Journée d'étude ESTHER, 20 mars 2024

The concept of resilience in ecology

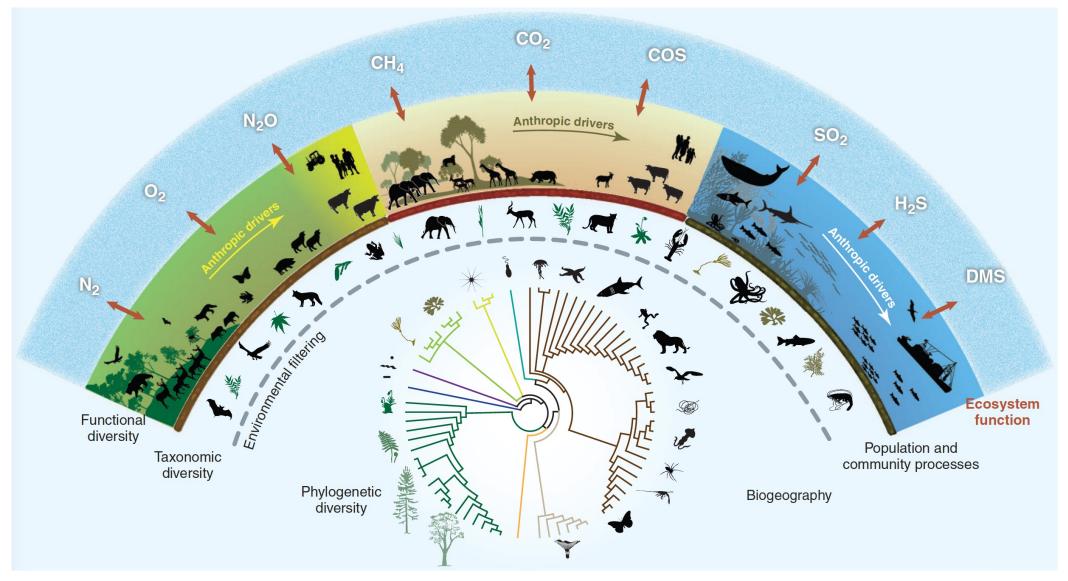
Chosen examples from marine ecology

Sakina-Dorothée Ayata

Maitresse de conférences HDR à Sorbonne Université

Laboratoire d'Océanographie et du Climat : Expérimentation et Approches Numériques (LOCEAN)

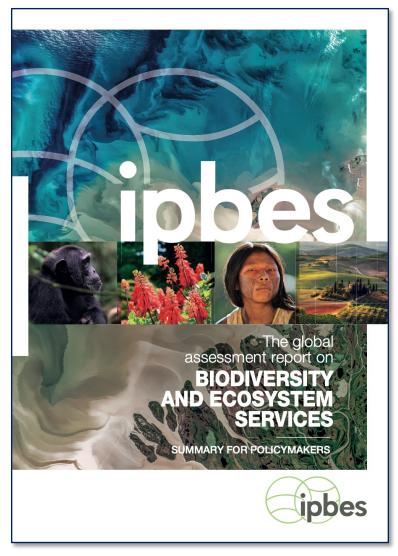
Sakina-dorothee.ayata@locean.ipsl.fr



institut universitaire de France

Introduction

Biodiversity and ecosystems



Naeem et al. (2012, Science)

Introduction

The concept of resilience in ecology

Biodiversity and ecosystems

How to increase the resilience of ecosystems to perturbations?

IPBES (2019)

