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DELAY-TOLERANT DISTRIBUTED BREGMAN PROXIMAL

ALGORITHMS

S. CHRAIBI, F. IUTZELER, J. MALICK, AND A. ROGOZIN

Abstract. Many problems in machine learning write as the minimization of a sum

of individual loss functions over the training examples. These functions are usually
differentiable but, in some cases, their gradients are not Lipschitz continuous, which

compromises the use of (proximal) gradient algorithms. Fortunately, changing the

geometry and using Bregman divergences can alleviate this issue in several applica-
tions, such as for Poisson linear inverse problems. However, the Bregman operation

makes the aggregation of several points and gradients more involved, hindering the

distribution of computations for such problems. In this paper, we propose an asyn-
chronous variant of the Bregman proximal-gradient method, able to adapt to any

centralized computing system. In particular, we prove that the algorithm copes with

arbitrarily long delays and we illustrate its behavior on distributed Poisson inverse
problems.

Distributed optimization; Asynchronous methods; Proximal algorithms; Bregman
divergence; Poisson inverse problems

1 Introduction

1.1 Context: distributed problems and lack of smoothness

Many problems in machine learning and signal processing involve the minimization of a
sum of functions measuring the loss between the model and the data points. This sum
form is highly practical when the data is distributed over several machines: the total
loss is simply the sum of the losses over each machine’s local data, and, similarly, the
gradient of the total loss is the sum of the machines’ local gradients. Thus, a central
machine can minimize the total loss using a first-order method by simply querying the
machines for their local gradients. Such a method is called synchronous since, at each
iteration, the central machine waits for all the machines to respond before proceeding to
a new query. Unfortunately, the time a machine takes to respond can vary a lot due to
network/communication issues, uneven data, or heterogeneous computing power. This
calls for asynchronous methods where the central machine updates the global model and
queries a new gradient, as soon as a machine responds. Despite their more involved anal-
ysis, asynchronous optimization methods have become popular thanks to their practical
efficiency. Indeed, having asynchronous exchanges is crucial in practice since then much
more iterations can be performed in the same time interval compared to synchronous
setups, see eg. the discussion in [15].
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Most existing analyses of asynchronous first-order methods assume that the functions
are smooth (ie. that their gradients are Lipschitz continuous). While such an assumption
often holds, several objectives of interest do not satisfy it, even though they are differ-
entiable; it is the case, for example, for recovery from quadratic measurements [11], and
Poisson inverse problems [8]. This lack of smoothness breaks down the usual “descent
lemmas” at the core of the analysis of first-order methods; see eg. [7, Chap. 10]. For-
tunately, for several problems of interest, including the two mentioned above, changing
the geometry can alleviate the issue of lack of smoothness. The idea is to use, instead
of Euclidean geometry, the geometry induced by so-called Bregman divergences [12, 5].
Indeed, a descent/contraction lemma can be obtained for functions that are smooth with
respect to a Bregman divergence [4], such as in the two examples above. This opens the
way for the application and analysis of first-order methods, as we recall in Section 2.2.
Our work in this paper can be included in this line of research: we develop and analyze
a distributed version of the Bregman proximal method of [4].

1.2 Asynchronous Bregman proximal-gradient in centralized set-up

We consider a centralized setup where a central machine coordinates asynchronously M
worker machines to solve an optimization problem of the form

min
x∈X

F (x) :=
1

M

M∑
i=1

fi(x) + g(x). (P)

We make no special assumption on the underlying system which can be completely
heterogeneous. In the optimization problem, each function fi is local to machine i, and
the central machine shares the search space X ⊂ Rn and a regularization function g. We
focus on the case where g is convex and lower semi-continuous (lsc), and that fi : X → R
is convex and differentiable – but not necessarily smooth (ie. we do not assume that the
gradients are Lipschitz continuous on X ).
The lack of smoothness ruins the theoretical properties of existing asynchronous dis-
tributed proximal-gradient algorithms (see e.g., [18, 23] and references therein) in the
same way that it ruins the convergence of standard (non-distributed) proximal gradient
methods (which has led to the works of [4] and [17]). In particular, [4] proposes a Breg-
man proximal-gradient method that fits our assumptions. However, an asynchronous
distributed version of this method still has to be designed and analyzed, and this is what
we propose in this paper.

