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Sequentialization is as fun as bungee jumping

Rémi Di Guardia∗ Olivier Laurent∗ Lorenzo Tortora de Falco† Lionel Vaux Auclair‡

TLLA 2023

Abstract

We propose a new proof of sequentialization for the proof nets of unit-free multiplicative linear logic
with mix. It is based on the search of a splitting ` by means of a simple new lemma about proof structures:
the bungee jumping lemma.

1 Introduction

Proof nets are a major contribution from linear logic [Gir87]. They represent proofs, no longer as trees, but
as more general graphs, identifying proofs up to rule commutations. This yields more canonical objects, on
which results such as cut elimination become easier to prove. A key theorem to prove on proof nets is that
they indeed correspond to proof trees of sequent calculus. The more difficult part is building a tree from a
net, a process called sequentialization.

There are many proofs of this result in the literature, but it is still considered as a not so easy theorem.
We give an elementary proof of this result in the unit-free multiplicative fragment of linear logic, considering
the Danos–Regnier correctness criterion [DR89]. The new proof applies directly in the presence of the mix
rules, and the mix -free case can be easily deduced.

2 Definitions

2.1 Multiplicative Linear Logic with Mix

We focus on unit-free multiplicative linear logic whose formulas are given by: A ::= X | X⊥ | A⊗A | A`A.
The dual (_)⊥ is extended to an involution on all formulas by De Morgan duality: (X⊥)⊥ = X, (A⊗B)⊥ =
A⊥ `B⊥ and (A`B)⊥ = A⊥ ⊗B⊥.

We consider the deduction system MLLmix
hyp given by open proofs in cut-free multiplicative linear logic

with mix rules:

(ax)
` A⊥, A

` A,Γ ` B,∆
(⊗)

` A⊗B,Γ,∆
` A,B,Γ

(`)
` A`B,Γ

(mix0)
`

` Γ ` ∆
(mix2)

` Γ,∆

This means we allow open hypotheses ` A (with A a single formula) in proofs. An equivalent way of

presenting the same objects is by extending the system with a rule
(hyp)

` A . If π is a proof with hypotheses
` A1, . . . , ` An and conclusion ` B1, . . . , Bk, we say that π is a proof of A1, . . . , An ` B1, . . . , Bk. To be
formal, we should be more precise on the way we handle occurrences of formulas (e.g. considering sequents
as lists and having an explicit exchange rule) but we keep this implicit, as usual.

If π1 is a proof of Σ ` Γ, A and π2 is a proof of A,Θ ` ∆, the substitution of π1 in π2 is a proof of
Σ,Θ ` Γ,∆: it is obtained from π2 by replacing the hypothesis ` A with π1 (this adds Γ to all sequents of
π2 below ` A).
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2.2 Partial Graphs

A (directed multi) partial graph is a 4-tuple (V,A, s, t) where V (vertices) and A (arcs) are sets and s
(source) and t (target) are partial functions from A to V. It is finite if both V and A are finite. An arc is
incident to a vertex if this vertex is either its source or its target.

Many other notions lift immediately from graphs to partial graphs and moreover from any partial graph,
one can recover an underlying (directed multi total) graph by restricting A to elements for which both s
and t are defined. Isomorphism of (partial) graphs is denoted '.

An edge is an arc a together with a direction {+,−} (we use the notations a+ and a−, and a is the
support of the edge). We extend the notions of source and target to edges by s(a+) = s(a) = t(a−) and
t(a+) = t(a) = s(a−). If ε is a direction, ε is the opposite one. If e is an edge aε then its reverse e is aε.
Two edges e1 and e2 are composable if the target of e1 is (defined and) equal to the source of e2.

A path p is a pair (v,~e) of a vertex and a finite sequence of composable edges such that ~e is empty (in
which case p is an empty path) or v is the source of the first edge of ~e. The vertex v is the source of p
and the target of p is the target of the last edge in ~e, if ~e is not empty, and v otherwise. All sources and
targets of elements of ~e must be defined, meaning that we are in fact considering undirected paths (since
arcs can be crossed in both directions) in the underlying (total) graph. The source and target of an arc,
an edge or a path are their endpoints. By considering v followed by the targets of the edges in ~e, a path
p induces a non-empty sequence of vertices. A vertex u is a vertex of p if it belongs to this sequence.
Since a given vertex may occur more than once in this sequence, we may have to talk about occurrences
of vertices in a path to distinguish these equal values. An occurrence of a vertex in a path is internal if
it is neither the source nor the target occurrence. An arc of a path is the support of one of its edges. Two
paths p1 = (v1, ~e1) and p2 = (v2, ~e2) are composable if t(p1) = s(p2) (both being defined) and, in that case,
we define their concatenation p1 · p2 as (v1, ~e1 ·~e2). The reverse p of a path p is obtained by reversing the
order of edges and taking the reverse of each edge. Moreover its source is the target of p (and conversely).