IPBES = Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services

Introduction

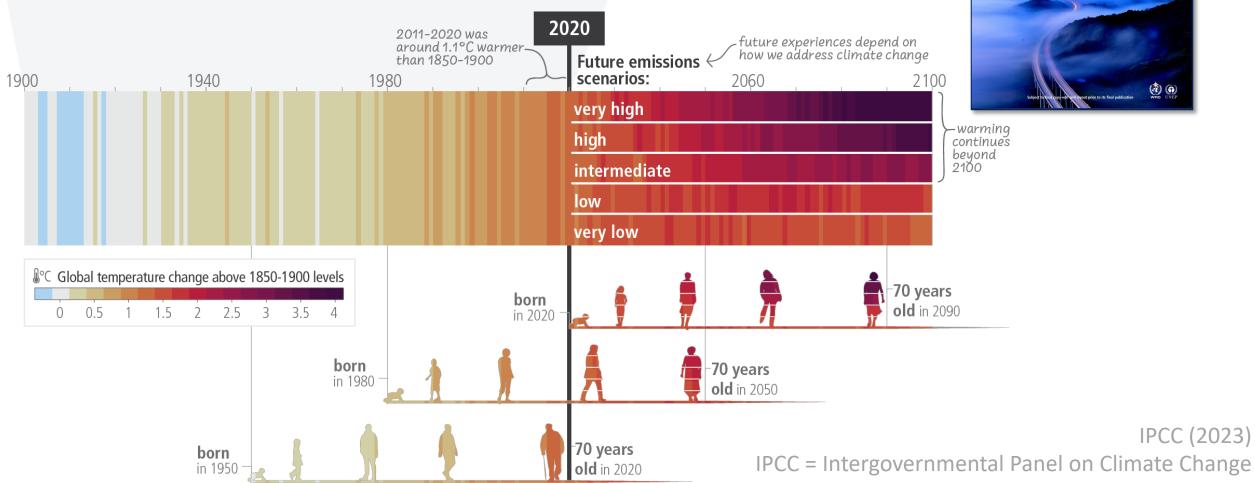
The concept of resilience in ecology

INTERGOVERNMENTAL PANEL ON CLIMOTE CHORE

CLIMATE CHANGE 2023 Synthesis Report

Summary for Policymakers

A Report of the Intergovernmental Panel on Climate Chang


ipcc

(d) 💮

IPCC (2023)

Biodiversity and ecosystems

The extent to which current and future generations will experience a notter and different world depends on choices now and in the near-term

Defining the resilience in ecology

Holling (1973)

Copyright 1973. All rights reserved

RESILIENCE AND STABILITY OF ECOLOGICAL SYSTEMS

C. S. Holling

Institute of Resource Ecology, University of British Columbia, Vancouver, Canada

Defining the resilience in ecology

Copyright	1973.	All righ	ts reserved	
-----------	-------	----------	-------------	--

Holling (1973)

RESILIENCE AND STABILITY OF ECOLOGICAL SYSTEMS

Oecologia (1997) 109:323-334

C. S. Holling

Institute of Resource E

Volker Grimm · Christian Wissel

Babel, or the ecological stability discussions: an inventory and analysis of terminology and a guide for avoiding confusion

Grimm & Wissel (1997)

Defining the resilience in ecology

Copyright 1973. All rights reserved

Holling (1973)

RESILIENCE AND STABILITY OF ECOLOGICAL SYSTEMS

C. S. Holling

Oecologia (1997) 109:323–334

Institute of Resource E

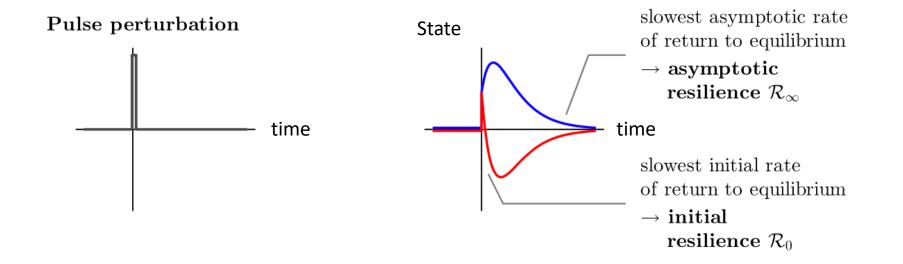
Volker Grimm · Christian Wissel

Babel, or the ecological stability discussions: an inventory and analysis of terminology and a guide for avoiding confusion

Grimm & Wissel (1997)