More specifically, we use the tools developed in [4] to extend the asynchronous proximal-
gradient algorithm of [18] when the local functions fi are not smooth in the Euclidean
geometry, but rather in an adapted Bregman geometry. The resulting Bregman proximal-
gradient algorithm copes with flexible asynchronous communications, and we analyze its
convergence under mild assumptions on both the functions and the computing setup.
First, we rely on the same set of assumptions as in [4] on the functions which enable
us to control the Bregman divergence between iterates and the solution. This change of
metric (and in particular the loss of symmetry) introduces technical challenges compared
to [18, 23] which rely on controlling the Euclidean distance. Second, we pay special
attention to having realistic assumptions on communication delays to cover a diversity
of the scenarios included in this framework (e.g. computing clusters, mobile devices): we
do not assume that the delays between communications are bounded and we only assume
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that all workers eventually communicate with the central machine, as per the definition
of totally asynchronous methods by Bertsekas and Tsitsiklis’ classification [9, Chap. 6.1].
To the best of our knowledge, most papers on asynchronous distributed methods rely on
a bounded delay assumption; exceptions include [22, 15, 16, 19, 18] but they rely on the
smoothness of the objective that we do not have here.

The outline of the paper is as follows. In Section 2, we introduce the notation and recall
the ideas of, both, Bregman smoothness [4] and standard asynchronous proximal-gradient
algorithms [23, 18]. In Section 3, we present our asynchronous Bregman algorithm, by
adapting the developments of the Euclidean setting. Then we analyze in Section 4 the
well-posedness and the convergence of our algorithm. Notably, we prove convergence
for a fixed stepsize, independent of the computing system (in particular independent of
delays in the system). Finally, we provide, in Section 5, numerical illustrations of the
behavior of the algorithm on distributed Poisson inverse problems.

2 Notation and recalls on proximal-gradient and Bregman

geometry

This section introduces the notation used in this paper and recalls the main notions and
ideas. Section 2.1 presents the natural splitting of the proximal-gradient method that
serves as a basis for the developments of the next section. It also introduces important
notation about delays that will be constantly used in the sequel. Section 2.2 presents
how Bregman smoothness can replace the usual smoothness as a fundamental tool for
convergence analysis.

2.1 From proximal-gradient to asynchronous optimization

A natural rationale to distribute algorithm is to first endow each worker with a copy xi of
the global variable and impose a consensus through the indicator function ιC : XM → R
defined as

ιC(x1, . . . , xM ) = 0 if xi = xj for all i, j and +∞ elsewhere. (1)

Mathematically, we end up with the following problem equivalent 1 to (42)

min
(x1,...,xM )∈XM

1

M

M∑
i=1

fi(xi) + g(xi) + ιC(x1, . . . , xM ) (2)

in which the first term is differentiable while the two others are convex and lower semi-
continuous.

Such a problem naturally calls for proximal gradient methods (where the differentiable
part of the objective is iteratively replaced by a quadratic model). Specifically, for a
given step size γ

(xk
1 , . . . , x

k
M ) = argmin

(x1,...,xM )∈XM

{
1

M

M∑
i=1

(
fi(x

k−1
i ) + ⟨xi − xk−1

i ;∇fi(xk−1
i )⟩+ . . .

· · ·+ 1

2γ

∥∥xi − xk−1
i

∥∥2 + g(xi)

)
+ ιC(x1, . . . , xM )

}
(3)

1Equivalent here means that x⋆ is a solution of (P) if and only if (x⋆, . . . , x⋆) is a solution of (2).
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where the particular form of ιC immediately leads to xk
1 = · · · = xk

M . Thus we have, for
all i ∈ 1, . . . ,M ,

xk
i = argmin

x∈X

{
g(x) +

1

M

M∑
i=1

(
fi(x

k−1
i ) + ⟨x− xk−1

i ;∇fi(xk−1
i )⟩+ 1

2γ

∥∥x− xk−1
i

∥∥2)}
(4)

= argmin
x∈X

g(x) +

∥∥∥∥∥x− 1

M

M∑
i=1

(
xk−1
i − γ∇fi(xk−1

i )
)∥∥∥∥∥

2
 . (5)

In terms of distributed optimization, this means that the central machine has to gather
the gradient steps of all the workers (xk−1

i − γ∇fi(xk−1
i )), average them, and perform a

proximal operation for g on X to get the next iterate, then send the result to all workers.
This algorithm is by construction completely synchronous.

Let us now derive an asynchronous version of this algorithm. To do so, we need some
notation, introduced below and illustrated in Figure 1. First, we call iteration (or time)
k the moment of the k-th exchange between a worker and the central machine. Second,
we denote by dki the delay suffered by worker i at time k, defined by the number of
iterations since worker i last exchanged with the central machine. We also define the
second-order delay for worker i and time k by

Dk
i = dki + d

k−dk
i −1

i + 1. (6)

These two delays allow us to handle, at each time k, the worker i’s gradient previously
received by the central machine at the last exchange k − dki , which was itself computed

at a point of the second last exchange xk−Dk
i .

