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Abstract—We formulate a two-stage electricity market involv-
ing conventional and renewable producers strategically bidding in
the day-ahead market to maximize their profits, while anticipat-
ing the market clearing performed by an Independent System
Operator (ISO), as a multi-leader single follower Stackelberg
game. In this game, producers are interpreted as leaders, while
the ISO acts as a follower. To compute an equilibrium, the clas-
sical approach is to cast the Stackelberg game as a Generalized
Nash Game (GNG), replacing the ISO’s optimization problem by
its KKT constraints. To solve this reformulated problem, we can
either rely on the Gauss-Seidel Best-Response method (GS-BR),
or, on the Alternating Direction Method of Multipliers (ADMM).
However, both approaches are implemented in a centralized
setting since they require the existence of a coordinator which
keeps track of the history of agents’ strategies and sequential
updates, or, is responsible for the Lagrange multiplier updates
following the augmented Lagrangian. To allow the agents to
selfishly optimize their utility functions in a decentralized setting,
we introduce a variant of an actor-critic Multi-Agent Deep
Reinforcement Learning (MARL) algorithm with provable con-
vergence. Our algorithm is innovative in that it allows different
levels of coordination among the actors and the critic, thus
capturing different information structures of the Stackelberg
game. We conclude this work by comparing GS-BR and ADMM,
both used as benchmark, to the MARL, on a dataset from
the French electricity market, relying on metrics such as the
efficiency loss and the accuracy of the solution.

I. INTRODUCTION

The study of systems composed of multiple strategic agents,
learning simultaneously, is notoriously difficult – in particular
for a large number of agents and complex environments.
A key topic lies on the identification of conditions for an
equilibrium to exist and on the design of distributed algorithms
to reach it. This problem can be well framed in the setting of
computational game theory, and has been recently applied to
perform efficient market clearing on the day-ahead electricity
market. Multiple techniques have been introduced to solve
the problem, and we can split them into theoretically-driven
approaches and agent-driven simulations, which are those we
are interested in (see [1] for a more complete list of works
in this area). These comprehends approaches that represent
the electricity producers as agents following some sets of
predefined rules, such that there is no explicit need to solve
an optimization problem and it is possible to model the

agents’ behaviour in dynamic settings. The drawback of these
approaches is being limited by the handmade set of rules.
Recently, different Reinforcement Learning (RL) techniques
have been applied (see [2] and references therein for a survey)
to tackle various problems such as the planning of building
energy management systems, hybrid or electric vehicle charg-
ing, economic dispatch problems, clearings and operations of
energy markets [3]. The implementation of RL algorithms to
strategic bidding within auctions is promising, because in these
settings the interactions are complex and usually modelled in
such ways that it is impossible to explicit them in closed form,
furthermore the environment evolves dynamically and can
change very rapidly. The literature in this area can be classified
depending on the number of agents considered, the complexity
of the market structure, the shared information patterns, and
whether renewable sources are considered. In [4, 5, 6], simu-
lations involving multiple conventional producers are studied
under various market designs. Among these articles, only [4]
implements continuous actions and states, while the others
focus on discrete settings. Most articles in the literature
dealing with renewable producers focus on forecasting issues,
storage planning and control. Questions related to equilibrium
seeking in peer-to-peer electricity markets have been recently
considered, e.g. in [7, 8].

A. Main Contributions

We study a market formulated as a multi-leader single-
follower Stackelberg game, which we reformulate as a sin-
gle level non-cooperative game with coupling constraints. In
addition, we introduce a Multi-Agent Reinforcement Learning
(MARL) algorithm with provable convergence, to dynamically
simulate the market with learning energy producers. Finally,
we test our model on real data from the French electricity
market. MARL allows full decentralization of the agents’
decision process, since every producer acts selfishly, maxi-
mizing its own utility function. Furthermore, MARL is easily
adaptable to settings involving different coordination schemes
and information structures.

The paper is organized as follows. In Sec. II, we formulate
the strategic bidding problem as a generalized Stackelberg
game, we analyse it through classical approaches in Sec. III,
while in Sec. IV we introduce the main concepts of Deep
RL and the algorithm we use. Finally in Sec. V numerical979-8-3503-8174-0/24/$31.00 ©2024 IEEE



experiments on the French electricity system illustrate the
results.

II. STRATEGIC BIDDING AS A MULTI LEADER SINGLE
FOLLOWER STACKELBERG GAME

We now formulate our electricity market as a Stackelberg
game, describing the agents, their utility functions and decision
variables.