sion and classification of column: the six stability "distillation" of the defini	f the definitions from the literature. First concepts in ecology which remain after itions from Table 1. Second column: liter-		(3) Persistence: Persistence through time of an ecological system	Allen 83:4 Armstrong and McGhee 76:320 Botkin and Sobel 75:629 Connell and Sousa 83:791 DeAngelis and Watchouse 87:7 Estberg and Patten 76:151 Harrison 79:660 Hastings 88:1666 Strong 90:421	Stability – Begon et al. 90:792 Stability – Chesson and Hunty 89:293 Stability – Connell and Statyer 77:1129 Stability – Preston 69:7 Stability – Preston 69:7 Stability – Norf 74:246 Stability – W 76:156 Ecological stability – Wisbet and Gurney 82:10 Ecological stability – Wister 2010 Stability – W 75:47	326 OEC Table 2 (continued) Stability term and definition	OLOGIA 109 (1997) © Springer-Verla Authors who use the term in the first column in more or less the same way	g Terms with definitions mainly the same as in the first column
the definitions from the f	definitions which agree in the main with first column. "Connell and Sousa 83:97",	· · · · · · · · · · · · · · · · · · ·		Warner and Chesson 85:772 Yodzis 89:128	Essential stability – Wu 77:352 Existence – Bossel 92:267 Lagrange stability – Thornton and Mulholland 74:479	(5) Elasticity:	Connell and Sousa 83:790 Orians 74:64	Ecological stability – Danielson and Stenseth 92:38 Resilience – Begon et al. 90:792
Stability term and definition	Authors who use the term in the first column in more or less the same way	Terms with definitions mainly the same as in the first column			Lagrange stability – Vocisi as 10 Numoriand 74:47 Mutual mostility – Vocisi as 10 Numoriand 74:47 Mutual mostility – Vocisi as 10 Numoriand Vocisi 76:319 Persistence in the wide sense – Royama 77:3 Permanence – Law and Blackford 92:568 Practical stability – Thornton and Mulholland 74:483 Strictly persistent – Li 38:353 Terminal stability – Wu 76:159 Total stability – Wu 76:159 Total stability – Wu 76:159 Weakly persistent – Li 48:353	reference state (or dynamic) after a	dynamic) after a Westman 91:213 temporary disturbance	Resilience – Carpenter et al. 92:784 Resilience – torwley 92:247 Resilience – DeAngelis 80:764 Resilience – Halter 91:384 Resilience – Harwell et al. 81:108 Resilience – Nakajima and DeAngelis 89:502 Resilience – Niemmä et al. 90:80 Resilience – Steimman et al. 90:1299 Resilience – Steiman et al. 91:1299 Resilience – Boesch 74:109
(1) Constancy: Staying essentially unchanged	Connell and Sousa 83:97 Gigon 83:97 Harrison 79:661 Lewontin 69:21 Orians 75:141 Remmert 89:286	Biomass stability – King and Pimm 1983:329 Ecological stability – Zwölfer 78:15 Functional stability – Rejmarke 52:455 Perceived stability – Begon et al. 90:802 Persistence – Rahel 90:328 Stability – Haber 79:24 Stability – Murdoch 70:497						
(2) Resilience: Returning to the reference state (or dynamic) after a temporary disturbance	Harrison 79:660 Leps et al. 82:54 Putman and Wratten 85:339 Ulrich 92:181 Westman 78:705	Stability – Putman and Wraten 85:338 Temporal stability – Preston 69-9 Stability – Hallet 91:383 Stability – Holling 73:17 Stability – Holling 73:17 Stability – Stele 74:180 Adjustment – Connell and Sousa 83:790 Connective stability – Siljak 74:280 Elasticity – Gione 83:98	(4) Resistance: Staying essentially unchanged despite the presence of disturbances	Begon et al. 90:792 Boesch 74:109 Connell and Sousa 83:790 Gigon 83:98 Harrison 79:660 Harrwell et al. 81:108 Kuss and Hall 91:715 Leps et al. 82:54 Steinman et al. 90:80	Stability – Hurd and Wolf 74:465 Stability – Margalef 68:12 Stability – Margalef 68:12 Stability – Remmert 89:286 Ecological stability – Rutholland 76:167 Ecological stability – Rutholga et al. 76:356 Inertia – Murdoch 70:500 Inertia – Orians 73:141	(6) Domain of attraction: The whole of states from which the reference state (or dynamic) can be reached again after a temporary disturbance	Holling 73:3 Pimm 84:322	Amplitude – Connell and Sousa 83:790 Amplitude – Orians 75:141 Amplitude – Wesiman 91:213 Attractor block – Armstrong and McGhee 76:320 Dynamic fragility – May 75:163 Dynamic rogility – May 75:163 Dynamic robustness – Begon et al. 90:792 Dynamic robustness – Begon et al. 90:792
		Elasticity* = Remmert 84:286 [Global, Local] stability = Degon et al. 90:792 Mathematical stability = Danielson and Stenseth 92:83 Regulation = Murdoch 70:497 Resiliency = Kuss and Hall 91:715 Section delation debility = Remmer 90:142			Inertia – Westman 78:705 Malleabiliy – Westman 91:213 Resilience – Holling 73:17 Resistance stability – Sutherland 90 Responsivness – Roughgarden 75:6 Sensitivity – Estberg and Patten 76:152 Sensitivity – Estberg and Patten 76:152 Vulnerability – Vincent ad Andersson 79:218			Dynamically bounded – Lewontin 69:18 Dynamical Pobustness – May 75:163 Elasticity – Ulrich 92:181 Repellor – Byers et al. 92:26 Semi-stable attractor – Byers et al. 92:25 Stable attractor – Byers et al. 92:10