To get an asynchronous variant of (5), the iteration has to be modified as follows. Regard-

ing the use of gradient, an asynchronous version has to replace ∇fi(xk−1) by ∇fi(xk−Dk
i )

in the iteration. Regarding the base point, there are two possibilities:

• either it is kept at the last iterate xk−1, which leads to the update of the proximal
incremental aggregated gradient (PIAG) method [2, 23]:

xk = argmin
x∈X

g(x) +

∥∥∥∥∥x− 1

M

M∑
i=1

(
xk−1 − γ∇fi(xk−Dk

i )
)∥∥∥∥∥

2
 ; (7)

• or it is set to the point corresponding to the gradient computation xk−Dk
i , which

leads to the update of DAve-PG [19, 18]:

xk = argmin
x∈X

g(x) +

∥∥∥∥∥x− 1

M

M∑
i=1

(
xk−Dk

i − γ∇fi(xk−Dk
i )
)∥∥∥∥∥

2
 . (8)

For our analysis, we focus here on the second option which is often faster in the Euclidean
case, as shown in [18, Sections 2.4 and 3.4]). We will come back to this distinction in
the numerical illustrations.
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time
updating worker i = i(k) i
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i
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i

ii

time
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k
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...
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M
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Figure 1. Asynchronous distributed setting and notation. Top: As
soon as a worker finishes its computation, it sends its updates to the
master, gets a new query point, and proceeds to the next computation.
Bottom about delays notation: dki is the delay suffered by worker i at
time k defined as the number of iterations since worker i last exchanged
with the master (the exchanging worker i = i(k) has no delay); the
second-order delay is Dk

i corresponds to the second-last exchange.

2.2 Descent with and without smoothness

Smoothness is a central property to obtain functional descent and contraction in first-
order methods [20, 7]. Let a function f : Rn → R be convex and differentiable. If f is
furthermore L-smooth, which means

∇f is L-Lipschitz continuous or, equivalently, L∥ · ∥22/2− f is convex, (9)

then we have that (see eg. [7, Lem. 5.])

f(y) ≤ f(x) + ⟨y − x;∇f(x)⟩+ L

2
∥y − x∥22 for all x, y ∈ Rn (10)

Thus the gradient step, defined as

pγ(x) = argmin
y

{
f(x) + ⟨y − x;∇f(x)⟩+ 1

2γ
∥y − x∥22

}
, (11)

= x− γ∇f(x), (12)

grants both descent and contraction (see eg. [6, Th. 18.15]): for all x ∈ Rn and for a
minimizer x⋆ of f , we have

f(pγ(x)) ≤ f(x)− γ

(
1− Lγ

2

)
∥∇f(x)∥22, and (13)

∥pγ(x)− x⋆∥22 ≤ ∥x− x⋆∥22 − γ

(
2

L
− γ

)
∥∇f(x)∥22 . (14)
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When smoothness is not present, these inequalities do not hold anymore, which hinders
the analysis of gradient methods. Fortunately, for a function f : X → R, convex and
differentiable on the interior of X , some smoothness can be obtained by comparing it to
a Bregman function; see eg. [21, Ch. 26].

Assumption 1 (Bregman regularizer). The function h : Rn → R satisfies the following
conditions: h is proper, lower semi-continuous, and convex; domh = X ; h is of Legendre
type2.

Under this assumption, we have that dom ∂h = int domh and that for all x ∈ int domh,
∂h(x) = {∇h(x)}. Building on this function h, we can define the Bregman distance [12]

Dh(x, y) = h(x)− h(y)− ⟨∇h(y), x− y⟩ (15)

for any x ∈ domh and any y ∈ int domh. We also define Bregman gradient steps [1] for
x ∈ int domh, similarly as (11), by

pγ(x) = argmin
y∈domh

{
f(x) + ⟨y − x;∇f(x)⟩+ 1

γ
Dh(y, x)

}
(16)

= argmin
y∈domh

{h(y) + ⟨y; γ∇f(x)−∇h(x)⟩} . (17)

The simple yet powerful idea of [4] is then to compare f to h in order to extend smooth-
ness (9) beyond the Euclidean case: if there is an L > 0 such that Lh− f is convex on
int domh, then [4, Lem. 1]

f(y) ≤ f(x) + ⟨y − x;∇f(x)⟩+ LDh(y, x) for all x, y ∈ int domh. (18)

Therefore, counterparts of (14) hold

f(pγ(x)) ≤ f(x)− 1

γ
Dh(x, pγ(x))− (1− γL)Dh(pγ(x), x), and (19)

Dh(x
⋆, pγ(x)) ≤ Dh(x

⋆, x)− (1− γL)Dh(pγ(x), x) (20)

for all x ∈ int domh and x⋆ a solution of minX f ,3 see eg. [4, Lem. 5].

