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A B S T R A C T

Lumped mass models have been studied in depth to unveil the complex nonlinear physics of phonation. Even in
the case of simple symmetric models, slight changes in muscle restoring forces or excessive subglottal pressure
can cause abnormal or even chaotic vocal fold oscillations. In a recent work, it was shown that it was possible
to device a theoretical pacemaker for phonation that could render the chaotic motion regular again. This
consisted of attaching an additional mass–spring–damper system to the vocal fold model, the damping of
which could be adjusted according to an altering energy chaos control strategy. The chaos of phonation is
low-dimensional and one may wonder whether it has a profound effect in voice production and, if so, whether
the proposed phonation pacemaker could compensate for it. For this purpose, we compute the time evolution
of the glottal volume velocity generated by normal, chaotic and controlled oscillations of the vocal folds and
convolve it with the impulse response of magnetic resonance imaging (MRI) geometries of the human vocal
tract, corresponding to the vowels /A/, /i/ and /u/. The impulse response for each vowel is obtained from
the solution of the wave equation by the finite element method, when a Gaussian pulse is prescribed as a
boundary condition in the glottis of the vocal tract. It will be demonstrated that the chaotic vibration of the
vocal folds severely distorts the vowel sounds and that the proposed control strategy is able to recover with
high quality the vowels produced in normal phonation. Audiovisual files are provided to support the objective
results of the phenomena in terms of spectral and time analysis of the train of glottal pulses generated by the
vocal folds and the produced vowel sounds.
1. Introduction

Phonation is the highly nonlinear process by which self-oscillations
of the vocal folds result in the generation of a glottal volume velocity
in the form of a train of glottal pulses. This acts as a source of acoustic
waves that propagate through the vocal tract (VT) and are emitted out-
ward from the mouth as a voiced sound. The fluid–structure interaction
mechanism that triggers and maintains vocal fold (VF) self-oscillations
is described, in general terms, by the myoelastic aerodynamic theory
of phonation [1,2]. Since its formulation many decades ago, much
work has been done to better understand intricacies of the physics
that governs it. Research has involved from the development of low-
dimensional lumped mass models [3–7] to complex computational
models [8–12] and to experiments on mechanical replicas [13–16].

Healthy phonation is characterized by regular self-oscillations of
the VFs, which produce a glottal volume velocity that is driven by a
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fundamental frequency, its harmonics and some randomness noise. This
signal is often said to be quasi-periodic, not in the sense of a dynamical
system governed by incommensurable frequencies, but by being suffi-
ciently regular in a loose sense. In most voice pathologies this regular
motion of the VFs becomes disturbed. For example, unilateral paralysis
and lesions due to nodules, polyps or cysts induce an asymmetry in
the VFS that may cause them to vibrate chaotically rather than quasi-
periodically. In Parkinson’s disease and in paresis the VFs can remain
symmetric but their physical parameters (e.g., stiffness) change in such
a way that the VFs motion can become also chaotic instead of regular.

Studying the physics of pathological voice is very challenging. As
for computational models, and despite some attempts [17,18], they
are very costly and there is still a long way to go even to perform
complete simulations of healthy phonation [12]. Attempts have also
been made to reproduce voice disorders with mechanical replicas for
960-0779/© 2024 Elsevier Ltd. All rights reserved.
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left and right VF asymmetries that represent, for example, a unilateral
paralysis [19,20]. However, it was not until very recently that synthetic
VFs with inclusions emulating a polyp have been characterized [21,22]
and their chaotic motion experimentally measured [23]. In view of the
difficulties and cost of performing complex fluid–structure interaction
simulations and delicate mechanical replica experiments, lumped mass
models of the VFs remain a powerful tool for investigating the physics
of unhealthy phonation and possible remedies. Probably, the most
celebrated VF models are the two-mass model of Ishizaka and Flana-
gan [3] and the cover-layer model (three masses) of Story and Titze [5].
Both have been used to understand the transition from quasi-periodic
to chaotic motion for VFs with asymmetric parameter values [24],
symmetric VFs with abnormal stiffness values to investigate aspects
of Parkinson’s disease like vocal tremor [25,26] and VFs with polyps
[27,28]. Unfortunately, although the physics of voice disorders are
fairly well explained, there are not many options to remedy them.

In a recent work [29], a symmetric two-mass model was used to
explore the idea of designing a VF pacemaker to regulate the aperiodic
and/or chaotic motion of VFs. The pacemaker consisted of a patch
of an ideal smart material glued to the VFs whose parameters could
be dynamically adjusted as the VF vibrated. In the lumped mass-
model, it was represented by an additional mass attached to the VFs
whose damping or stiffness could be rapidly modified according to a
chaos control strategy. In particular, the altering energy control method
was used [30,31], which previously proved to be very useful for the
classical Van der Pol and Duffing non-linear oscillators, as well as for
problems involving collisions [32]. The results were very encouraging
in the sense that regular phonation could be restored, but no link was
established with respect to the efficiency of the pacemaker in relation
to the generation of voiced sounds. In fact, this is the main purpose of
the pacemaker and therefore the aim of this work.

Our goal and contribution in this paper is to analyze whether
the theoretical pacemaker in [29] could have a significant impact
on voice generation. For this purpose, we produce numerical vowels
/A/, /i/ and /u/ with the finite element method (FEM) using regular,
chaotic and pacemaker-controlled glottal volume velocities obtained
from a lumped mass model of the VFs. It is worth noting that many
voice disorders can be detected by analyzing the acoustics of sustained
vowels sounds [33,34]. To generate the train of glottal pulses we
consider a slightly improved model over that of [29], which takes
into account cubic muscle restoring forces for the VFs, the mass and
stiffness of the pacemaker and the option to include or not vibrato.
Vibrato is a voice/musical effect consisting in a pulsating change of
the pitch. Here, it is simulated by introducing time variations in the
stiffness of the lower masses of the VF model, which poses more
challenges to the chaos controlling mechanism. More physical-based
options for simulating vibrato can be found in [35,36]. The cases of
regular (healthy) phonation and chaotic (unhealthy) phonation, due
to an excessive value of the coupling stiffness between the upper and
lower masses of the VFs are investigated, with and without vibrato.
The chaos control strategy is applied to the unhealthy situations and
its performance is inspected. Bifurcation and phase state plots for the
motion of the VF masses are provided. Special emphasis is then placed
on our variable of interest, the glottal volume velocity, for which time-
delay coordinate plots and spectra are presented. The glottal volume
velocity is used as the acoustic source term to produce vowel sounds.
Realistic three-dimensional magnetic resonance imaging (MRI) geome-
tries of the vocal tracts (VTs) corresponding to vowels /A/, /i/ and
/u/ [37] are considered and their impulse response is computed solving
the wave equation for a Gaussian pulse excitation at the glottis, using
an in-house FEM code as in [38,39] (see also [40]). The regular, chaotic
and controlled glottal volume velocities, including or not vibrato, are
convolved with the VT impulse response of each vowel to obtain
2

the corresponding acoustic pressure. The acoustic power spectrum,
time evolution and spectrogram for /A/, /i/ and /u/ are provided to
show the potential of the theoretical pacemaker to improve the vowel
sounds generated by unhealthy phonation. Supplementary material
consisting of audiovisual files to listen to the generated sounds is also
made available.