A. Stackelberg Game Definition
A Stackelberg game involves a hierarchy between players

[9]: a leader acts first and a follower reacts rationally by
computing its best response after observing the leader’s action.
In our settings we are interested in games with multiple
leaders and a single follower. We assume the we have a set
L of L leaders, each leader’s objective function is denoted
fl(xl, x−l, y), ∀l ∈ L, where xl is the decision variable for
leader l, x−l are the other leaders’ decision variables and y
is the decision variable of the follower. A multi-leader single
follower Stackelberg game can be formulated as follows:

min
xl∈Xl

{fl(xl, x−l, y
′)|y′ ∈ argmin

y
g(x, y)}, ∀l ∈ L,

min
y∈Y

{g(x, y)}.

B. Agents

We consider a set of strategic learning-based and non
strategic (static) producers, taking positions on the day-ahead
electricity market by submitting offer curves corresponding
to their forecasts of the power production. The non-strategic
producers always bid at their production costs (also called
marginal costs), while the strategic learning-based producers
can adapt their strategies, learning from the outcome of the
market clearing. The learning producers are made of a mix of
conventional and renewable producers.

a) Conventional Producers: The set of learning-based
producers is I. The decision variable for each producer i ∈ I
is its bid bi ∈ Bi, where Bi := {x ∈ IR+ : ci ≤ x ≤ bmax

i },
and they have two parameters: the marginal cost ci and the
capacity vmax

i . Their objective function is: JC
i (bi, b−i, vi) =

(ci − λ(b)) vi, which is the negative of their profit. λ(b) is the
uniform price of the market, dependent on all bids, vi is the
volume requested to producer i. We can write the problem of
producer i ∈ I as follows:

min
bi

JC
i (bi, b−i, vi),

s.t. bi ∈ Bi.

The set of non strategic conventional producers is J , with
bmax
j = cj , ∀ j ∈ J . Thus, the set of general conventional

producers is denoted O = I ∪ J .
b) Renewable Producers: We define the set of

renewable producers as K. The decision variables are still their
bids, with the same constraints as for the conventional produc-
ers. The main difference is in the parameters: their marginal
cost ck is 0, and their capacity vmax

k is a random variable.
We then modify the objective function to account for these
differences: JR

k (bk, b−k, vk) = (ck − λ(b)) vk + IEϵk [Φ(ϵk)].
ϵk is the imbalance volume for producer k, representing over
or under production of electricity, and Φ(·) is the penalty
function defined by the market operator. The real value of ϵk
is only known after the market has cleared, hence we consider
the expectation of the imbalance penalty. The capacity vmax

k

and the imbalance volume ϵk can be taken directly from
the data, or simulated according to a probability density
function: we can write the observed capacity of producer k
as v̂max

k = vmax
k + ϵk, with vmax

k ∼ Dk(.), Dk(.) obtained
from the data, and ϵk ∼ N (0, σk), σk > 0 being the standard
deviation. The full problem for producer k can then be written
as:

min
bk

JR
k (bk, b−k, vk),

s.t. bk ∈ Bk.

Let N = I ∪ J ∪ K be the set of producers.
c) ISO: The ISO is the single follower in our game,

reacting rationally to the producers’ bids. Its decision variables
are the volumes v, and the parameters for the problem are the
capacities of each producer, the bids and the demand. The
volumes are constrained to be always less or equal to the
capacities:

vn ∈ Vn = {x ∈ IR+ : 0 ≤ x ≤ vmax
n }, ∀n ∈ N .

We also introduce v = (vn)N and its associated feasibility set
V . The ISO’s objective function is:

JISO(v) =
∑
i∈I

bivi +
∑
k∈K

bkvk +
∑
j∈J

cjvj ,

which consists in the total cost to run the market. The goal for
the ISO is to minimize this cost, while satisfying the demand
and respecting the capacities. The complete problem can be
written as:

min
v

JISO(v), (4a)

s.t.: vn ∈ Vn ∀n ∈ N , (4b)∑
n∈N

vn ≥ d (λ). (4c)

The clearing price λ is obtained as the dual variable of the
supply-demand balance constraint in Eq. (4c).

C. Market Formulation as a Stackelberg Game
We can now introduce the Stackelberg game using the

compact formulations introduced in the previous section:

L Conv.: min
bo∈Bo

JC
o (bo, b−o, vo), ∀o ∈ O,

L RES: min
bk∈Bk

JR
k (bk, b−k, vk), ∀k ∈ K,

F ISO: min
v∈V

JISO(v),

s.t.:
∑
n∈N

vn ≥ d, (λ)

where L stand for the leaders (producers) and F for the
follower (ISO).