Defining the resilience in ecology


Copyright 1973. All rights	reserved	Holling (1973)	
RESILIENC	CE AND STABILITY		
OF ECOLO	DGICAL SYSTEMS		
C. S. Holling Institute of Resource E	Oecologia (1997) 109:323-334	Carpenter et al. (2001)	
	Volker Grimm · Christian Wissel	systems (2001) 4: 765–781 I: 10.1007/s10021-001-0045-9	ECOSYSTEMS
	Babel, or the ecologica	MINIREVIEW	© 2001 Springer-Verlag
	of terminology and a gu		
		From Metaphor to Measure	arement:
	Grimm & Wissel (1997) Resilience of What to W		What?
		Steve Carpenter, ¹ * Brian Walker, ² J. Marty Anderie	s, ² and Nick Abel ²
	1(enter for Limnology, 680 North Park Street, University of Wisconsin, Madison, Wisconsin 5 Ecosystems, GPO Box 284, Canberra, ACT, 2615 Australi	

Defining the resilience in ecology

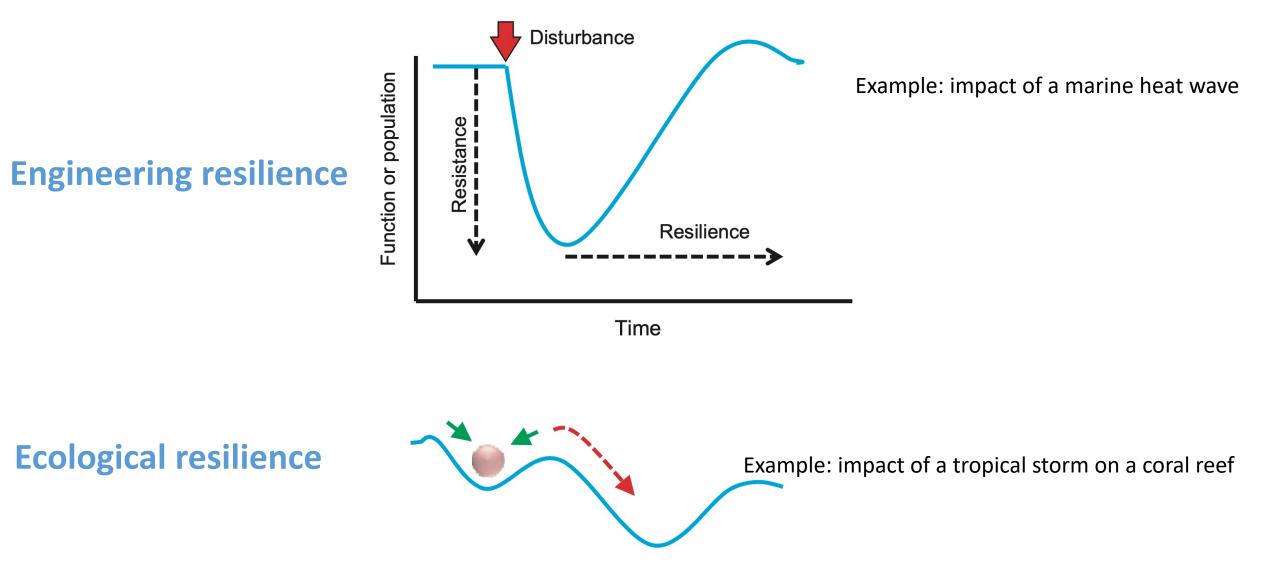
Copyright 1973. All rights	reserved	Но	olling (1973)	
RESILIENC	CE AND STABILITY			
OF ECOLO	OGICAL SYSTEMS			
C. S. Holling	Oecologia (1997) 109:323–334			Carpenter et al. (2001)
Institute of Resource E	Volker Grimm · Christian Wissel	stems (2001) 4: 765–7 10.1007/s10021-001-0	781 2045-9 ECOSYST	EMS
	Babel, or the ecologica		© 2001 Spring	er-Verlag
	of terminology and a gu			
		From	n Metaphor to Measurement:	
		esilience of What to What?	Dakos & Kéfi (2022)	
		Steve Carp	Environ. Res. Lett. 17 (2022) 043003	https://doi.org/10.1088/1748-9326/ac5767
	¹Cen	ter for Limnology,	ENVIRONMENTAL RESEARCH LETTERS	
			TOPICAL REVIEW	
			Ecological resilience: what to measure and how	
			Vasilis Dakos* and Sonia Kéfi	