A path γ is a sub-path of a given path p if its edges are a contiguous sub-sequence of the edges of p (or
γ is an empty path and its source is a vertex of p). Equivalently, γ is a sub-path of p if there exist two paths
γ1 and γ2 such that p = γ1 · γ · γ2. In the same spirit, γ is a prefix of p if γ1 is empty, and a suffix of p if γ2
is empty. If v1 and v2 are two occurrences of vertices of a path p, there is a unique sub-path γ of p having
v1 and v2 as endpoints: we denote by p(v1,v2) the path γ or γ with source v1 and target v2.

A path is simple if its arcs are pairwise distinct and its vertices are pairwise distinct except possibly its
endpoints which may be equal. A path is bouncing if it contains two consecutive equal arcs. A path is
closed if it has equal endpoints, otherwise it is open. A cycle is a non-empty simple closed path.

Lemma 2.1. A non-bouncing path with pairwise distinct vertices except possibly its endpoints is simple.

Lemma 2.2 (Concatenation of Simple Paths). If p1 and p2 are two simple open paths and their unique
common vertices are the target of p1 and the source of p2, and possibly the target of p2 and the source of p1,
and if the last arc of p1 is different from the first arc of p2, then p1 · p2 is simple.

2.3 Proof Structures

A proof structure is a finite partial graph with labeled vertices and arcs. Arcs are labeled with formulas,
and vertices with names of non-mix rules: ax , ⊗ or `. Vertices are named according to their label: ax -
nodes, ⊗-nodes and `-nodes. Given a vertex v, arcs with target v are the premises of v and arcs with
source v are the conclusions of v. A vertex is terminal if all its conclusions have undefined targets. An
arc with undefined source is an hypothesis and an arc with undefined target is a conclusion of the proof
structure. Some additional local constraints are required depending on the label of vertices: each ax -node
has no premise and two conclusions labeled with dual formulas; each ⊗-node has two premises and one
conclusion labeled A⊗B (where A and B are the labels of its premises); each `-node has two premises and
one conclusion labeled A ` B (where A and B are the labels of its premises). To recover the usual notion
of proof structure, we should impose an order on the premises of nodes, as well as on the hypotheses and
conclusions: we ignore this additional information, since it has no impact on the notion of correctness nor
on sequentialization.
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Specific notions of paths can be defined on proof structures. A path is switching if it does not contain
the two premises of any `-node. A path is strong if it is non-empty and it is not the case that its source
is a `-node and its first arc is one of its premises. A path is strong-weak if it is strong and its target
is a `-node and its last arc is one of its premises. A bridge in a path is a pair of two consecutive edges
connected through a `-node κ which are the two premises of κ. In this case, κ is called the bridge pier.

Lemma 2.3 (Concatenation of Strong Paths). The concatenation of two strong (resp. strong bridge-free)
paths is a strong (resp. strong bridge-free) path.

Lemma 2.4 (Strong-Weak Cycles). A non-empty closed concatenation of simple strong-weak paths contains
a cycle as a sub-path.

Having a bridge is a local property of a path while being a switching path is a global one. They happen
to be related for cycles.

Lemma 2.5 (Local-Global Principle). A strong bridge-free cycle is a switching cycle.

Proof. If the two premises of a `-node are visited, this vertex must be visited twice otherwise it would be a
bridge pier. In a cycle, the only vertex visited twice is the unique endpoint and exactly two of its incident arcs
are visited. Since the path is strong, if the endpoint is a `-node, the first arc is not one of its premises.

Definition 2.6 (Splitting `-node). A `-node is splitting if there is no cycle containing its conclusion.

Definition 2.7 (Correctness). A proof structure is DR-correct if it does not contain any switching cycle.

2.4 Desequentialization

We define, by induction on a proof π of A1, . . . , An ` B1, . . . , Bk, its desequentialization D(π) which is a
proof structure with hypotheses labeled A1, . . . , An and conclusions labeled B1, . . . , Bk.

• If π is reduced to an hypothesis ` A, then D(π) is the proof structure with no vertex and a single arc
(with no source and no target) labeled A.

• If π is reduced to an (ax ) rule with conclusion ` A⊥, A, then D(π) is the proof structure with one
ax -node v and two arcs (with source v and no target) labeled respectively A⊥ and A.

• If the last rule of π is a (⊗) rule applied to two proofs π1 and π2 then D(π) is obtained from the disjoint
union of D(π1) and D(π2) by adding a new ⊗-node v. The conclusions of D(π1) and D(π2) with labels
A and B corresponding to the principal formulas of the (⊗) rule now have target v, and we add a new
arc, labeled A⊗B, with source v and no target.

