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Introduction of the lecture

Fluid-structure vibrations occur in various situations, in aerospace, automotive, civil engi-

neering areas as well as in biomechanics. For a general overview of aerospace interior fluid-

structure problems, we refer for instance the reader to Abramson, 1966.

The computational aspects concerning the linear vibratory response of fluid-structure sys-

tems to prescribed loads may lead, for complex structures, to a prohibitive number of degrees

of freedom. In order to quantify the weak or strong interactions of the coupled fluid-structure

system, in order to carry out sensitivity analysis, in order to introduce interface appropriate

active/passive damping treatment (intelligent adaptive fluid-structure systems), reduced order

procedures are required. That is why concepts which have been introduced for structural dy-

namics, such as component mode synthesis, are presently revisited and adapted to some multi-

physic problems.

We review in this paper reduced order models for modal analysis of elastic structures con-

taining an inviscid fluid (gas or liquid). These methods, based on Ritz-Galerkin projection using

appropriate Ritz vectors, allow us to construct reduced models expressed in terms of physical

displacement vector field � in the structure, and generalized displacement vector � describing

the behaviour of the fluid. Those reduced models lead to unsymmetric (Craggs and Stead,

1976; Sung and Nefske, 1986) or symmetric generalized eigenvalue matrix system (Morand

and Ohayon, 1979, 1995; Ohayon, 2001) involving a reduced number of degrees of freedom for

the fluid. For this purpose, we construct symmetric matrix models of the fluid considered as a

subsystem, by considering the response of the fluid to a prescribed normal displacement of the

fluid-structure interface.

Two distinct situations are analyzed. On one hand, we consider linear vibrations of an elastic

structure completely filled with a compressible gas or liquid and on the other hand, we consider

the case of an elastic structure containing an incompressible liquid with free surface effects due

to gravity.

The first case is a structural acoustic problem. In the case of a structure containing a gas,

we consider a modal interaction between structural modes in vacuo and acoustic modes in rigid

motionless cavity. For a structure containing a compressible liquid, we consider a modal in-

teraction between hydroelastic modes including ”static” inertial and potential compressibility

effects and acoustic modes in rigid motionless cavity. Interface local fluid-structure dissipation

through a local wall impedance can also be introduced easily in the formulations.

The second case is a hydroelastic-sloshing problem with a modal interaction between incom-

pressible hydroelastic structural modes with incompressible liquid sloshing modes in rigid mo-

tionless cavity, involving an elastogravity operator related to the wall normal displacement of
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the fluid-structure interface, introduced initially, under a simplified approximate expression by

Tong, 1966, then analyzed through various derivations by Morand and Ohayon, chapter 6, 1995

and recently deeply analyzed theoretically and numerically by Schotté in his PhD dissertation

(Schotté and Ohayon, 2003, 2005).

For the construction of reduced models, the static behavior at zero frequency play an im-

portant role. Therefore, we review “regularized” variational formulations of the problem, in the

sense that the static behaviour must also be in taken into account in the boundary value prob-

lem. Those “quasi-static” potential and inertial contributions plays a fundamental role in the

Ritz-Galerkin procedure (error truncation).

The general methodology corresponds to dynamic substructuring procedures adapted to

fluid-structure modal analysis. For general presentations of computational methods using ap-

propriate finite element and dynamic substructuring procedures applied to modal analysis of

elastic structures containing inviscid fluids (sloshing, hydroelasticity and structural-acoustics),

we refer the reader for instance to Morand and Ohayon 1995.
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Structural-acoustic problem

Let us consider the linear vibrations of an elastic structure completely filled with an homo-

geneous, inviscid and compressible fluid. We also consider the particular case of a compressible

liquid with a free surface, negecting gravity effects.

After the derivation of the linearized equations of the fluid-structure coupled system, we

introduce a linear constraint in order to obtain a regularized problem at zero frequency, and

we then construct a reduced model of the fluid subsystem. Acoustic modes in rigid motionless

cavity are introduced as Ritz projection vector basis, including the static solution of the coupled

system. As this fluid-structure system has a resonant behaviour. a finite element computation of

the unreduced model may lead to prohibitive time costs. That is why, starting from one of the

possible variational formulations of the problem, convenient reduced symmetric matrix models

are reviewed.

1 Structural-acoustic equations

1.1 Structure subjected to a fluid pressure loading

We consider an elastic structure occupying the domain �� at equilibrium. The interior fluid

domain is denoted �� and the fluid-structure interface is denoted � (see Figure 1).