Example 1 (Nonnegative linear regression). Let A ∈ Rm×n
+ be matrix with non-null rows

(ai)i∈1,...,m, b ∈ Rm
++ a positive output vector. Nonnegative linear regression minimizes

the generalized Kullback-Leibler divergence between a linear model Ax, with x ∈ X = Rn
+,

and the output b (see eg. [4, Sec 5.3]).

min
x∈Rn

+

f(x) := KL(Ax, b) (21)

Where for v, u ∈ Rm
+ , KL(v, u) =

∑m
i=1 vi log vi/ui − vi + ui and KL(0, u) = ∥u∥1, by

continuous extension. We see that f is differentiable on intX , but it is not smooth. It is
however smooth relative to the Boltzmann-Shannon entropy (h(x) =

∑n
j=1 xj log xj with

domh = X ), since by [4, Lem. 8], Lh− f is convex on int domh with

L = max
j

m∑
i=1

aij . (22)

2We recall that a Legendre function is differentiable and strictly convex on int domh with

∥∇h(xk)∥ → +∞ for (xk) of int domh converging to a boundary point of domh.
3Here, we use explicitly that domh = X .
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Since ∇f(x) =
∑m

i=1 ai log(⟨ai, x⟩/bi) and ∇h(x) = 1 + log(x), the Bregman gradient
operator pγ(x) = argminy∈domh{h(y)+⟨y; γ∇f(x)−∇h(x)⟩} can be computed coordinate-
wise and we obtain that for any x ∈ int domh,

[pγ(x)]j = argmin
y≥0

{
y log y + y

(
γ

m∑
i=1

aij log

( ⟨ai, x⟩
bi

)
− 1− log(xj)

)}
(23)

= xj exp

(
−γ

m∑
i=1

aij log

( ⟨ai, x⟩
bi

))
=

xj∏m
i=1

(
⟨ai,x⟩

bi

)γ aij
. (24)

Hence, pγ(x) ∈ int domh and brings functional descent and contraction from (20) with
γ ≤ 1/L given by (22). Note that the objective admits a unique minimizer on X when
A is full-rank. In this case indeed, observe first that f is coercive which proves the
existence of a minimizer on X . Second, considering two minimizers x1, x2 of f on Rn

+,
the strict convexity of v 7→ KL(v, u) implies that x1 − x2 ∈ kerA = {0}, which shows the
uniqueness. ◀

3 Asynchronous Bregman proximal gradient

3.1 Assumptions

In the framework introduced in the previous section, we present our algorithm for solving
(42), under the following assumptions. First, we need to assume that the problem has
minimizers, which can be done by constraining X to be closed and convex and g to be
lower semi-continuous, and proper.

Assumption 2 (On the problem). The following conditions hold:

i. the constraint set X ⊆ Rn is closed4 and convex with a non-empty interior;

ii. the function g is proper, lsc, convex, with dom g ∩ intX ̸= ∅ ;
iii. the minimizers of (P) form a non-empty compact set in X .

We also formalize our assumption that the local functions fi of the problem are smooth
with respect to the Bregman divergence generated by h in the sense of [4].

Assumption 3 (On the functions (fi)). For every i = 1, . . . ,m, we assume that the
X → R function fi verifies:

i. fi is proper, lower semi-continuous, and convex;

ii. fi is differentiable on int domh;

iii. fi is L-smooth with respect to h, ie. Lh− fi is convex on int domh.

As we will see in Section 4.1, this set of assumptions ensures that the Bregman steps at
the core of our development are well-defined.

4The closedness, combined with Assumption 1, implies that domh is closed, which is not always

assumed in the case of optimization with Bregman divergences. In our case, it will be helpful to
characterize pointwise convergence (as in eg. [4, Th. 2 ii]) since functional decrease is out of reach in

our case (see [18]).
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3.2 From Bregman proximal gradient to asynchronous optimization

We now take another look at problem (2) by considering a Bregman proximal gradient
method. We can perform steps of the form

(xk
1 , . . . , x

k
M ) = argmin

(x1,...,xM )∈XM

{
1

M

M∑
i=1

(
fi(x

k−1
i ) + ⟨xi − xk−1

i ;∇fi(xk−1
i )⟩+ . . .

· · ·+ 1

γ
Dh(xi, x

k−1
i ) + g(xi)

)
+ ιC(x1, . . . , xM )

}
(25)

where the particular form of ιC immediately leads to xk
1 = · · · = xk

M , and therefore, for
all i ∈ 1, . . . ,M ,

xk
i = argmin

x∈X

{
g(x) +

1

M

M∑
i=1

(
fi(x

k−1
i ) + ⟨x− xk−1

i ;∇fi(xk−1
i )⟩+ 1

γ
Dh(x, x

k−1
i )

)}
(26)

= argmin
x∈X

{
γg(x) + h(x) +

〈
x;

1

M

M∑
i=1

(
γ∇fi(xk−1

i )−∇h(xk−1)
)〉}

. (27)