• If the last rule of π is a (`) rule applied to a proof π1 then D(π) is obtained from D(π1) by adding a
new `-node v. The conclusions of D(π1) with labels A and B corresponding to the principal formulas
of the (`) rule now have target v, and we add a new arc, labeled A`B, with source v and no target.

• If π is reduced to a (mix 0) rule, D(π) is the empty proof structure (no vertex, no arc).

• If the last rule of π is a (mix 2) rule applied to two proofs π1 and π2 then D(π) is the disjoint union of
D(π1) and D(π2).

Lemma 2.8 (Desequentialization of a substitution). If π is the substitution of a proof π1 for an hypothesis
` A in a proof π2, then D(π) is obtained from the disjoint union of D(π1) and D(π2) by identifying the
conclusion a of D(π1) labeled A with the hypothesis a′ of D(π2) labeled A (the source of the obtained arc is
s(a), its target is t(a′) and its label is A).

3



v

κ u

ω

γ
c

Figure 1: Illustration of the proof of Lemma 3.1

3 Sequentialization

For each vertex v of a proof structure, we denote by Mv the set of cycles with source v, containing a
conclusion of v, and with a minimal number of bridges among all the cycles with source v containing a
conclusion of v. The setMv is empty if and only if there is no cycle containing a conclusion of v. IfMv is
not empty, it contains a cycle starting with a conclusion of v.

Lemma 3.1 (Bungee Jumping). Let v be a vertex and ω be a cycle in Mv. If there exists a simple strong
bridge-free path γ with source κ the pier of a bridge of ω and with target u a vertex of ω then there exists a
switching cycle.

Proof. By taking a prefix of γ if necessary, we can assume that it does not share any vertex with ω, other
than its endpoints κ and u. We can assume κ 6= u, for otherwise γ is a switching cycle (Lemma 2.5). We use
the notation v1 for the occurrence of v at the source of ω and v2 for its occurrence at the target of ω. By
symmetry (considering the reverse of ω if necessary), we can assume that u is in ω(κ,v2) and if u = v then ω
starts with a conclusion of v.

Consider the closed path c = ω(v1,κ) · γ · ω(u,v2) (see Fig. 1): c is non-empty since κ 6= u, and simple
by Lemma 2.2, hence it is a cycle. Moreover, it contains a conclusion of v: either u = v and ω(v1,κ) starts
with a conclusion of v, or both ω(v1,κ) and ω(u,v2) are non-empty, and one contains a conclusion of v. Since
ω ∈ Mv, c must have at least as many bridges as ω. As it cannot have a bridge at κ nor in γ (γ is strong
and bridge-free), we know that it contains a bridge at u and that ω(κ,u) is bridge-free. We then deduce that
γ ·ω(u,κ) is a strong bridge-free cycle: γ is strong and bridge-free, ω(u,κ) is bridge-free and there is no bridge at
u (u is a `-node and at most two of its incident arcs are premises). It is a switching cycle by Lemma 2.5.

We use the notation v ≺ κ when v is a `-node and κ is the pier of the first bridge of an element ofMv

starting with a conclusion of v. By definition, ≺ is irreflexive since κ is internal in a simple path (a cycle)
with source v.

Lemma 3.2. In a DR-correct proof structure, the transitive closure of ≺ is a strict partial order relation.

Proof. Assume we have a cyclic dependency v1 ≺ v2 ≺ · · · ≺ vn+1 = v1 (n ≥ 2). Each vi ≺ vi+1 provides a
cycle ωi ∈ Mvi with source vi and starting with its conclusion, and whose prefix γi = ωi(vi,vi+1) is a simple
strong-weak bridge-free path. Let γ be the concatenation of the γi’s (which is bridge-free by Lemma 2.3), it
contains a cycle σ by Lemma 2.4. Note that σ cannot be contained in a single γi: since γi is simple and ≺ is
irreflexive, no sub-path of γi is closed. Hence σ contains an internal occurrence of some vk (2 ≤ k ≤ n). We
focus on the smallest such k: ωk−1 ∈Mvk−1

and the suffix of σ starting from vk (which ends in γk−1 thus in
ωk−1) satisfy the hypotheses of Lemma 3.1, which contradicts DR-correctness.

Lemma 3.3 (Splitting `). A DR-correct proof structure is `-free or contains a splitting `-node.

Proof. If a DR-correct proof structure contains a `-node, then its set of `-nodes is finite and non-empty,
thus it contains a maximal element with respect to ≺ (Lemma 3.2). This `-node v is splitting. Otherwise
Mv is not empty, let ω ∈ Mv starting with a conclusion of v. Either ω is bridge-free and we contradict
DR-correctness (Lemma 2.5), or it contains a bridge and v is not maximal for ≺.