The paper is organized as follows. Section 2 deals with theory
and modeling. First, it presents the non-linear two mass model of
the VFs and details its particularities (Section 2.1). The implemented
chaos control strategy is described in Section 2.2, while the procedure
for computing the VT impulse response and the acoustic pressure
for each vowel is provided in Section 2.3. Section 3 is devoted to
numerical simulations and discussion of the results. Section 3.1 presents
the numerical strategy to solve all the involved equations, while Sec-
tion 3.2 analyzes regular, chaotic and controlled phonation. Vowel
production is addressed in Section 3.2. Conclusions close the article in
Section 4.

2. Modeling of the vocal folds and vocal tract to generate vowels

2.1. Nonlinear two-mass model of the vocal folds

In this section, we present the two-mass models to be used in
our simulations of VF vibrations. As seen in Fig. 1, three cases are
considered. The first one (Fig. 1a) corresponds to healthy phonation
and is basically described by the model in [24,25] with some mod-
ifications detailed below. The left VFs are represented by an upper
and a lower mass, with values 𝑚1𝑙 and 𝑚2𝑙, which are connected to
rigid laryngeal walls by dampers with damping values 𝑟𝑖𝑙, 𝑖 = 1, 2,
nd springs of stiffness 𝑘𝑖𝑙, 𝑖 = 1, 2. The dampers 𝑟𝑖𝑙 account for the
ass stickiness when the surfaces of the left and right vocal folds

ontact, while 𝑘𝑖𝑙 determines the tension of the vocal folds mostly
egulated by the contraction of the anterior cricothyroid muscle. The
elative motion between the upper and lower masses determines the
ucosal wave. This relative motion is limited by the flexural stiffness

n the lateral direction of the VFs, characterized by 𝑘𝑐𝑙. More details
n the physiological meaning of the model parameters are provided
n [3,24,25]. The two-mass model system is driven by the glottal
irflow emanating from the lungs, which obeys the Bernoulli equation.
hen the VFs are closed, the subglottal pressure increases until it

eaches a threshold value that opens them. Then, the pressure drops
nd the muscle restoring forces close the VFs. The subglottal pressure
ncreases again and the process repeats, resulting in VF self-oscillations
nd the establishment of regular phonation.

In the second case (Fig. 1b), we simply modify the stiffness 𝑘𝑐𝑙 of
he spring connecting the two masses to a new value that transitions
he motion of the VF from regular to chaotic, beyond a given subglottal
ressure [25]. Finally, in the third case (Fig. 1c) we attach a phonation
acemaker to the lower VF mass [29]. The pacemaker consists of a
mall mass–spring–damper resonator with values 𝑚𝑠𝑚, 𝑘𝑠𝑚 and 𝑟𝑠𝑚 and
s assumed to be made of an ideal smart material such that 𝑟𝑠𝑚 could
e tuned on demand to make the VFs motion regular again. It should
e noted that the two-mass model in this paper has some variations
rom the previous one in [29]. This time we do not neglect the values
f the mass, 𝑚𝑠𝑚, and stiffness, 𝑘𝑠𝑚, of the pacemaker versus 𝑚1𝑙 and
1𝑙. In addition, we assume a cubic restoring force for mass springs, 𝑘1𝑙
nd 𝑘2𝑙, which better represents the behavior of the vocal fold tissue,
s done in [3]. Vibrato [36] is approximated in the model by letting 𝑘1𝑙

vary with time. This introduces a slight oscillation in the fundamental
frequency of the train of glottal pulses, which helps to generate more
natural vowel sounds.

Let us now present the ODE system governing the dynamics of the
two-mass model of Fig. 1c (those of Fig. 1a and b are easily obtained
by introducing some simplifications to it, see below). Following [3,24,
25,29], we apply Newton’s second law to the upper and lower masses

of the VFs and treating their velocities, 𝑣1𝑙 = 𝑥̇1𝑙 and 𝑣2𝑙 = 𝑥̇2𝑙, as
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Fig. 1. Sketch of a symmetric two-mass model of the vocal folds (VFs) driven by the glottal airflow from the trachea to the vocal tract. (a) All model parameters have appropriate
values leading to healthy, regular phonation. (b) The contact stiffness between the masses, 𝑘𝑐𝑙 (red color), is higher than normal, resulting in chaotic VF oscillations and abnormal
phonation beyond a given subglottal pressure. (c) A phonation pacemaker consisting of a mass–spring–damper resonator (blue color) is attached to the lower mass and its damping
is controlled to transition from chaotic VF vibrations to regular ones. The dynamics of these models are described by Eq. (1). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
independent variables, it can be shown that the dynamics of the current
VF model is governed by the non-linear matrix system,
(

𝒗̇

𝒙̇

)

=

(

−𝐌−1𝐂(𝑡,𝒑) −𝐌−1(𝐊(𝑡,𝒙) +Θ(𝒙))

𝐈 𝟎

)(

𝒗

𝒙

)

+

(

𝐌−1𝒇𝒗(𝒙)

𝟎

)

,

(1)

with 𝒙 = (𝑥1𝑙 , 𝑥2𝑙)⊤ and 𝒗 = (𝑣1𝑙 , 𝑣2𝑙)⊤ respectively standing for the
mass displacement and velocity vectors. Note that the pacemaker mass
is glued to 𝑚1𝑙 so it will have its displacement and velocity. The force
vector 𝒇𝒗 in Eq. (1) has the expression 𝒇𝒗 = (𝑃1𝐿𝑑1𝑙 , 0)⊤, where 𝐿 is
the glottis length, 𝑑1𝑙 the thickness of 𝑚1𝑙 and 𝑃1 the glottal pressure,

𝑃1 = 𝑃𝑠

[

1 − 𝛩(𝑎min)
(

𝑎min
𝑎1

)2
]

𝛩(𝑎1). (2)

In Eq. (2), 𝑃𝑠 denotes the subglottal pressure and 𝑎min = 𝑎1 for 𝑥1𝑙 < 𝑥2𝑙
while 𝑎min = 𝑎2 for 𝑥2𝑙 ≤ 𝑥1𝑙. Variables 𝑎𝑖 = 𝑎0𝑖 + 2𝐿𝑥𝑖𝑙 (𝑖 = 1, 2) are
the lower and upper glottal areas with 𝑎0𝑖 = 2𝐿𝑥0𝑖𝑙 (𝑖 = 1, 2) being the
lower and upper glottal rest areas. 𝑥0𝑖𝑙 designates the distance from 𝑚𝑖𝑙
to the midline in the rest position. 𝛩(𝑧) is the collision function given
by 𝛩(𝑧) = tanh(50𝑧∕𝑧0) if 𝑧 > 0 and 𝛩(𝑧) = 0 f 𝑧 ≤ 0. 𝑧0 is taken as 𝑎01
in the calculations.