Proposition 1 (Uniqueness of the ISO Solution). If the bids
are all different, the solution of the ISO problem is unique.

Proof. The proof can be found in Appendix B.

D. KKT Reformulation

Proposition 2 (Slater’s Constraint Qualification). Slater’s
conditions for constraint qualification hold.

Proof. The proof is straightforward and relies on the existence
of large enough capacities for each producer, such that there



exists a solution v∗ checking
∑

n∈N v∗n > d, with 0 < v∗n <
vmax
n , ∀ n ∈ N .

Under Prop. 2, the ISO’s optimization problem (4) can
be replaced by its KKTs, leading to a Generalized Nash
Game (GNG). We assume the bids are affine functions of
the volumes, i.e., b = αv + c, with α, c different for each
producer. Inserting the affine bids in Eq. (4a), and introducing
the notation M = I ∪K for the learning producers, we obtain
the following Lagrangian function for the ISO’s problem:

L(α,v, λ) = [
∑

m∈M(αmvm + cm)vm +
∑

j∈J cjvj ]

− λ
(∑

n∈N vn − d
)
. (6)

III. BENCHMARK ALGORITHMS

Using Eq. (6) we obtain a single level problem for each
producer, so that we can exploit classical optimization algo-
rithms and use the results as benchmarks for the RL approach.
Note that the producers may have different valuations of the
clearing price λ.

A. Best-Response Approach
The first algorithm we implemented is Gauss-Seidel Best

Response (GS-BR) [10]. To apply GS-BR, we relax the
balancing constraint, by introducing a penalty in the producers’
objective functions weighted by the constant M ≥ 0:

min
αi,vi,λi

(ci − λi)vi +M
( ∑

n∈N

vn − d
)2

, (7a)

s.t.: ci ≤ αivi + ci ≤ bmax
i , (7b)

vi ∈ Vi, (7c)∑
m∈M

2vmαm +
∑
n∈N

cn − |N |λi = 0. (7d)

The value of M is tuned from running multiple simulations.

B. ADMM Approach
In order to apply the ADMM algorithm we reformulate the

problem following [11]: since we need a separable problem,
we introduce some tracking variables, so that we can get rid of
the shared coupling between the producers. In particular, we
introduce d̃i = d−

∑
n,n̸=i vn, as a measure of the supply and

demand balance, and πi =
∑

m,m ̸=i 2vmαm, for the coupling
constraint. The new problem is the following:

min
αi,vi,λi

(ci − λi)vi + (vi − d̃i)
2,

s.t.: ci ≤ αivi + ci ≤ bmax
i ,

vi ∈ Vi,

2viαi + πi +
∑
n∈N

cn − |N |λi = 0,

which gives the augmented Lagrangian:

Li(αi, vi, λi) = (ci − λi)vi + (vi − d̃i)
2+

βi(2viαi + πi +
∑
n∈N

cn − |N |λi)+

ρ

2
||2viαi + πi +

∑
n∈N

cn − |N |λi||2,

where β is a Lagrangian multiplier and ρ is the penalty
constant, chosen by hand to obtain a stable problem. We

iteratively update the variables and the multiplier following
the rules from [12].

IV. DEEP RL ALGORITHM

The fundamental idea of RL is to have a model experiencing
an environment previously unknown and learning by interact-
ing with it. This is achieved by defining algorithms that aim
to maximize a reward, while exploring different strategies or
policies, until the optimal is closely approached. RL problems
can be formalized relying on Markov Decision Processes,
which involve a state space S, an action space A and a reward
function r : S×A → IR. We let st ∈ S be the agent’s state and
at ∈ A be its action at time period t. The transition dynamics
in this setting satisfies the Markov property, i.e.:

p(st+1|st, at) = p(st+1|s1, a1, . . . , st, at).
The agent decides what action to take based on its pol-
icy π(st) = at. We let R :=

∑t=∞
t=0 γtrt+1 be the

discounted return over a trajectory defined by a sequence
s1, a1, r1, s2, a2, r2, . . . , with γ ∈ [0; 1] the discount factor.
We can now define the Q-value function: Qπ(st, at) :=
IE[R|st, at, π]. It represents the expected return given a state,
an action and a policy. The aim of an agent is to obtain the
optimal policy, the one maximizing the Q-value function:

Q∗(st, at) := max
π

Qπ(st, at)

The goal of an RL algorithm is then to approximate the
optimal policy through learning. There are many different
techniques to do so, usually divided by whether they can
handle continuous or discrete settings. The simpler algorithms,
such as Q-Learning [13] or SARSA [14], usually can be
studied theoretically, while the more general and complicated
ones, introducing deep neural networks, add a further level of
complexity on the theoretical side.