Ω

Ω Σ

Figure 1: Elastic structure containing a gas

The angular frequency of vibration is denoted as �. The chosen unknown field in the struc-

ture domain �� is the displacement field �. The linearized strain tensor is denoted as ������ and

the corresponding stress tensor is denoted as ������. We denote by �� the constant mass density

at equilibrium and by � the unit normal, external to the structure domain �� . Let Æ� be the test

function, associated to �, belonging to the admissible space ��.
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The weak variational formulation describing the undamped response � ����� of the struc-

ture �� to given harmonic forces of amplitude � � on the external structure boundary ��� � �,

and to fluid pressure field 	 acting on the internal fluid-structure interface� is written as follows.

For all � and �Æ� � ��, find � � �� such that

�
��� Æ�� � ��

�
��

�� ��Æ� 
��

�
�

	 ��Æ� 
� �

�
�����

� ��Æ� 
� ���

in which �
��� Æ�� � 
��� Æ�� 	 
���� Æ�� 	 
����� Æ�� �
�

and where 
��� Æ�� is the mechanical elastic stiffness such that


��� Æ�� �

�
��

������ ����Æ�� 
� ���

and where 
���� Æ�� and 
����� Æ�� are such that


���� Æ�� �

�
��

�����	
�Æ�	
� 
� � 
�� �

�
�

��������Æ� 
� ���

In equations (4) and (5), 
���� Æ�� represents the initial stress or geometric stiffness in sym-

metric bilinear form in which ��

�� denotes the stress tensor in an equilibrium state, and 
����� Æ��

represents an additional load stiffness in symmetric bilinear form due to rotation of normal �,

in which �� denotes the initial pressure existing in the reference equilibrium configuration. Fi-

nally, ����� represents the variation of normal � between the reference configuration and the

actual configuration.

1.2 Fluid subjected to a wall normal displacement

Since the fluid is inviscid, instead of describing the small motion of the fluid by a fluid displace-

ment vector field �� which requires an appropriate discretization of the fluid irrotationality con-

straint ���� �� � 
 (see for instance Bermudez and Rodriguez, 1994), ,we will use the pressure

scalar field 	. It should be noted that the displacement formulation is particularly convenient

for beam-type systems as the irrotationality condition is easily satisfied in the one-dimensional

case (Ohayon, 1986). that, the small movements corresponding to � �� 
 are obviously irrota-

tional, but, in the static limit case, i.e. at zero frequency, we consider only fluids which exhibit

a physical irrotational behavior.

Let us denote by � the (constant) sound speed in the fluid, and by �� , the (constant) mass

density of the fluid at rest (�� � ���� , where � denotes the bulk modulus). We denote as
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�� the domain occupied by the fluid at rest (which is taken as the equilibrium state). The

local equations describing the harmonic response of the fluid to a prescribed arbitrary normal

displacement ��� of the fluid-structure interface � are such that

�	� �� ���� � 
 ��� ���

	 � ��� ������ ��� ���

�� �� � ��� �� ���

���� �� � 
 ��� ���

Equation (5) corresponds to the linearized Euler equation in the fluid. Equation (6) cor-

responds to the constitutive equation of the fluid (we consider here a barotropic fluid which

means that 	 is only a function of �� ). Equation (7) corresponds to the wall slipping condition.

Equation (8) corresponds to the irrotationality condition, only necessary in order to ensure that

when � � 
, �� tends to static irrotational motion, which corresponds to the hypothesis that

for � � 
, we only consider irrotational motions (for simply connected fluid domain).

A displacement potential � defined up to an additive constant chosen for instance as follows�
��

�
� � 
 can be therefore introduced in order to recast the system defined by equations

(5-8) into a scalar one. These aspects will be discussed below.

Relation between static pressure 	� and ���

For � � 
, equations (6) and (7) lead to a constant static pressure field 	� which is related

to the normal wall displacement by the relation

	� � �
�� ��

��� �

�
�

��� 
� ���

in which ��� � denotes the measure of the volume occupied by domain �� .

This constant pressure field have been used as an additional unkown field in direct vari-

ational symmetric formulation using either a velocity potential formulation (Everstine, 1981)

with �� or �� additional terms (Olson and Vendini, 1989), or in direct symmetric formula-

tions of classical generalized eigenvalue leading to finite element discretized system of the type

(�� � �� ��) with symmetric real matrices (Felippa and Ohayon, 1990a, 1990b; Morand

and Ohayon, 1995a, 1995b).
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1.3 Equations in terms of � or � and ���

The elimination of �� between equations (5), (6), (7) and (8) leads to

��		
��

��
	 � 
 ��� ��
�

�	

��
� ���

���� �� ����

with the constraint

�

�� ��

�
��

	 
�	

�
�

��� 
� � 
 ��
�

Equation (10) is the classical Helmholtz equation expressed in terms of 	. Equation (11)

corresponds to the kinematic condition defined by equation (7):

�	��� � ��� ��� �� � ���
���� ��

The linear constraint defined by equation (12) corresponds to the global mass conservation

which ensures that the boundary problem defined by equations (10) to (11) is equivalent to the

problem defined by equations (5) to (8). In the absence of the condition defined by equation

(12), we would obtain a boundary value problem in terms of 	 which is not valid for � � 
 and

which does not allow us to retrieve the value of 	� given by equation (9).