As for the block matrix of Eq. (1), its second row contains the
identity matrix 𝐈 and the zero matrix 𝟎, while in the first row we
identify the mass matrix 𝐌, the damping matrix 𝐂, the stiffness matrix
𝐊 and the collision matrix Θ. Note that the damping matrix explicitly
depends on time and on a vector of variables and parameters 𝒑 that
will be determined by the chaos control strategy. The stiffness matrix
𝐊 also exhibits explicit dependence on time, as well as on the displace-
ment vector 𝒙. The collision matrix also varies with 𝒙. The detailed
expressions of these matrices are,

𝐌 = 𝐌VF +𝐌P = diag(𝑚1𝑙 , 𝑚2𝑙) + diag(𝑚𝑠𝑚, 0), (3a)

𝐂 = 𝐂VF + 𝐂P = diag(𝑟1𝑙 , 𝑟2𝑙) + diag(𝑟𝑠𝑚(𝑡,𝒑), 0), (3b)

𝐊 = 𝐊VF +𝐊P =

(

𝑘̃1𝑙 + 𝑘𝑐𝑙 −𝑘𝑐𝑙
−𝑘𝑐𝑙 𝑘̃2𝑙 + 𝑘𝑐𝑙

)

+

(

𝑘𝑠𝑚 0

0 0

)

, (3c)

Θ = diag
(

𝛩(−𝑎1)𝑐1𝑙

[

𝑎01
2𝐿𝑥1𝑙

+ 1
]

, 𝛩(−𝑎2)𝑐2𝑙

[

𝑎02
2𝐿𝑥2𝑙

+ 1
])

. (3d)

As seen, we have split the mass, damping and stiffness matrices into
a component arising from the standard two-mass VF model (matrices
3

with subscript VF) and a component coming from the phonation pace-
maker (subscript P). As mentioned above, the mass and stiffness of the
pacemaker, 𝑚𝑠𝑚 and 𝑘𝑠𝑚, are now taken into account in the model.
However, they will play a passive role in this work because the control
of chaos will be exerted by the damping term 𝑟𝑠𝑚(𝒑, 𝑡) in 𝐂P, as will be
explained in next subsection. Regarding the VF stiffness matrix, 𝐊VF,
its lower mass element is 𝑘̃1𝑙 = 𝑘1𝑙𝑇𝑘1𝑙 (𝑡)𝑋𝑘1𝑙 (𝑥1𝑙). The time dependent
function,

𝑇𝑘1𝑙 (𝑡) = 10𝐴𝑣 sin(𝜔𝑣𝑡∕1000) (4)

allows us to approximately simulate a vibrato with amplitude 𝐴𝑣 and
modulating frequency 𝑓𝑣 (𝜔𝑣 = 2𝜋𝑓𝑣). Note that we do not claim here
that this modification of 𝑘̃1𝑙 induces a vibrato based on realistic physical
grounds, as in [35], but it leads to similar effects, as will be shown
in the spectrograms of Section 3.3.2 (see [36]) and perceived in the
audios of the supplementary material. On the other hand, the function
depending on space

𝑋𝑘1𝑙 (𝑥1𝑙) = (1 + 𝜂𝑘𝑥
2
1𝑙) (5)

accounts for the nonlinearity of the muscle restoring force, charac-
terized by the coefficient 𝜂𝑘. As for the upper mass spring, we take
𝑘̃2𝑙 = 𝑘2𝑙(1 + 𝜂𝑘𝑥22𝑙). Lastly, the values 𝑐𝑖𝑙, 𝑖 = 1, 2, in Θ are additional
spring constants during collision.

As observed in Eqs. (1)–(3), nonlinearity enters the two-mass model
through matrices 𝐊, Θ, and the external vector 𝒇𝒗. The solution to
Eq. (1) gives the displacements and velocities of the masses in the
chaos-controlled system of Fig. 1c. The parameters to be used for the
numerical simulations in Section 3 are presented in Table 1. To obtain
the solution for the chaotic and regular systems in Fig. 1b and a,
respectively, we simply need to set 𝑚𝑠𝑚 = 𝑘𝑠𝑚 = 𝑟𝑠𝑚(𝒑, 𝑡) = 0 in Eqs. (1)–
(3). The parameters in Table 1 then become those in [3,24,25] (if
vibrato is also removed, i.e., 𝐴𝑣 = 0). Note that for the chaotic motion
of the system in Fig. 1b we need to take 𝑘𝑐𝑙 = 0.09 gms−2, while for
regular oscillations of the system in Fig. 1a we set 𝑘𝑐𝑙 = 0.025 gms−2
(see Table 1 and [25]).

To conclude this section, let us point out that the solution of the
system Eq. (1) will provide us with the displacements and velocities
of the upper and lower masses of the VF model. However, for the
generation of vowel sounds, our variable of maximum interest is the
glottal flux that is characterized by its volume velocity,

𝑈𝑎 =
(

2𝑃𝑠
)1∕2

𝑎min𝛩(𝑎min), (6)

𝜌0
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Table 1
Physical and geometrical parameters of the VFs (see [3,24,25] for the models without
chaos control).

Physical parameters Geometrical parameters

𝑚1𝑙 = 0.125 g 𝑑1𝑙 = 0.25 cm
𝑚2𝑙 = 0.025 g 𝑑2𝑙 = 0.05 cm
𝑟1𝑙 = 0.02 g ms−1 𝐿 = 1.4 cm
𝑟2𝑙 = 0.01 g ms−1 𝑎01 = 0.05 cm2

𝑘1𝑙 = 0.08 gms−2 𝑎02 = 0.05 cm2

𝑘2𝑙 = 0.008 gms−2

𝑘𝑐𝑙 = 0.025 gms−2 (regular)
𝑘𝑐𝑙 = 0.09 gms−2 (chaos)
𝑐1𝑙 = 3𝑘1𝑙 gms−2

𝑐2𝑙 = 3𝑘2𝑙 gms−2

𝑚𝑠𝑚 = 0.0125 g
𝑘𝑠𝑚 = 0.008 gms−2

𝑟0𝑠𝑚 = 0.002 g ms−1

𝜂𝑘 = 0.15 cm−2

𝜌0 = 0.00114 g cm−3

𝑐0 = 35 cmms−1

𝐴𝑣 = 0.03
𝑓𝑣 = 5 Hz

which can be calculated from the solution of the ODE system at each
time step. 𝜌0 is the air density and the subscript 𝑎 = reg, cha, con is used
n the following to indicate the regime of the glottal volume velocity.
𝑎 becomes the source of the acoustic waves in the vocal tract and in
ection 2.3 below we will show how to generate vowels using it.