We obtain an asynchronous variant of this iteration by following the same steps as in

section 2.2. First we replace ∇fi(xk−1) by ∇fi(xk−Dk
i ) for each worker i. Second, we

have two choices for replacing ∇h(xk−1):

• either it is kept at the last iterate xk−1, which leads to the Bregman version of
the PIAG method, which appears in [2, Sec. V]:

xk = argmin
x∈X

{
γg(x) + h(x) +

〈
x;

1

M

M∑
i=1

(
γ∇fi(xk−Dk

i
i )−∇h(xk−1)

)〉}
(28)

• or, as prescribed here, we set it to the point corresponding to the gradient com-

putation xk−Dk
i , which leads to:

xk = argmin
x∈X

{
γg(x) + h(x) +

〈
x;

1

M

M∑
i=1

(
γ∇fi(xk−Dk

i
i )−∇h(xk−Dk

i )
)〉}

. (29)

We consider here the second option, inspired by the better results of [18] for the Euclidean
case. Note also that the theory developed in [2] for the first option is based on the strong
assumption that the divergence Dh should be lower and upper bounded by the squared
Euclidean distance, which is not the case in Example 1 for example.

3.3 Algorithm & Practical implementation

We are now ready to state our asynchronous Bregman proximal-gradient algorithm.
First, the central machine initializes x0 ∈ int domh and sends it to all workers. Then,
the central machine keeps track of the quantity

uk :=
1

M

M∑
i=1

γ∇fi(xk−Dk
i )−∇h(xk−Dk

i )︸ ︷︷ ︸
:=uk

i

(30)



DELAY-TOLERANT DISTRIBUTED BREGMAN PROXIMAL ALGORITHMS 9

where uk
i corresponds to the last contribution of agent i, received at time k − dki (hence

uk
i = uk−1

i = · · · = u
k−dk

i
i ), which results from its local computation from point xk−Dk

i .

A key feature of our algorithm emerges here: regardless of each worker’s response delay
Dk

i , their contribution to the central node’s aggregate uk remains constant. As we will
illustrate in our subsequent analysis, this allows us to select a constant step-size γ that
is independent of any hypothetical bound on these delays.

Along the algorithm, an iteration is triggered as soon as the central machine receives a
communication. At the k-th iteration, with an incoming call from worker i, the central
machine:

• receives a contribution ui from agent i,

• updates uk by setting uk
i = ui and uk

i′ = uk−1
i′ for all i′ ̸= i,

• computes the new point

xk = argmin
x∈X

{
h(x) + γg(x) +

〈
uk, x

〉}
(31)

• sends xk to agent i.

This algorithm is described in Algorithm 1, where the workers communicate only the
adjustments between two iterates (to avoid storing all ui at the central machine).

Algorithm 1 Asynchronous Bregman proximal-gradient algorithm

Central machine:

Initialize u, k = 0
Send u to all workers
while not stopped do

when a worker finishes:
Receive adjustment ∆ from it
u← u+ ∆

M

x← argmin
x∈X

h(x) + γg(x) + ⟨u, x⟩
Send x to the agent in return
k ← k + 1

end
Interrupt all slaves
Output x

Worker i:

Initialize u = u
while not interrupted by central ma-
chine do

Receive the most recent x
u+ ← γ∇fi(x)−∇h(x)
∆← u+ − u
u← u+

Send adjustment ∆ to central ma-
chine

end

4 Analysis of the algorithm

The analysis of the algorithm described in the last section consists of two parts, to which
the next two subsections are devoted: we establish first that the iterates are well-defined,
and second that they converge to the minimum of (42), under no specific assumption on
the computing system.
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4.1 The algorithm is well-defined

To show that the iterates produced by Algorithm 1 are valid, we first show a generic result
on the Bregman proximal gradient operator, which is at the core of our developments.

The proof of this result simply consists in applying, in the product space×M
i=1 X , the

general well-posedness result of Bregman proximal gradient operator of [4, Lemma 2].

Lemma 1 (Well-posedness). Let Assumptions 1 to 3 hold. For any stepsize γ > 0 and

any vector y = (y1, . . . , yM ) ∈×M
i=1 int domh, the operator

Tγ(y) := argmin
x∈X

{
γg(x) + h(x) +

〈
x;

1

M

M∑
i=1

(γ∇fi(yi)−∇h(yi))
〉}

(32)

is non-empty and single-valued in int domh.

Proof. Let γ > 0 and y = (y1, . . . , yM ) ∈×M
i=1 int domh, let us define the operator

Tγ(y) := argmin
x∈×M

i=1 X

{
1

M

M∑
i=1

g(xi) +
1

M

M∑
i=1

[fi(yi) + ⟨∇fi(yi), xi − yi⟩] + . . .