Using equations (8-9), the boundary value problem defined by equations (10-12) can be

recasted into the following equivalent one using the displacement potential field � introduced

above such that 	 � ���
��	 	������ with

�
��

�
� � 


���	
��

��
��

�

��� �

�
�

��� 
� � 
 ��� ��
��

��

��
� ��� �� �����

with the constraint �
��

�
� � 
 ��
��
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The two boundary value problems expressed in terms of 	 or in terms of � are well-posed

in the static case (� � 
). They have been used, with further transformation, leading to appro-

priate so-called ��� 	� �� symmetric formulations with mass coupling (leading to a final ��� ��

formulation as described by Morand and Ohayon, chapter 8, 1995) or with stiffness coupling

(Sandberg and Goransson, 1988; Morand and Ohayon, chapter 8, 1995).

1.4 Variational formulation in terms of ��� ��

Let Æ	 be the test function, associated to 	, belonging to the admissible space ��. The weak

variational formulation corresponding to equations (10) to (12) is obtained by the usual test-

function method using Green’s formula. The weak variational formulation corresponding to the

structural acoustic problem is then stated as follows. Given � and � �, find � � �� and 	 � ��,

such that for all Æ� � �� and Æ	 � ��, we have

�
��� Æ��� ��

�
��

�� ��Æ� 
��

�
�

	 ��Æ� 
� �

�
�����

� ��Æ� 
� ����

�

��

�
��

�	��Æ	 
��
��

�� ��

�
��

	Æ	 
�� ��

�
�

���Æ	 
� � 
 ����

with the constraint

�

�� ��

�
��

	 
�	

�
�

��� 
� � 
 ����

The variational formulation defined by equations (13), (14) and (15), due to the presence

of the constraint defined by equation (15) which regularizes the ��� 	� formulation, is therefore

valid in the static case. In effect, usually, only equations (13) and (14) are written, and as pointed

out above, are not valid for � � 
. In the case of a finite element discretization of equations

(13), (14) and (15), we obtain a matrix system of the type �� � ���� � ��, in which �

and � are not symmetric. Some direct matrix manipulations may lead to symmetrized systems

(Irons, 1970, see also Felippa et al, 1990). As explained above, that is why various symmetric

formulations using for the fluid pressure field 	 and displacement potential �, defined up to an

additive constant and such that �� � ��, have been derived. The resulting symmetric formu-

lations are then obtained by elimination of 	 or �. In the present case, we are not considering

a direct finite element approach of the variational formulation defined by equations (13), (14)

and (15).
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1.5 Symmetric reduced model

We will consider hereafter a dynamic substructuring approach through an appropriate decom-

position of the admissible class into direct sum of admissible vector spaces (see Figure 2).

+

Ω Ω Ω

Ω Ω

Figure 2: Dynamic substructuring scheme

Let us consider the following two basic problems. The first one corresponds to the acoustic

modes in rigid motionless cavity and is obtained by setting � � 
 into equations (14) and (15).

The calculation of these acoustic modes is generally done by using a finite element procedure.

If we introduce the admissible subspace ��
� of ��

��� �

�
	 � ���

�
��

	 
� � 


�
� ����

the variational formulation of acoustic modes is stated as follows: find � � � 
 and 	 � ��� such

that, for all Æ	 � ��� , we have

�

��

�
��

�	��Æ	 
� � ��
�

�� ��

�
��

	Æ	 
� ����

with the constraint �
��

	 
� � 
 ����

It should be noted that, in practice, we proceed as follows: the constraint condition (18)

is “omitted” which means that that we only modify the initial acoustic problem by adding a

first non physical zero frequency constant pressure mode, the other modes corresponding to

� �� 
 remaining the same as those defined by equations (17) and (18). In this new acoustic

problem without equation (18), it can be easily seen that the condition defined by equation (18)

can be considered as an orthogonality condition between all the modes and the first constant

non physical mode corresponding to � � 
 (Morand and Ohayon, chapter 7, 1995; see also

the orthogonality conditions defined by equation (19) below). This zero frequency mode must

not be retained in any Ritz-Galerkin projection analysis. In addition, we have the following

orthogonality conditions
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�

�� ��

�
��

	
	� 
� � �
Æ
� �
�

��

�
��

�	
��	� 
� � �
�
�


Æ
� ����

The second basic problem corresponds to the static response of the fluid to a prescribed wall

normal displacement ���. The solution, denoted as 	������, is given by equation (9). For any

deformation ��� of the fluid-structure interface, 	������ belongs to a subset of ��, denoted as

����

���� �

�
	� � �� � 	� � �

�� �
�

��� �

�
�

��� 
�

�
�

�

In the variational formulation defined by equations (13), (14) and (15), 	 is searched under

the form

	 � 	������ 	

���

��

�
	
 �
��

in which �� denotes the number of retained acoustic modes. The decomposition (21) is unique.