.2. Chaos control strategy using time-varying damping in the phonation
acemaker

The chaos control strategy for the VF phonation pacemaker is based
n the altering energy method proposed in [30–32]. In short, the idea
ehind this method is to apply an external control force, 𝒇 𝑐 (𝑡,𝒑), to
he system (e.g., a set of nonlinear oscillators), such that the power
⊤𝒇 𝑐 (𝑡,𝒑) is strictly positive or negative. This changes the mechanical
nergy of the system to a new value where its motion is no longer
haotic, but regular. As explained in [29], an external force could
ardly be applied to the VFs in practice, so it was proposed to replace it
y an internal one, exerted by an ideal smart material (blue resonator
n Fig. 1c) whose parameters can be modified as required. The altering
nergy approach for the current two-mass model of the VFs can be
nderstood as follows.

The mechanical energy of the VF model is given by

= 1
2
𝒗⊤𝐌𝒗 + 1

2
𝒙⊤𝐊(𝑡,𝒙)𝒙, (7)

nd its derivative with respect to time by,

̇ = 𝒗⊤ (𝐌𝒗̇ +𝐊𝒙) + 1
2
𝒗⊤ 𝑑𝐊

𝑑𝒙
|𝒙|2 + 1

2
𝒙⊤𝐊̇𝒙 (8)

here we have used that 𝐊 is symmetric and that it depends explicitly
n time and the displacement vector. Using the first row of Eq. (1) to
earrange the first term in the l.h.s of Eq. (8), and taking into account
hat all block matrices of Eq. (3) are symmetric and the split of the
amping matrix into 𝐂 = 𝐂VF + 𝐂P, we obtain

̇ = 𝒗⊤
[

−𝐂VF𝒗 −Θ(𝒙)𝒙 + 𝒇𝒗(𝒙) +
1
2
𝑑𝐊
𝑑𝒙

|𝒙|2 + 𝐂P(𝑡,𝒑)𝒗
]

+ 1
2
𝒙⊤𝐊̇𝒙. (9)

Here, the internal power injected or removed by the pacemaker,
𝒗⊤𝐂P(𝑡,𝒑)𝒗 plays the role of the external control power 𝒗⊤𝒇 𝑐 (𝑡,𝒑)
in the standard altering energy method of chaos control. Comparing
Eq. (9) with Eq. (9) in [29] new terms can be identified because of
the dependence of the stiffness matrix on 𝑡 and 𝒙 in the current model.
Nonetheless, we will see that the same rules for damping control intro-
duced in [29] also work for this case. In particular, several strategies
were followed in [29]: damping control by attaching the pacemaker
to the upper or lower VF masses, stiffness control by modifying 𝑘𝑠𝑚
and even a feedback time damping control strategy based on volume
4

velocity to cope with non-constant subglottal pressure situations. The
later need not be considered for vowel generation, and of all the control
options tested, the most reasonable one turns out to be to glue the
pacemaker resonator to the lower mass and dynamically adjust its
damping.

Therefore, our choice in this paper is simply to take 𝑟𝑠𝑚(𝒑, 𝑡) in 𝐂P
to be

𝑟𝑠𝑚(𝒑, 𝑡) = 𝑟0𝑠𝑚 sgn(𝑣1𝑙) (10)

where sgn stands for the sign operator and |

|

|

𝑟0𝑠𝑚
|

|

|

≪ |

|

𝑟1𝑙||. Then, the
variables and parameters in 𝒑 are simply the amplitude constant 𝑟0𝑠𝑚
and the velocity of the lower mass 𝑣1𝑙.

Before going any further, a few words should be said about the
possibility of manufacturing a real phonation pacemaker. Although the
aim of the original work in [29] and the current one is to explore the
potential of such a device using low-dimensional theoretical models
of phonation, the idea of designing a biocompatible smart material
that meets the requirements needed for a real phonation pacemaker
is, in principle, feasible. The pacemaker would consist of a patch of
a smart material plus a sensor to capture the vocal fold oscillations,
a processor to calculate the signal to be applied to the material and
an actuator to do so. The stimulation of the material will change
its mechanical properties (e.g., its viscoelasticity). The stimulus could
be either stress (typically up to 10 kPa during vocal cord collision),
deformation (typically on the order of a millimeter) or an electrical
pulse. Most likely, surgery would be required to implant the pacemaker
into the damaged vocal cord tissue. As for the responsive material,
different options could be considered. Among them, reasonable ones
are those based on engineering electroactivated thermoplastic biomed-
ical silicone elastomers (EA-TPE) [41], dielectric silicone elastomers
(DE) [42–45], combined or not with yield stress fluids [46–50] due to
their promising properties for biomedical applications, such as remark-
able electro-actuation strains with high electromechanical efficiencies
and low strain-cycling hysteresis across a broad range of electric fields.
In addition, recent silicone polymer 3D prototyping [51,52] could
be used to print customized patches of smart material for patients.
However, there is still much preliminary theoretical and experimental
work to be done before tackling the fabrication of an actual phonation
pacemaker.

2.3. Vocal tract characterization and vowel generation

Having solved Eq. (1) and computed the time evolution of the
glottal volume velocity from Eq. (6) for the cases of regular, chaotic
and controlled motion of the VFs, namely 𝑈reg(𝑡), 𝑈cha(𝑡) and 𝑈con(𝑡),
there exist different options to numerically produce a vowel sound in
the framework of the FEM. 𝑈𝑎(𝑡), with 𝑎 = reg, cha, con is the source
of acoustic waves inside the VT, so given a VT geometry, the standard
procedure is to directly prescribe 𝑈𝑎(𝑡) as a boundary condition on the
surface of the glottis, and solve the wave equation with the FEM inside
the VT and in a region outside the mouth to allow acoustic waves to
propagate outwards. By collecting the acoustic pressure, 𝑝(𝑡), at a point
near the mouth exit and converting it into an audio file, the vowel
sound corresponding to that VT geometry is obtained. This procedure
was the option followed in [53] to generate vowels and in [54] to
produce diphthongs.