· · ·+ 1

γM

M∑
i=1

Dh(xi, yi) + ιC(x)

}
(33)

with ιC the consensus indicator defined by (1). By applying the same reasoning as in
section 3.2, it is easy to see that Tγ(y) = (Tγ(y), . . . , Tγ(y)).

Under Assumptions 1 to 3, we have that i) x 7→ ιC(x) +
1
M

∑M
i=1 g(xi) is proper,

lsc., and convex on×M
i=1 X ; ii) x 7→ 1

M

∑M
i=1 h(xi) is Legendre on×M

i=1 X ; iii) x 7→
1
M

∑M
i=1 fi(xi) is proper, lsc., convex, and differentiable on int domh; iv) dom ιC ∩

(dom g)M ∩×M
i=1 int domh ̸= ∅; and v) the problem infx∈X{ιC(x) + 1

M

∑M
i=1(f(xi) +

g(xi))} has a non-empty compact solution set. These conditions enable us to apply [4,

Lem. 2] which gives that Tγ(y) is non-empty, single-valued, and maps×M
i=1 int domh

to×M
i=1 int domh. In turn, we obtain that Tγ(y) is non-empty and single-valued in

int domh. □

Thus, noticing that in our algorithm, the central machine generates a new iterate xk, as

the point produced by applying Tγ to yk = (xk−Dk
1 , . . . , xk−Dk

M ), ie.

xk = Tγ(y
k) = argmin

x∈X

γg(x) + h(x) +

〈
x;

uk︷ ︸︸ ︷
1

M

∑
i=1

(
γ∇fi(xk−Dk

i )−∇h(xk−Dk
i )
)

︸ ︷︷ ︸
:=uk

i

〉 .

(34)

Thus Lemma 1 implies that our algorithm is well-defined, from an initial iterate x0 ∈
int domh. Indeed, the points (xk′

)k′<k were generated by the central machine and thus

belongs to int domh; in turn, the input at iteration k is yk = (xk−Dk
1 , . . . , xk−Dk

M ) and
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belongs to×M
i=1 int domh. The algorithm is thus well defined and produces points in

int domh.

4.2 Convergence result

We now focus on the convergence of the algorithm, established in forthcoming Theo-
rem 1. The proof of convergence consists in carefully combining the contraction results
of Bregman operators [13, 4] together with the techniques developed in [18] for the asyn-
chronous proximal algorithms.

Lemma 2 (Contraction). Let Assumptions 1 to 3 hold. For any stepsize γ > 0 and any

vector y = (y1, . . . , yM ) ∈×M
i=1 int domh, and any u ∈ X ,

Dh(u, Tγ(y)) ≤
1

M

M∑
i=1

Dh(u, yi)−
1− γL

M

M∑
i=1

Dh(Tγ(y), yi)− γ(F (Tγ(y))− F (u)).

(35)

Proof. The proof follows the same reasoning as the one of Lemma 1: working on the
product space and deriving properties on the operator Tγ . By applying [4, Lem. 5]
(whose assumptions are verified as in Lemma 1) with (u, . . . , u) ∈ XM and Tγ(y),

1

M

M∑
i=1

Dh(u, [Tγ(y)]i) ≤
1

M

M∑
i=1

Dh(u, xi)−
1− γL

M

M∑
i=1

Dh([Tγ(y)]i, yi) . . .

· · · − γ

(
ιC(Tγ(y)) +

1

M

M∑
i=1

fi([Tγ(y)]i) + g([Tγ(y)]i) . . .

· · · − ιC(u, . . . , u)−
1

M

M∑
i=1

fi(u) + g(u)

)
(36)

and then, since Tγ(y) = (Tγ(y), . . . , Tγ(y)), we obtain the claimed result. □

Since any solution x⋆ of (P) belongs to domh = X , applying Lemma 2 to the iterates
produced by our algorithm with u = x⋆ shows that for all k,

Dh(x
⋆, xk) ≤ 1

M

M∑
i=1

Dh(x
⋆, xk−Dk

i )− 1− γL

M

M∑
i=1

Dh(x
k, xk−Dk

i ) . . . (37)

· · · − γ
(
F (xk)− F (x⋆)

)
(38)

which is central in the proof of the following convergence result. The pointwise conver-
gence arguments in the proof of this result are based on Opial-type arguments for which
the following additional condition is needed. This assumption is verified for many usual
divergences, including the Boltzmann-Shannon entropy, the Hellinger distance, etc. It
corresponds to assumption H in [4].

Assumption 4 (Level boundedness and limit). For any x ∈ domh and t ∈ R, the
set {y ∈ int domh : Dh(x, y) ≤ t} is bounded. In addition, xk → x if and only if
Dh(x, x

k)→ 0.
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A key feature of the algorithm is that its convergence does not rely on prior knowledge
or assumptions on the answering delays. It is only expected that the workers are never
dropped, meaning that they all have a finite answering time. Let us introduce this
assumption formally.