A. DDPG Algorithm

We consider the DDPG (Deep Deterministic Policy Gradi-
ent) [15] algorithm, that belongs to the class of actor-critic
architectures [16]: these types of algorithms simultaneously
learn the policy and the Q-value function, making it possible to
apply them to a much broader spectrum of problems. The Deep
Deterministic Policy Gradient (DDPG) algorithm employs an
actor πθ(·), where θ represents the network’s parameters, to
specify the current policy, and a critic Qω(·), parameterized by
ω, to represent the Q-value function. In this type of algorithm,
copies of the actor and critic networks are also employed
during training for stability issues, called target networks, we
indicate them with πθ♯ , Qω♯

. The objective function of the
actor is:

Lπ(s) = IEB[Qω(s, πθ(s))],

where B(·) is the replay buffer, which is a collection of past
instances from which a batch of data is sampled and used to
train the network. Through gradient ascent this function is then
maximized. The critic loss function is based on the Bellman’s



equation (MSBE Loss: Mean Squared Bellman’s Equation)
which takes the following form:

LQ(σ) = IED

[(
Qω(s, a)− (r + γQω♯

(s′, πθ♯(s
′)))

)2]
,

where now instead of just sampling s from B(·), we sample
the tuple σ = (s, a, r, s′), with s′ and r being the state and
reward resulting from taking action a when observing state s.

B. Stackelberg DDPG and Proof of Convergence
We now briefly introduce the first modified version of the

DDPG algorithm, as proposed in [17]. The idea is to identify a
Stackelberg game between the actor and the critic, in order to
exploit the added information when computing the gradients
to update the neural networks. Notice that the game between
the actor and the critic is a different game than the one of the
producers, as it is depicted in Fig. 1. Let xa ∈ IR, xc ∈ IR be
the decision variables of the actor-leader and critic-follower
respectively, then we can define the cost function fa(xa, xc)
and fc(xa, xc). We can write the best response of the follower
as x∗

c(xa) := argminy fc(xa, y), and using this we obtain the
full gradient of the cost function for the leader (using the
implicit function theorem):

∇fa(x) = ∇afa(x)−
(
(∇2

cf2(x))
−1∇cafc(x)

)⊤ ∇cfa(x), (10)

where x = (xa, x
∗
c(xa)). Using Eq. (10) as the update rule

for the DDPG algorithm, it is possible to prove the convergence
towards an equilibrium x∗ = (x∗

a, x
∗
c) in the single agent case

(we refer to the original work [17] for further details). The
proof of [17] does not extend straightforwardly to a multi-
agent setting, due to the coupling between agents. We propose
two ways to extend the work to multi-agent settings: first, it
is possible to uncouple the agents passing to each of them
a state independent of the other agents’ actions (such as the
demand); the second approach is to change the architecture in
such a way that the coupling is no longer a problem. The first
approach limits the information that the producers can access,
thus we focus on the latter which is more general.

Consider the set of players defined by one actor and multiple
critics (a, c1, . . . , cn), with decision variables xa ∈ IR, xci ∈
IR, ∀ i = 1, . . . , n. We define the objective functions
(Fa, fc1 , . . . , fcn) for the actor and the critics respectively,
with Fa, fci ∈ Cq(IR, IR), q ≥ 2, i ∈ J1, nK. The strategy
update of the actor and the critics is controlled by a parameter
γ called learning rate, that has to satisfy: γa = o(γci), ∀ i =
1, . . . , n. Let x∗ := (x∗

a,x
∗
c) be an equilibrium of the actor-

critics game.

Theorem 1. There exists a neighborhood U of x∗ s.t. for any
x0 ∈ U , xt converges almost surely to x∗ as t → +∞.

Proof. The proof is a direct generalization of [17].

V. SIMULATION SETTINGS AND EXPERIMENTS

We now introduce the settings of our experiments. In the
following sections, we refer to the modified DDPG algorithm as
mDDPG, to our version as SAMC and to the case of uncoupled
producers as IND, also BR and ADMM represent GS-BR and
ADMM algorithm respectively.