Unfortunately, the computational cost of three-dimensional finite
element simulations is very high for large computational domains.
Since a linear wave equation is normally used in VT acoustics, if several
simulations are to be performed on the same VT geometry it is best to
compute the VT impulse response, ℎ(𝑡), and then convolve it with 𝑈𝑎(𝑡)
to obtain the vowel sound for each phonation regime. The vowel sound
is then given by (see e.g. [55]),

𝑝(𝑡) = 𝑈𝑎(𝑡) ∗ ℎ(𝑡) = ℎ(𝑡 − 𝜏)𝑈𝑎(𝜏)d𝜏. (11)
∫
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Fig. 2. Computational domain and scheme for calculating the impulse response of the VT, ℎ(𝑡). A Gaussian pulse 𝐺(𝑡) is prescribed at the glottis 𝛤G and the computed acoustic
pressure is collected at a point 𝒙ℎ in front of the mouth (blue dot). The exterior domain 𝛺∞ and its boundary 𝛤∞ are not represented for clarity. Also, only a portion of the rigid
baffle 𝛤B is shown. 𝛺VT stands for inner volume of the vocal tract and 𝛤W for its walls. This particular VT corresponds to that of vowel /A/.
Alternatively, one can make use of the convolution theorem to work
in the frequency domain. For instance, this was the option chosen
in [39] to evaluate the glottal source contributions to high-frequencies
for different refinements of the VT geometry and also the option chosen
in [56] to produce vowel–vowel utterances. It is also the choice made
in this paper. Given a generic function 𝑔(𝑡), let us use the hat symbol
to denote its Fourier transform, i.e., 𝑔̂(𝑓 ) ≡  (𝑔). The acoustic pressure
at the mouth exit for a given vowel can then be calculated as,

𝑝(𝑡) = −1[𝑈̂𝑎(𝑓 )ℎ̂(𝑓 )]. (12)

𝑈̂𝑎(𝑓 ) is obtained directly from the Fourier transform of 𝑈𝑎(𝑡). As for
ℎ̂(𝑓 ), it is the Fourier transform of the impulse response of the VT, ℎ(𝑡),
and is referred to as the VT transfer function (VTTF).

In this work, we compute the VT impulse response from the solution
of the problem depicted in Fig. 2. We begin by computing the time
evolution of the acoustic pressure, 𝑝(𝒙ℎ, 𝑡), at a point 𝒙ℎ in front of
the mouth when a Gaussian impulse is input at the glottis. Let us
formulate the mathematical problem in some detail and denote the
computational domain in the figure by 𝛺 = 𝛺VT ∪𝛺ext with boundary
𝜕𝛺 = 𝛤G ∪ 𝛤W ∪ 𝛤B ∪ 𝛤∞, such that 𝛤G ∩ 𝛤W ∩ 𝛤B ∩ 𝛤∞ = ∅. Here
𝛺VT represents the volume inside the VT and 𝛺ext the exterior one.
𝛤G is the glottis surface and 𝛤W the VT walls. 𝛤B is a rigid baffle
where the mouth is inserted. Our objective is to compute the acoustic
pressure field 𝑝(𝒙, 𝑡) in 𝛺 that satisfies the wave equation with initial
and boundary conditions,

− 1
𝑐20

𝜕2𝑝
𝜕𝑡2

+ ∇2𝑝 = 0 in 𝛺, 𝑡 > 0, (13a)

𝑝 = 0,
𝜕𝑝
𝜕𝑡

= 0 in 𝛺, 𝑡 = 0, (13b)

∇𝑝 ⋅ 𝒏 = −
𝜌0
𝑆G

𝜕𝐺
𝜕𝑡

on 𝛤G, 𝑡 > 0, (13c)

∇𝑝 ⋅ 𝒏 = −
𝜇
𝑐0

𝜕𝑝
𝜕𝑡

on 𝛤W, 𝑡 > 0, (13d)

∇𝑝 ⋅ 𝒏 = 0 on 𝛤B, 𝑡 > 0, (13e)

∇𝑝 ⋅ 𝒏 = 1
𝑐0

𝜕𝑝
𝜕𝑡

on 𝛤∞, 𝑡 > 0, (13f)

In Eq. (13a), 𝑐0 represents the speed of sound. Eq. (13b) stands for the
initial conditions of the problem. Regarding the boundary conditions,
5

we impose a Gaussian pulse volume velocity, 𝐺(𝑡), on the glottis 𝛤G (𝑆G
denoting its surface, see Eq. (13c)), given by

𝐺(𝑡) = 𝑒−[(𝑡−𝑇𝐺 )∕0.29𝑇𝐺]
2

(14)

with 𝑇𝐺 = 0.646∕𝑓𝑐 , 𝑓𝑐 = 10 kHz and [𝐺(𝑡)] = m3∕s, [38–40]. The
coefficient 𝜇 for the VT wall losses in Eq. (13d) is related to the
wall impedance, 𝑍W, by 𝜇 = 𝑍0∕𝑍W with 𝑍0 = 𝜌0𝑐0 and 𝑍W =
83 666 kg∕m2 s, see [57]. Eq. (13e) simply states that the baffle at
the mouth exit is rigid. Finally, the Sommerfeld non-reflection condi-
tion (Eq. (13f)) is imposed on the boundary of the outer part of the
computational domain, 𝛤∞. In practice, this condition is not enough
to guarantee wave-free reflection from 𝛤∞ and is replaced by a per-
fectly matched layer (PML), which adds supplementary variables and
equations to Eq. (13a), see [58]. The problem of Eq. (13a) with initial
conditions in (13b) and boundary conditions in Eqs. (13c)–(13f) has
been solved in this work using the numerical strategy described in the
next section.

The solution to Eq. (13) provides the acoustic pressure field 𝑝(𝒙, 𝑡) ∈
𝛺. The impulse response ℎ(𝑡) is then calculated as,

ℎ(𝑡) = −1 [ℎ̂(𝑓 )
]

= −1
[

𝑝̂(𝒙ℎ, 𝑓 )
𝐺̂(𝑓 )

]

. (15)

3. Numerical simulations

3.1. Numerical strategy

Before detailing the results from the numerical simulations, let us
briefly summarize the numerical strategy we followed to solve the
various equations in the preceding sections, in particular the ODE
system in Eq. (1) to obtain the glottal volume velocity of Eq. (6), and
the acoustic wave problem in Eq. (13) to obtain the impulse response
of Eq. (15). Remember that with the volume velocity and the impulse
response we can compute vowel sounds for various phonation regimes
through the convolution in Eq. (11). All the equations in this work were
solved using in-house developed numerical codes.