Two main definitions of resilience

- Engineering resilience (Pimm, 1984)
 - Capacity of a system to bounce back to its initial state after a perturbation
 - Only one stable state ("equilibrium"), locally stable
 - Rather for small perturbations

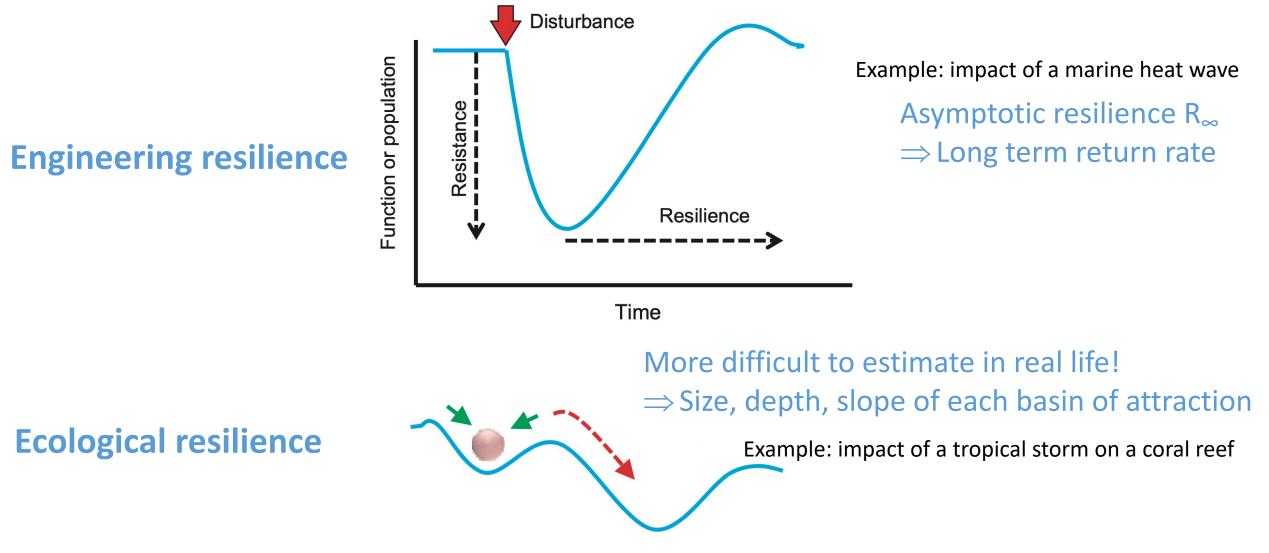
Two main definitions of resilience

- Ecological resilience (Holling, 1973; 1996)
 - Magnitude of disturbance that can be absorbed by an ecosystem, before it flips to an other state
 - Several alternative stable states
 - Adapted to large scale perturbations
 - Regime shifts/tipping points



Arctic Council (2016)

Definitions and mathematical frameworks


The concept of resilience in ecology

Two main definitions of resilience

Griffiths & Philippot (2013)

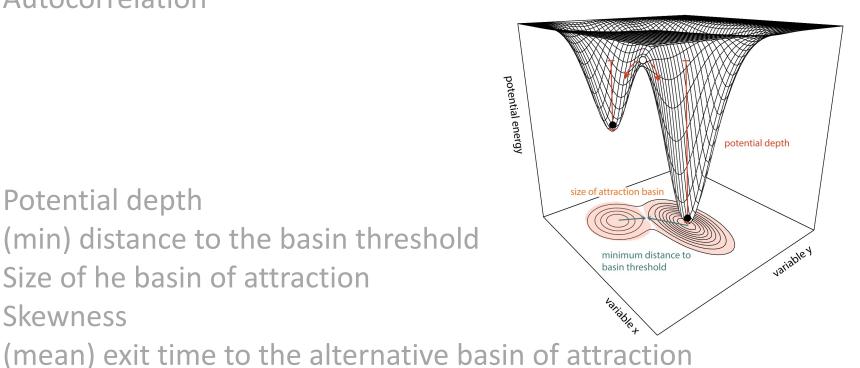
Measuring resilience

Measuring resilience: various metrics!