Critic NCritic 1

ISO

Producer 
N

Actor

 Actor-Critics Game

Producer 
1

Producers-ISO Game

Fig. 1. Schematic representation of Stackelberg DDPG algorithm

A. Data

To run the simulation and train the agents we use data from
the French electricity market, for the period between 2020 and
2023 [18].

B. Results

The benchmark and the RL algorithm operate on different
time frames: the ADMM and best-response approaches com-
pute an equilibrium at each time step, while the RL algorithm
converges towards an equilibrium in a finite number of time
steps. This means that at each step, the RL simulation may
not be at equilibrium. Another key difference is that in both
classical reformulations, each producer computes its own price
λi, which may not to be the same across all the agents.
Furthermore, in the RL simulation we have two learning agents
(producer 0 and 1) and three static ones, as for the benchmark:
only two agents can change their bids; the others are fixed.
In the discussion following, we will only compare the data
obtained from these two agents. We will compare the methods
in two ways: first we aim to compare the profits of the different
producers, then we will insert the data from the RL simulation
into the constraints obtained by the KKT reformulation. Re-
garding the profits, we compare the data obtained from the last
20000 steps of the RL simulation (10 epochs, each consisting
of 2000 steps) with a simulation of equivalent length using
the classical algorithms. We choose this length empirically
such that it allows spanning the demand data multiple times,
so that we can compute meaningful averaged quantities. We
report in Tab. I and Tab. II the profits of the two learning
agents and the cost to run the market respectively. In RL,
each producer has no access to any information regarding the
other producers, in contrast with the BR and ADMM approach,
where each producer needs access to the decision variables
of the rest of the producers. From Tab. I we can see that all
the methods generate higher profits than no learning, with the
ADMM algorithm giving rise to the highest average profits. On
the other hand, ADMM and BR are also associated with more
volatile results. Between the RL algorithms, mDDPG and SAMC
generate the two best results for producer 0, and mDDPG also
achieves the highest profit for producer 1. Looking at the total
cost for the market in Tab. II, we observe that ADMM generates
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Fig. 2. Moving average of the strategies of the two learning producers in three
different cases: the standard algorithm DDPG, the modified version mDDPG and
our modified architecture SAMC. One epoch consists of

the highest average cost, while between the RL algorithms
mDDPG has the highest cost. It is interesting to notice that
SAMC has the same costs as DDPG and IND, while achieving
similar profits for producer 1 and much higher profits for
producer 0.

TABLE I
AVERAGE PROFITS OF AGENTS 0 AND 1 FOR A 10 EPOCHS PERIOD

Algorithm Profit Ag 0 Profit Ag 1

DDPG (0.5± 0.1) · 102 (28± 1.2) · 102
mDDPG (6± 6) · 102 (32± 15) · 102
SAMC (4± 2) · 102 (23± 3) · 102
IND (0.6± 0.2) · 102 (30± 3) · 102

No Learning 0 1.36 · 102
BR (0.4± 2) · 102 (24± 42) · 102
ADMM (30± 30) · 102 (60± 36) · 102

TABLE II
AVERAGE COST TO RUN THE MARKET FOR A PERIOD OF 10 EPOCHS

Algorithm Total Cost

DDPG 29 · 103
mDDPG 38 · 103
SAMC 30 · 103
IND 30 · 103

No Learning 11 · 103
BR 36 · 103
ADMM 47 · 103

In Fig. 2 we highlight the stability differences between the
different RL algorithms. The results for SAMC are particularly
interesting, since it captures the dynamic nature of the environ-
ment similarly to mDDPG, while being more stable throughout
all the simulations we ran.

In Fig. 3a, we compare the price obtained by the RL
simulation with the one obtained by inserting the volume
and bids from the simulation into Eq. (7d) (and assuming
all λi are equal). The plot highest variability corresponds
to epochs where the learning producers volume is activated.
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Fig. 3. In Fig. 3a we compare the price computed dynamically in the
simulation (labeled RL) and the one obtained by inserting the results of the
simulation in Eq. (7d) (labeled KKT), while in Fig. 3b we compare the bids
and volumes between algorithms.

The data reflects that affine bids do not capture well the
complex behaviour of the learning algorithm, as well as the
fact that there is no guarantee of uniqueness of equilibrium.
Lastly, in Fig. 3b, we compare the volumes and bid from the
RL simulation, the best response algorithm and the ADMM
algorithm. We averaged the absolute differences for the two
learning agents over a number of steps such that the demand
data would be passed through once, and for the RL algorithm,
we took the data from the end part of the simulation. The
different algorithms may compute different equilibria, since
we have no guarantee of uniqueness of the market equilibrium.
From the data we can see that the results of BR and RL are
more similar for the volumes, while we observe differences in
the bids. This clearly highlights that different market equilibria
can be reached relying on GS-BR, ADMM, and variants of RL.
In an extension, we may combine these algorithms to enable
an automatic spanning of the set of mixed market equilibria.