To do so we need to define the concept of “epoch” denoted m ∈ N, and of the first
iteration km of an “epoch” m (drawing from [19]).

• An iteration k belongs to epoch m if it falls in the range km ≤ k < km+1

• The epoch m starts at 0 (together with k) and is incremented whenever the
central node has made at least one full interaction with each worker during the
current epoch. Namely, whenever all workers have answered at least one query
sent after km. Since at iteration k, the most recent computation by a worker i was
requested at iteration k−Dk

i , this condition therefore translates to km ≤ k−Dk
i :

km = min{k : at least 1 full interaction per worker since km−1} (39)

= min{k : k −Dk
i ≥ km−1 for all i = 1, ..,M}. (40)

Assumption 5 (Worker participation). Workers have a finite answering time, in other
words, m −→

k→+∞
+∞.

Note that when Assumption 5 does not hold, we have “a subset of workers ceases to
respond” and this leads to a different problem: in such cases, the non-responsive workers
can be discarded, and the analysis is restricted to the active workers.

We are now ready to formulate the main result of this paper, namely, the convergence
of our asynchronous algorithm.

Theorem 1 (Convergence). Let Assumptions 1 to 5, hold and fix γ ∈ (0, 1/L). If (P)
has a unique minimizer x⋆, then the sequence (xk) generated by Algorithm 1 converges
to x⋆.

Proof. Let us start with using (37). Since γ ∈ (0, 1/L), we can disregard the second

term involving Dh(x
k, xk−Dk

i ) which is negative. Then we get that for any k ≥ km the
following bound:

Dh(x
⋆, xk) + γ

(
F (xk)− F (x⋆)

)
≤ max

i
Dh(x

⋆, xk−Dk
i ) ≤ max

k′∈[km−1,k)
Dh(x

⋆, xk′
). (41)

In particular, for k = km, this implies

Dh(x
⋆, xkm) ≤ max

k′∈[km−1,km)
Dh(x

⋆, xk′
). (42)

Applying now (41) for k = km + 1, we obtain

Dh(x
⋆, xkm+1) + γ

(
F (xkm+1)− F (x⋆)

)
≤ max

{
Dh(x

⋆, xkm), max
k′∈[km−1,km)

Dh(x
⋆, xk′

)

}
(43)

≤ max
k′∈[km−1,km)

Dh(x
⋆, xk′

) (44)
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where we use (42) for the second inequality. Repeating this recursively, we obtain for all
k ∈ [km, km+1)(

0 ≤
)
Dh(x

⋆, xk) + γ
(
F (xk)− F (x⋆)

)
≤ max

k′∈[km−1,km)
Dh(x

⋆, xk′
). (45)

Observe that this bound yields

max
k∈[km,km+1)

Dh(x
⋆, xk) ≤ max

k′∈[km−1,km)
Dh(x

⋆, xk′
). (46)

In words, the non-negative sequence maxk∈[km,km+1) Dh(x
⋆, xk) is non-increasing and

thus converges to a non-negative value.

Consider now a sequence of time indices (lm) where the above maximum is attained:

lm ∈ arg max
k∈[km,km+1)

Dh(x
⋆, xk).

Since lm ∈ [km, km+1), we have

Dh(x
⋆, xlm) + γ

(
F (xlm)− F (x⋆)

)
≤ max

k∈[km,km+1)
Dh(x

⋆, xk) + γ
(
F (xk)− F (x⋆)

)
(47)

which gives, with the help of (45),

Dh(x
⋆, xlm) + γ

(
F (xlm)− F (x⋆)

)
≤ max

k′∈[km−1,km)
Dh(x

⋆, xk′
) = Dh(x

⋆, xlm−1

). (48)

By letting m→∞ in this inequality, we obtain

lim
m→∞

F (xlm) = F (x⋆). (49)

Since we have Dh(x
⋆, xlm) ≤ Dh(x

⋆, x0), Assumption 4 yields that (xlm) is bounded,
so that we can extract a sub-sequence that converges to a point x̃ ∈ domh. From
(49), x̃ must be a minimizer for F , and by uniqueness, we have x̃ = x⋆. Thus we
have Dh(x

⋆, xlm) −→m→∞ 0. This allows us to conclude from (45): the right-hand side
vanishes, so that Dh(x

⋆, xk)→ 0 and F (xk)→ F (x⋆).

□

5 Numerical illustrations

In this section, we take a look at the practical behavior of our asynchronous Breg-
man algorithm on a simple synthetic distributed problem. We provide an illustra-
tion of the convergence result and a comparison with competing algorithms. A com-
plete computational study is out of the scope of this paper. The numerical illus-
trations are operated in Julia [10] on a personal computer. We have packaged a
toolbox implementing the algorithms and the experiments; it is publicly available at
github.com/Selim78/distributed-bregman.