To list a few....

- Curvature of potential
- **Engineering resilience** (local stability)
- Variance

Autocorrelation

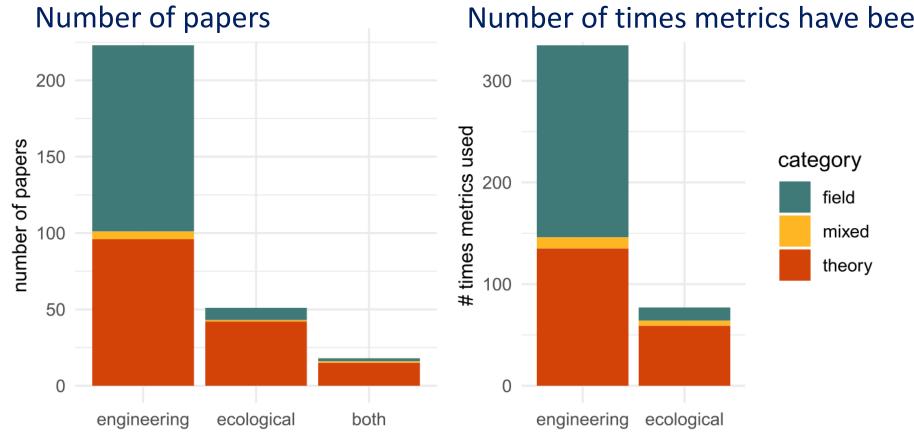

Potential depth

Skewness

(min) distance to the basin threshold

Size of he basin of attraction

stability landscape

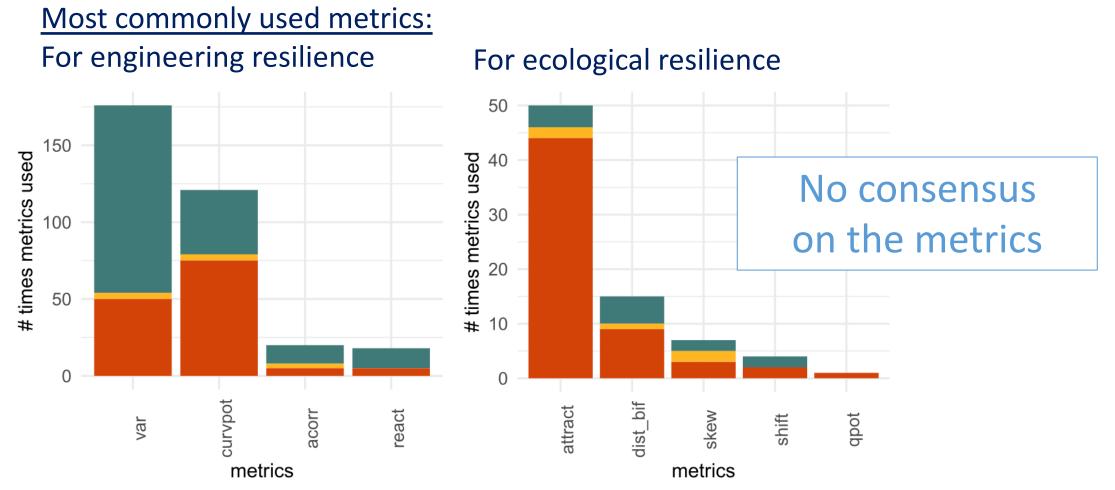


Ecological resilience (non-local stability)

Dakos & Kéfi (2022)

Measuring resilience in practice?