The ODE system in Eq. (1) was solved using the explicit fourth-order
Runge–Kutta method (RK4) with a sampling frequency 𝑓𝑠 = 105 Hz
and an initial condition (𝒗⊤(0),𝒙⊤(0)) = (0, 0, 0.1, 0.1) (see e.g., [5,24–
26]). The wave problem in Eq. (6) was solved with the method of lines,
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Fig. 3. Bifurcation plot without vibrato (left) and with vibrato (right) for normal (𝑘𝑐𝑙 = 0.025, gray color) and abnormal (𝑘𝑐𝑙 = 0.09, red color) phonation. The blue line indicates
the subglottal pressure value for which chaos control simulations have been performed. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
i.e., using FEM for the spatial discretization and then finite differences
for the time discretization (see e.g., [59–61]). The computational do-
main, 𝛺, where we set the problem comprises the vocal tract, 𝛺VT,
plus the exterior domain, 𝛺ext , which consists of a square cuboid of
dimensions 0.3 × 0.3 × 0.2 m3. The cuboid is surrounded with a PML
that has a relative reflection coefficient of 10−4 and a width of 0.1 m
(see [61]). The rigid baffle 𝛤B where the mouth is inserted is one of
the faces of the cuboid and has dimensions 0.3 × 0.3 m2. The com-
putational domain was meshed with linear tetrahedral elements with
characteristic size, ℎ, ranging from ℎ ≈ 0.001 m inside the vocal tract to
ℎ ∈ [0.0025, 0.005] m in the exterior domain and ℎ ≈ 0.0075 within the
PML. This resulted in 3.5 to 4×106 elements depending on which vowel
vocal tract (/A/, /i/ or /u/) was considered. The weak form of Eq. (13)
supplemented with the auxiliary functions and equations for the PML
(see [58]) was discretized with the Galerkin FEM using piecewise linear
shape functions to approximate the unknown acoustic pressure, the
auxiliary variables and the test functions (see [60]). As for the time
discretization of Eq. (6), a second-order finite difference central scheme
was implemented for the time derivative of the acoustic pressure, while
a first order central scheme was used for the time derivatives of the
auxiliary variables in the PML region to introduce additional numerical
dissipation that improves the performance of the PML. The sampling
frequency was 𝑓𝑠 = 8000 kHz to fulfill the Courant–Friedrich–Levy
condition required by explicit numerical schemes.

In terms of computational cost, solving the ODE of Eq. (1) in a
standard serial computing system with processor Intel® CoreTM i7
3.4 GHz took only a few seconds. However, obtaining the impulse
response ℎ(𝑡) for each vowel took between 57 to 65 h with the same
computer.

3.2. Regular, chaotic and controlled phonation

For the simulations in the following sections, we have used the
physical and geometrical parameters from Table 1. Hereafter, the di-
mensions of the various variables will not be written explicitly (except
in the figures), but will correspond to appropriate combinations of
length, [𝐿] = cm, time, [𝑇 ] = ms and mass, [𝑀] = g, dimensions.

Let us begin by presenting bifurcation plots in Fig. 3 for the
maximum amplitude of the lower mass, max |

|

𝑥1𝑙||, as a function of the
subglottal pressure, 𝑃𝑠, for the cases without vibrato (left subfigure)
and with vibrato (right subfigure). The gray curves in the subfigures
correspond to the healthy phonation case, when 𝑘𝑐𝑙 = 0.025, see Fig. 1a,
while the red ones are those obtained when the coupling stiffness is
increased to 𝑘 = 0.09, see Fig. 1b. For the healthy case without vibrato,
6

𝑐𝑙
the onset of vocal fold self-oscillations already takes place for very small
values of 𝑃𝑠. A periodic motion of growing amplitude is established
with increasing subglottal pressure, as indicated by the straight gray
line in Fig. 3 (left). As can be seen from the red curve in the same
figure, the situation is very different if the coupling stiffness is too large.
First, it is obviously more difficult to set the vocal folds in motion. For
small values of the subglottal pressure they stay still until 𝑃𝑠 ∼ 0.005
is reached. A periodic motion is then established that has a smaller
amplitude than that of healthy phonation, which is logical given the
higher value of the coupling stiffness. However, when 𝑃𝑠 ∼ 0.036, the
system transitions from periodic to chaotic motion and remains there
except for small windows of quasiperiodic motion. The vertical blue
line in the figure labeled control indicates the value of 𝑃𝑠 ∼ 0.041 to
which the control strategy will be applied in subsequent sections.

In the case with vibrato (see Fig. 3, right), the gray line of healthy
phonation exhibits a non-constant amplitude for a given value of 𝑃𝑠,
as a consequence of the modulating term of Eq. (4). The range of
amplitude variation widens with 𝑃𝑠, its central value being given by
the gray line in Fig. 3 (left). For 𝑘𝑐𝑙 = 0.09 (red line in Fig. 3, right), the
onset of vocal fold self-oscillations also takes place for 𝑃𝑠 ∼ 0.005. Next,
the motion becomes periodic with hardly any noticeable amplitude
modulation and suddenly transitions to a chaotic regime for 𝑃𝑠 ∼ 0.018,
much earlier than in the case without vibrato. As for the latter, the
vertical blue line in the figure specifies the value at which the chaos
control strategy will be tested.