5.1 Experimental set-up

We illustrate our algorithm on a regularized non-negative linear regression problem,
which is a distributed variant of the problem of [4, Sec. 5.3] (see also [14]). It consists
in the minimization of the function of Example 1 with an additional ℓ1-regularization to
ensure that the problem has a unique minimizer. Let A ∈ Rm×n

+ be a sensing matrix and
b ∈ Rm

++ a positive output vector. Assume that we split the m samples of this dataset

github.com/Selim78/distributed-bregman
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on M workers (for simplicity, we consider in our experiments an even partition of m/M
examples). With aj representing the j-th row of A, the objective function writes

min
x∈Rn

+

1

M

M∑
i=1

 im
M∑

j=
(i−1)m

M +1

⟨aj , x⟩ log⟨aj , x⟩ − (log bj + 1)⟨aj , x⟩+ bj


︸ ︷︷ ︸

fi(x)

+λ∥x∥1. (50)

In practice, the data is generated as follows. We take n = 100 and m = 200; the rows
of matrix A are drawn from a uniform distribution in [0, 1). The vector b is generated
as b = Ax̄+ ϵ with a random positive x̄ plus a Poisson noise with rate 1. This problem
is distributed on M = 10 processes living in separate memory domains using Julia’s
Distributed module, which allows the control of process generation and communication
between processes. To simulate some heterogeneity between the workers, we artificially
slow down two workers by a factor 5 and 10 respectively.

We solve this problem with the three following Bregman algorithms using the Boltzmann-
Shannon entropy h(x) =

∑n
j=1 xj log xj (since the first part of the objective function is

L-smooth with respect to it with L as in (22) as discussed in Example 1):

• the synchronous algorithm based on the iteration (5) (called Synchronous),

• the asynchronous variant based on the iteration (28) (called Bregman-PIAG),

• our asynchronous variant (Algorithm 1).

We note that our asynchronous algorithm, as well as the synchronous one, is guaranteed
to converge with the standard stepsize γ < 1/L. In contrast, Bregman-PIAG has no
convergence guarantee, as recalled at the end of section 3.2. In practice, we run all
algorithms with, both, a theory-complying 0.99/L stepsize and a tuned stepsize.

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000

10−3

10−2

10−1

100

Iterations

D
h
(x

∗ ,
x
k
)

Algorithm 1

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000

10−2

10−1

100

Iterations

||x
∗
−

x
k
|| 2

Algorithm 1

Figure 2. Convergence with respect to the number of iterations, illus-
trating Theorem 1

5.2 Experimental results

In Figure 2, we show convergence of the iterates of Algorithm 1 (with γ = 0.99/L), as
guaranteed by Theorem 1. The two plots display a decrease of, respectively, Dh(x

k, x⋆)
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and ∥xk − x⋆∥2 over iterations5. We see on the plots that this decrease is mostly mo-
notonous; we note that the proof of Theorem 1 establishes monotonicity for the worst
Bregman divergence over epochs (46).

In Figure 3, we report the performance for the three algorithms described in the previous
section. Since iterations have two different meanings for asynchronous or synchronous
algorithms, we compare the convergence speed in terms of wallclock time. On the left-
hand plot, we use the theoretical stepsize γ for the three algorithms, and on the right-
hand plot, we use tuned stepsizes6. We notice a clear gain in performance with our
approach, in the two cases. Note finally that the instance of the problem, generated
as described in Section 5.1, is only weakly heterogeneous. We choose it on purpose to
compare our algorithm with two other algorithms in a situation that is not, apriori,
the best for our algorithm. Even better performances can be obtained for stronger
heterogeneity of the data or the system. A complete computational study is out of the
scope of this paper, which is mainly methodological.
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PIAG
Synchronous
Algorithm 1

0 2 4 6 8 10 12 14 16 18 20
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x
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PIAG (best γ)

Synchronous (best γ)

Algorithm 1 (best γ)

Figure 3. Comparison of our algorithm with two existing ones, with
respect to wall-clock time

6 Conclusions, perspectives

In this paper, we provided an asynchronous version of the Bregman proximal gradient
method. Building on efficient asynchronous methods for the Euclidean case and on
smoothness models adapted to Bregman geometries, we derive and analyze a method
that can handle any kind of delays, with a simple implementation using the same step
size as in the synchronous case. The light assumption on the delays combined with the
subtlety of Bregman geometry make the analysis rather involved: we were able to show
the convergence of our method whenever there is a unique minimizer to our problem;
nevertheless, we believe that finer results could be derived using the same proof template.
For instance, it may be possible to obtain a local convergence rate in the strongly convex
case using the Legendre exponent reasoning of [3].
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