.gitlabpages.inria.fr/

https://core-math.gitlabpages.inria.fr/
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7.3 Future works615

First, it should be noted that, while the GNU C Library does not implement correct rounding616

either, it is nonetheless slightly more accurate than our implementation. In about 20% of617

cases, the code of Figure 2 returns a floating-point result that is off by one, while for the618

GNU C Library, the probability is 10−5. In the context of CoqInterval, this hardly matters,619

since we want to compute an enclosure of the mathematical result rather than the nearest620

floating-point number. But for a mathematical library, people might prefer a code that is621

experimentally a bit more accurate to a code whose correctness has been formally verified.622

Most of the inaccuracy comes from the factor p0. There are two ways to improve it, both of623

which require adding a new table along cst. In the first approach, the new table contains624

the error on p0, which can then be reintroduced in the computation. In the second approach,625

the new table tells how to shift the input, such that the error on p0 becomes negligible.626

A natural extension of this work is to convert all the other mathematical functions627

of CoqInterval to use some state-of-the-art implementation when hardware floating-point628

numbers are used as interval bounds. For functions such as log and arctan, our approach629

should work without difficulty, as they are quite similar to exp. For trigonometric functions630

such as sin and cos, the situation is slightly different. First of all, they are not monotone, so631

considering the lower and upper bounds of the input interval separately might be counter-632

productive; it might be better to perform a simultaneous argument reduction on both bounds.633

Second, the Cody-Waite approach to argument reduction does not scale well to extremely634

large inputs, while some other algorithms for argument reduction take advantage of the635

periodicity of the trigonometric functions [12, §11.4].636
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