Theorem 3.4 (Sequentialization). Given a DR-correct proof structure ρ, there exists a proof π in MLLmix
hyp

such that ρ ' D(π).
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Proof. We use an induction on the number of vertices and arcs of ρ. If there is at least one `-node, there is
a splitting `-node v by Lemma 3.3. By removing v (with premises labeled A and B and conclusion labeled
A` B) from ρ (this means that we remove the vertex v but the set of arcs is not modified: the arcs which
had v as source or target do not have a source or a target anymore), we obtain two disjoint proof structures:
ρ1 with A and B as labels of some of its conclusions and ρ2 with a premise labeled A ` B. By induction
hypothesis, one gets a proof π1 such that D(π1) ' ρ1 and a proof π2 such that D(π2) ' ρ2. We add a (`)
rule to π1 and substitute the obtained proof in π2, obtaining a proof π satisfying D(π) ' ρ (Lemma 2.8).

If ρ is `-free, by DR-correctness, it is cycle-free as any cycle would be a switching cycle. If ρ contains
a ⊗-node, since the only vertices with premises are ⊗-nodes, ρ contains a terminal ⊗-node v. By removing
v (with premises labeled A and B and conclusion labeled A ⊗ B) from ρ together with its conclusion, we
obtain two disjoint proof structures ρ1 with A as label of one of its conclusions and ρ2 with B as label of one
of its conclusions. By induction hypothesis, one gets a proof π1 such that D(π1) ' ρ1 and a proof π2 such
that D(π2) ' ρ2. We add a (⊗) rule to them and we obtain a proof π satisfying D(π) ' ρ.

If ρ is `-free and ⊗-free, all vertices are terminal and must be ax -nodes. If ρ contains an ax -node v with
conclusions labeled A⊥ and A, by removing v together with its two conclusions, we obtain a proof-structure ρ1

and, by induction hypothesis, a proof π1 such that D(π1) ' ρ1. We build: π =

(ax)
` A⊥, A

π1
` Γ

(mix2)

` A⊥, A,Γ
which satisfies D(π) ' ρ.

If ρ is vertex-free, all its arcs have undefined source and target. If ρ contains an arc a labeled A, by
removing a, we obtain a proof-structure ρ1 and, by induction hypothesis, a proof π1 such that D(π1) ' ρ1.

We build: π = ` A
π1
` Γ

(mix2)
` A,Γ

which satisfies D(π) ' ρ. If ρ is empty, ρ ' D
(

(mix0)
`

)
.

4 Variations

Now that we have sequentialization/desequentialization for full MLLmix
hyp , we can consider some restrictions

to specific sub-systems, and characterize sub-systems of the sequent calculus by means of properties of their
image in proof structures. A proof π is closed (i.e. with no hypothesis) if and only if D(π) is hypothesis-free
(i.e. the source function s is total).

Given some DR-correct proof structure ρ, theDR-connectivity degree d(ρ) is the number of connected
components of any of the graphs obtained by removing a premise of each `-node (note that d(ρ) does not
depend on the choice of removed premises). Given a proof π, one can check that d(D(π)) = 1+#mix 2−#mix 0
(where #mix i is the number of (mix i) rules). Conversely, depending on d(ρ), we can transform the proofs
π such that ρ ' D(π) to obey some constraints on mix -rules, without changing their image by D. Indeed,
there is a natural transformation of proofs

` Γ
(mix0)

`
(mix2)

` Γ
 ` Γ

(mix0)
` ` Γ

(mix2)
` Γ

 ` Γ

which we callmix-Rétoré reduction. It is a confluent and strongly normalizing rewriting system on proofs.
Moreover, if π2 is obtained from π1 by a sequence of mix-Rétoré reductions then D(π1) ' D(π2). If π is a
mix-Rétoré normal form, either it is reduced to an application of the (mix 0) rule, or it does not contain the
(mix 0) rule and it proves a non-empty sequent. In this case, π contains (mix 0) if and only if D(π) is empty,
and π contains (mix 2) if and only if d(D(π)) > 1. Combined with Theorem 3.4, we obtain:

Theorem 4.1 (Connected sequentialization). Given a connected DR-correct proof structure ρ ( i.e. d(ρ) =
1), there exists a mix-free proof π such that ρ ' D(π).

Our approach can also be extended to richer systems. As usual in the theory of proof nets, dealing
with cuts is easy once we know how to deal with (⊗) rules. Dealing with additive connectives in the spirit
of [HG05] requires more work but can be done with a generalization of our approach relying on Lemma 3.1.
In the spirit of recent results relating sequentialization of proof nets with results of graph theory [Ngu20], a
colored version of the bungee jumping lemma provides a new proof of Yeo’s theorem [Yeo97].
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