VI. CONCLUSIONS AND FUTURE DEVELOPMENTS

In this work we presented a simple but still relevant model
for the problem of strategic bidding in the electricity market
with multiple producers, involving learning agents strategi-
cally bidding in the day-ahead market and static agents. To
compute market equilibria, we rely on classical best-response
and consensus variant algorithms (namely Gauss-Seidel Best
Response and ADMM), while comparing them with a Deep
RL based dynamic simulation which aim to learn a market
equilibrium. On the algorithmic side, we extend results from
the literature to prove the MARL algorithm convergence to a
market equilibrium. This work is an important step towards the
more systematic use of theoretically-backed Machine Learn-
ing algorithms in real world applications, such as electricity
markets.

Next developments will involve studying the scalability of
the algorithms by considering a larger number of learning
agents and the automatic spanning of the set of equilibria.
From the policy-side, we aim to apply MARL approaches to
propose innovative designs for the ancillary markets, which are
currently rather immature markets, involving a limited number
of strategic – possibly bounded rational – stakeholders.
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A. Uniqueness of ISO solution

The ISO problem has the following properties:

• the objective function is linear in the decision variables
• we assume the feasibility set is nonempty (this just

amounts to assume;
∑

o∈O vmax
o +

∑
k∈K vmax

k ≥ d
• the feasibility set is closed convex (which can be trivially

proved using the definition of convex set).

Given these properties we can conclude that the problem has a
unique optimal value, but may have multiple optimal solutions.
We can easily see this in the case of multiple producers
proposing the same bid: for the ISO it is equivalent requesting
volume from all of them, obtaining different solutions with the
same optimal cost.

B. Proof of Proposition 1

Let {bi}i∈[0,n] be the agents’ bids and {xi}i∈[0,n] be the
agents’ volumes. Assume bi ̸= bj ∀i, j. We can order the
volumes by bid in increasing order, which means that i <
j =⇒ bi < bj . Then, the optimal solution can be built as
follows:

x0 = min{vmax
0 , d}

x1 = min{vmax
1 ,min{0, d− x0}}

...

xn = min{vmax
n ,min{0, d−

n−1∑
i=0

xi}}.

We indicate by m the index of the last volume which is
different from 0, m ∈ J0, nK, so that the total cost is∑m

i=0 bixi. Now, assume there is a different solution with
lower or equal price, i.e.,

∑m′

i=0 bix
′
i ≤

∑m
i=0 bixi. Note that

m′ > m by construction. Let ∆xi := xi − x′
i. We can write:

m∑
i=0

bi(x
′
i − xi) +

m′∑
j=m+1

bjx
′
j ≤ 0,

m′∑
j=m+1

bjx
′
j ≤

m∑
i=0

bi(xi − x′
i) =

m∑
i=0

bi∆xi.

Note that we have bj > bi, ∀ (i ∈ J0,mK, j ∈ Jm + 1,m′K).
Define b̃0 = b0. We can write bl = b̃0 + b̃0l , where b̃00 = 0.
Replacing the bids with this new formulation we get:

m′∑
j=m+1

(b̃0 + b̃0j )x
′
j ≤

m∑
i=0

(b̃0 + b̃0i )∆xi,

which can be rewritten as:

b̃0
m′∑

j=m+1

x′
j +

m′∑
j=m+1

b̃0jx
′
j ≤ b̃0

m∑
i=0

∆xi +

m∑
i=0

b̃0i∆xi.

Given that the total demand is fixed we obtain:
∑m′

j=m+1 x
′
j =∑m

i=0 ∆xi, and we already mentioned that b̃00 = 0, so we

finally obtain:
m′∑

j=m+1

b̃0jx
′
j ≤

m∑
i=1

b̃0i∆xi,

where the sum on the right-hand side of the inequality starts
from 1. At the next step, we can define b̃1 = b̃01, so that
b̃0l = b̃1 + b̃1l and b̃11 = 0. By repeating the process until step
m, we will eliminate every term from the right-hand side sum,
thus obtaining as last step b̃m−1

j = b̃m + b∗j :

m′∑
j=m+1

b∗jx
′
j ≤ 0,

which is a contradiction.