In the following, let us fix the subglottal pressure at 𝑃𝑠 = 0.041.
Further information on the system dynamics can be gathered by looking
at the phase space plots for the motion of the two masses, as well
as for the glottal volume velocity. We first address the case without
vibrato in Fig. 4. The left and central subfigures respectively represent
the trajectories in phase space, (𝑥𝑖𝑙 , 𝑣𝑖𝑙), 𝑖 = 1, 2, for masses 𝑚1𝑙 and
𝑚2𝑙. As observed, for healthy phonation (gray lines in the subfigures)
both masses exhibit apparent period-1 orbits. However, if the coupling
stiffness is set to 𝑘𝑐𝑙 = 0.09 the trajectories of the masses become
trapped in a low dimensional strange attractor (red lines). If the pace-
maker is activated, the motion becomes regular again (blue lines).
Obviously, one cannot recover the amplitude of the oscillation of the
regular motion because the stiffness of the injured coupling spring is
greater than that of the healthy one, but, most importantly, periodic
or quasiperiodic self-oscillations of the vocal-folds can be restored. In
the right subfigure of Fig. 4 we present results for the glottal volume
velocity, 𝑈𝑎 in Eq. (6), in time delay coordinates, i.e., (𝑈𝑎(𝑡), 𝑈𝑎(𝑡 + 𝜏))
with 𝜏 being the time lag. As previously explained, 𝑈𝑎 is our variable of
interest for voice generation as it plays the role of the acoustic source
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Fig. 4. Phase space plots for vocal folds without vibrato for regular phonation (gray lines), chaotic phonation (red lines) and controlled phonation (blue lines). Left: phase space
of 𝑣1𝑙 versus 𝑥1𝑙 for 𝑚1𝑙 . Center: phase space of 𝑣2𝑙 versus 𝑥2𝑙 for 𝑚2𝑙 . Right: phase space for the glottal volume velocity in time delay coordinates 𝑈𝑎(𝑡 + 𝜏) versus 𝑈𝑎(𝑡). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 5. Phase space plots for vocal folds with vibrato for regular phonation (gray lines), chaotic phonation (red lines) and controlled phonation (blue lines). Left: phase space
of 𝑣1𝑙 versus 𝑥1𝑙 for 𝑚1𝑙 . Center: phase space of 𝑣2𝑙 versus 𝑥2𝑙 for 𝑚2𝑙 . Right: phase space for the glottal volume velocity in time delay coordinates 𝑈𝑎(𝑡 + 𝜏) versus 𝑈𝑎(𝑡). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
term at the glottis. It is seen in the figure that its behavior is similar to
that found for the motion of the two masses in phase space. In the case
of healthy phonation, a closed orbit (gray line) is obtained. Note that
𝑈𝑎 is zero at various points corresponding to the time intervals where
the vocal folds collide and remain closed during a self-oscillation cycle.
When the motion becomes chaotic, so does the glottal volume flux
velocity, a problem that is solved when the pacemaker is activated (blue
line). Though regular again, the amplitude of 𝑈con is smaller than that
of healthy regular phonation, 𝑈reg, which will result in a decrease of the
acoustic pressure intensity of the generated sound. Nevertheless, what
is critical for voice intelligibility is that the vocal folds self-oscillations
recover quasi-periodicity (see sections below), which is achieved by the
pacemaker. In Fig. 5 we present analogous results to those in Fig. 4
but considering vibrato. The results are similar, except for the fact that
now the vocal fold oscillation becomes modulated by the stiffness time
dependent term of Eq. (4). As a consequence, the trajectories in the
phase space of the two masses have a periodicity greater than one, even
in the case of healthy phonation. This very evident in the subfigures,
as well as the appearance of strange attractors for the chaotic motion
and the efficiency of the pacemaker to bring motion back to normal.

We can gain some more insight into the behavior of 𝑈𝑎 in the
three analyzed regimes by calculating its power spectrum 𝑆𝑈𝑎𝑈𝑎

. This
has been plotted in Fig. 6 left for the case without vibrato. A log–log
7

scale has been used to help illustrate some of the typical characteristics
of a regular glottal volume velocity and compare it with chaotic and
controlled ones. The same color coding is used as in the previous
figures. The frequency axis has been set to range from 100 Hz to
10 kHz since we are mainly interested in the spectrum beyond the
fundamental frequency, which in this case is 𝑓0 ≈ 149 Hz (first gray
peak). The typical linear decay of 𝑆𝑈𝑎𝑈𝑎

can be seen in the figure. It
can be also observed that the power spectrum for regular phonation
essentially consists of the fundamental frequency and its harmonics,
together with a pair of subharmonics for each harmonic (those of 𝑓0 are
below 100 Hz and not shown in the figure). The contributions of the
subharmonics is negligible, as their peaks are ∼70 dB smaller than those
of the harmonics. The situation changes drastically when the vocal
fold motion becomes chaotic. The peaks of the fundamental frequency
and first harmonics are still present in the spectrum, but the latter
flattens out at higher frequencies. The contributions of the frequencies
between harmonics are now very important and make a significant
impact on the energy of the glottal volume velocity. When the control
is activated, the essence of the regular motion spectrum is restored
(compare the gray and blue lines). The fundamental frequency and its
harmonics are recovered very accurately, with a negligible contribution
from the intermediate frequencies. This supports the observations made
for Fig. 4 right and shows the effectiveness of the control mechanism.
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Fig. 6. Power spectrum 𝑆𝑈𝑎𝑈𝑎
of the glottal volume flow without vibrato (left) and with vibrato (right) for regular phonation (gray lines), chaotic phonation (red lines) and

ontrolled phonation (blue lines). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 6 right presents the power spectrum of the glottal volume
elocity when vibrato is activated. In this case we no longer have a
undamental frequency, but, as mentioned above, several close to it,
esulting in broader peaks in the spectrum even for regular phonation.
s would also be expected, the level of intermediate frequencies is
uch higher than that observed in the absence of vibrato. The differ-

nces between the regular and chaotic cases (gray vs. blue lines) are
gain very visible, with important contributions from the frequencies
n between peaks. For frequencies above 1.5 kHz a rather broadband
pectrum is observed, even for healthy phonation. The comparison
etween the blue and gray lines again shows the effectiveness of the
haos control strategy.

.3. Production of vowel sounds

.3.1. Vocal tract transfer functions and impulse responses of vowels /A/,
i/ and /u/

The VTTFs, ℎ̂(𝑓 ), and VT impulse responses, ℎ(𝑡), of vowels /A/,
i/ and /u/ have been calculated following the numerical strategy in
ection 3.1 to see how chaotic phonation affects their sound and how
he pacemaker can modify it (see next subsection). The VT geometries
f each vowel were taken from [38], which adapts the MRI-based
Ts in [37] by removing the subglottal tube and part of the face and
y finally setting the resulting VT on a flat flange that emulates the
uman head. The VTTFs for each vowel, ℎ̂(𝑓 ), have been plotted in

Fig. 7. It is to be noticed that vowels are produced by the excitation of
resonances of the air volume inside the vocal tract. These resonances
reflect as peaks in ℎ̂(𝑓 ) and are usually named formants in the voice
nd speech research communities. The first two formants in ℎ̂(𝑓 ), the
o-called F1 and F2, allow listeners to distinguish one vowel sound from
nother. Note in the figure that they have very different values for the
hree vowels /A/, /i/ and /u/ under examination. Formants below 5–

kHz basically correspond to planar wave propagation modes, while
hose at higher frequencies exhibit a three-dimensional behavior. The
trong antiresonance at 5–6 kHz is caused by local resonances of the
ateral cavities of the VT (piriform sinuses and valleculae), see Fig. 2
nd [62,63].

.3.2. Generation of normal and abnormal vowel sounds: efficiency of the
haos control strategy

Once we have the glottal volume velocity in the time and frequency
omains, namely 𝑈𝑎(𝑡) and 𝑈̂𝑎(𝑓 ) for 𝑎 = reg, cha, con, and the VTTFs
nd VT impulse responses, ℎ̂(𝑓 ) and ℎ(𝑡), for the three vowels /A/, /i/

and /u/, we can compute their acoustic pressure power spectrum 𝑆𝑝𝑝(𝑓 )
nd acoustic pressure time evolution from the results in Section 2.3.
8

w

Fig. 7. Vocal tract transfer functions (VTTF), ℎ̂(𝑓 ), for vowels /A/, /i/ and /u/.