Bibliographic analysis from 459 papers (1950-2018)

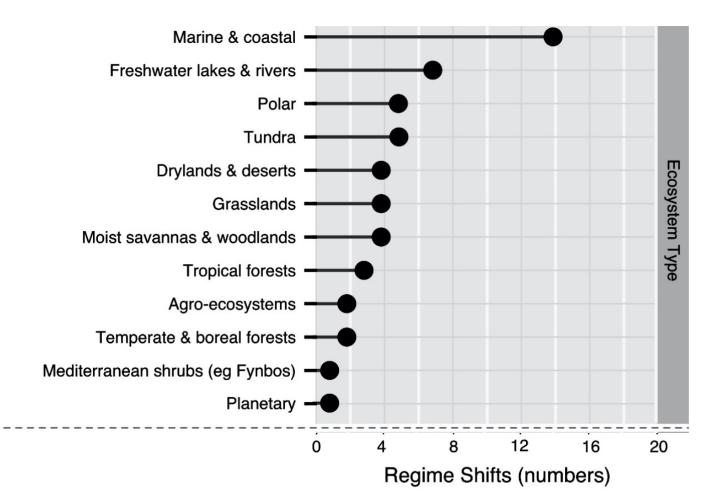


Number of times metrics have been used

Dakos & Kéfi (2022)

Measuring resilience in practice?

Bibliographic analysis from 459 papers (1950-2018)



Dakos & Kéfi (2022)

Regime shifts in the stability landscape

Regime shifts = tipping points = switching from a stability valley to another

Number of regime shifts recorded in different ecosystem types

Biggs et al. (2018)

Resilience and regime shifts

Before

The concept of resilience in ecology

Marine regime shifts

Tropical coral reef

Degraded reef

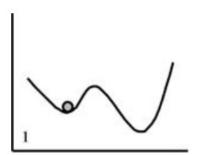
Kelp forest

Sea urchin barrens

Coastal predatory fish

Overfished jellyfish-dominated

After



Hughes et al. (2005)

Resilience and regime shifts

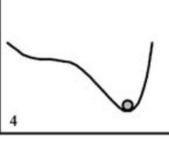
The concept of resilience in ecology

Marine regime shifts

Initial state

coral-dominated reefs

Perturbation


overfishing, coastal eutrophication

regime shift

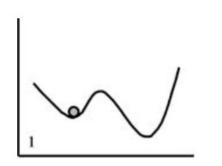
Triggers

disease, bleaching hurricane

Regime shift

algae-dominated reefs

Loss of resilience


Folke et al. (2004)

Resilience and regime shifts

The concept of resilience in ecology

Marine regime shifts

Initial state

coral-dominated reefs

kelp forests

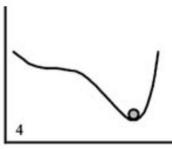
Perturbation

overfishing, coastal eutrophication

functional elimination

of apex predators

disease, bleaching hurricane


thermal event,

storm, disease,

regime shift

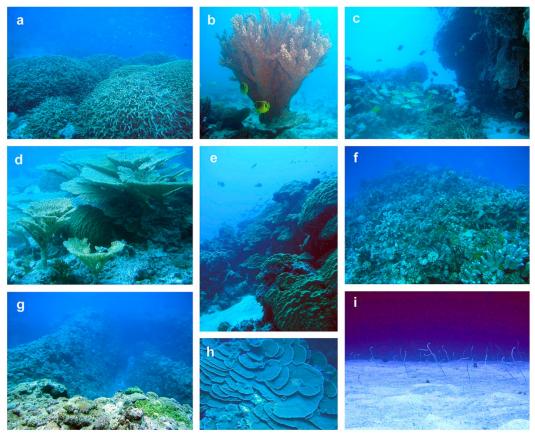
Triggers

algae-dominated reefs

sea urchin

dominance

Loss of resilience


Examples of impressive resilience

• Recovery of coral reefs in the Marshall Islands after nuclear tests

Crater created during the nuclear tests in the 1950's

Bikini Atoll coral communities 2002

Richards et al. (2008)

Enhancing resilience of socio-ecosystems

- Seven principles have been proposed:
 - 1) Maintain diversity and redundancy, e.g. protect species
 - 2) Manage connectivity between systems, e.g. between marine protected areas
 - 3) Manage slow variables and feedbacks, e.g., herbivorous species in coral reefs
 - 4) Foster an understanding of SES as complex adaptive systems, e..g. the large-scale rezoning of Australia's Great Barrier Coral Reef
 - 5) Encourage learning and experimentation
 - 6) Broaden participation, e.g., involved local fishermen and local populations
 - 7) Promote polycentric governance systems, e.g. failure when lack of institutions governing global marine fisheries