The VTTF essentially acts as a filter for the acoustic source term,
̂𝑎(𝑓 ), shaping the acoustic pressure spectrum of the vowel. In Fig. 8
e have plotted the power spectra of the acoustic pressure for the

hree vowels in the cases without (left column) and with (right column)
ibrato. The 𝑆𝑝𝑝(𝑓 ) resulting from chaotic (red lines) and controlled
blue lines) phonation are presented. Regular phonation is not consid-
red in this figure to facilitate the comparison between the chaotic and
ontrolled cases. The VTTF of each vowel has been superimposed on
ach figure to see how they conform the power spectrum. By looking
t Fig. 8, similar conclusions can be drawn to those given for the glottal
olume velocity in Fig. 6. If we focus first on the left column (without
ibrato), it can be seen that the chaos controlling strategy produces an
coustic power spectrum that is driven by the fundamental frequency
nd its harmonics, while that from chaotic phonation has very signif-
cant contributions from a broadband range of frequencies that will
learly affect the produced sound. It is remarkable that the controlling
trategy works over the entire frequency range, up to 10 kHz. All these
onsiderations apply to the three vowels, as shown in the subfigures
f the left column. In the case of vibrato (right column) and for the
ontrolled case, the harmonics of the fundamental frequency dominate
he spectrum up to ∼1.5 kHz and begin to loose influence up to ∼5 kHz,

here the spectrum becomes broadband. Logically, this can be also
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Fig. 8. Power spectrum of the acoustic pressure for vowels /A/, /i/ and /u/ without vibrato (left column) and with vibrato (right column). The red lines correspond to chaotic
phonation and the blue ones to controlled one. The VTTF, ℎ̂(𝑓 ), of each vowel has been superimposed in the figures to see how they shape the acoustic pressure spectrum. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
observed in the plot for the glottal volume velocity with vibrato (Fig. 6),
although the log–log scale used in that figure makes it less obvious.
Achieving control up to 5 kHz in the case of vibrato is notable as this is
the critical frequency range for voice sound identification, while higher
frequencies are more related to voice quality [39,64,65].

To better perceive the differences in the generated vowels for reg-
ular, chaotic and controlled phonation, in Fig. 9 we present, for the
case without vibrato, the time evolution and spectrogram of the acous-
tic pressure of each vowel for a sequence in which the vocal folds
transition from a regular to a chaotic and then to a controlled mo-
tion. It can be observed in the time evolution of each vowel how
the acoustic pressure due to regular phonation completely changes its
pattern when chaotic phonation begins. On the one hand, the amplitude
9

decreases markedly due to increased coupling stiffness, but also the
shape of the signal is completely distorted. When the controller is
activated, the shape of the acoustic pressure due to regular phonation
is mostly recovered, but not the amplitude, since, as mentioned above,
the coupling stiffness remains the same. In the spectrograms of the
vowels, the harmonics can be clearly identified as horizontal lines, their
amplitude being shaped by the VTTFs in Fig. 7. In fact, a vertical cut
in the spectrogram provides the power spectra of Fig. 8 left. Three
videos with audio are provided in the supplementary material for
vowels /A/, /i/ and /u/, which correspond to the top, middle and
bottom subfigures of Fig. 9. Listening to these audios shows how the
vowels sound very clear when phonation is regular, become almost
unrecognizable for chaotic phonation, and can be recognized again
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Fig. 9. Time evolution and spectrogram for vowels /A/, /i/ and /u/ in the regular,
chaotic and controlled phonation regimes without vibrato. Access the supplementary
material to listen to the corresponding audio files.

when the controller is activated. The respective names of the files are
Vowel_m_reg_cha_without_vibrato.mp4, with m = a,i,u.

In Fig. 10 we present the analogous results of Fig. 9 when vibrato is
considered. The effect of the latter is clearly seen in the time evolution
of the acoustic pressure as a smooth modulation of the amplitude and
also as small ripples in the harmonics of the spectrogram. The corre-
sponding audio files in the supplementary material are now termed
Vowel_m_reg_cha_with_vibrato.mp4, with m = a,i,u, and listening to
10
Fig. 10. Time evolution and spectrogram for vowels /A/, /i/ and /u/ in the regular,
chaotic and controlled phonation regimes wit vibrato. Access the supplementary
material to listen to the corresponding audio files.

them shows how the vibrato results in a less robotic vowel sound with
a more pleasant sound cadence.

4. Conclusions

In this work we have investigated how an ideal pacemaker could
improve vowel generation quality for unhealthy phonation due to
excessive VF stiffness. To this end, a symmetric two-mass model of
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the VFs, including the pacemaker, has been derived which considers
several types of nonlinearities, namely the cubic restoring forces of the
VFs, the collisions of the VFs, and the flow excitation. In addition, the
model offers the possibility to include a vibrato effect by allowing the
stiffness of the lower masses to vary with time. The glottal volume
velocity for the cases of regular (healthy), chaotic (unhealthy) and
controlled phonation has been computed and used in combination with
the impulse response of the VTs of vowels /A/, /i/ and /u/ to generate
the corresponding sounds. Vowel impulse responses have been obtained
by solving the wave equation with FEM for MRI-based vocal tract
geometries excited with a Gaussian pulse.

As a result of the simulations we conclude the following. In the case
without vibrato, the acoustic pressure spectrum of the generated vowels
is governed by the fundamental frequency and its harmonics for regular
phonation. However, for chaotic phonation the spectrum is broadened
and the vowels become unrecognizable, as clearly perceived in the
audio files provided as supplementary material. When the pacemaker
is activated it is not possible to recover the amplitude of healthy
phonation because the stiffness of the VFs remains higher than usual,
but the quasi-periodicity of the VF motion is restored and the vowels
can again be clearly identified. Similar conclusions apply to the case of
vibrato, although there is no fundamental frequency that drives it, since
it oscillates with time. The acoustic spectrum of vowels only shows
a harmonic-type behavior for lower to mid frequencies. However, the
pacemaker is also very efficient in this case and one can listen in the
supplementary material how the vowels become recognizable when
it is activated. The modulating effect of vibrato is also very clearly
perceived.

Ongoing work by the authors is now focused on extending the
chaos control strategy to asymmetric mass models, as well as including
other effects in symmetric mass models to cover a wide range of voice
disorders. The present work provides a direct way to test the perfor-
mance of phonation pacemakers for these new scenarios by listening
to numerically produced vowels for different regimes of glottal volume
velocities.
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