In addition, it should be noted that, since each eigenvector 	
 corresponding to �
 �� 
, verifies

the constraint defined by equation (18), then, using equation (9), we deduce that 	 and ���

satisfy the constraint defined by equation (15). The decomposition defined by equation (21)

corresponds to a decomposition of the admissible class �� into the direct sum of the admissible

classes defined respectively by equations (20) and (16)

�� � ���� 	 ��� �

�

Following equation (21), the test function Æ	 is then searched under the following form

Æ	 � 	��Æ���� 	

���

��

Æ�
	
 �
��

Variational formulation in Æ� defined by equation (13) and corresponding to the eigenvalue

problem defined by equations (13), (14), (15) becomes

�
��� Æ�� 	 
���� Æ���

���

��

�


�
�

	
 ��Æ� 
� � ��

�
��

�� ��Æ� 
� �
��

in which �
��� Æ�� is defined by equation (2) and 
���� Æ�� is such that


���� Æ�� �
�� �

�

��� �

��
�

��� 
�

���
�

Æ��� 
�

�
�
��
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If we consider a finite element discretization of the structure, the corresponding discretized

form of equation (24) can be written as

���	����� �����
��


��

�
 �
 � �� �
��

in which symmetric matrices �� and �� correspond to finite element discretization of stiff-

ness symmetric bilinear forms defined by equations (2), (3), (4) and (25) respectively. In equa-

tion (26),� denotes the structural symmetric mass matrix and rectangular coupling matrix�


corresponds to the discretization of the coupling fluid-structure contribution
�
�
	 Æ��� 
�. The

discretized form of equation (14) in Æ	 can then be written in generalized (acoustic) coordinates

as

��


�
�
 � ���
�
 � ���

�� � 
 �
��

From equations (26) and (27), we obtain the following symmetric matrix reduced model

�
���� 	

	 
��
�


	�
�

�

	
� ��

�
���� 



� 
��
 ��
��
�


�

	�
�

�

	
�

�
��

	

	
�
��

in which � denotes the vector of � generalized coordinates �
, with � 
 � 
 ��, and

���� � ��	�� �
��

���� ��	

���

��

�

��

 �


�
�
�

 ��
�



 �

���

��

�

��



�
 ����

Further diagonalization of equation (28) implies a projection of � on the solutions of the

following eigenvalue problem

������ � ���
����� ��
�
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Setting

� �
���
���

���� ����

in which �� are the generalized coordinates describing the structure. Using the orthogonal-

ity conditions associated with the solutions of equation (32), i.e. ��
�������� � ��

�Æ��� and

��
�������� � ��

���Æ��� , equation (28) becomes

�
������ 



 ������




	�
�

�

	
� ��

�
 ��

�!�
�

�!�
�
�  ��

	�
�

�

	
�

�
��

	

	
����

Remark on substructuring procedure. In literature, various methods of component mode

synthesis are discussed (fixed interface, free interface with residual attachment modes proce-

dures, etc). We present here, for sake of brevity, only a natural one which comes naturally from

the continuous case by considering the admissible class decomposition defined by equation

(22). This decomposition is the key of component mode synthesis developments (see Figure 2).

Of course, further considerations involving interface deformations by solving from an eigen-

value problem posed only on the interface using fluid and structure mass and stiffness interface

operators, could improve the convergence of the procedure. But this remains still an open prob-

lem.
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Figure 3: Experimental validation
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It should be noted that two different situations are treated here.

For a heavy liquid filling the enclosure, one must mandatory use the eigenmodes defined by

equation (32), i.e. hydroelastic modes including ”static” inertial and potential compressibility

effects . The effects of proper static behavior calculation on the convergence of the system rel-

ative to the number of acoustic modes have been analyzed in Menelle and Ohayon, 2003 and

an experimental validation carried out in the case of parallelepipedical cavity (with one elastic

face) filled with liquid is presented in Figure 3).

For a light fluid such as a gas filling the enclosure, one may use instead in vacuo structural

modes but the resulting matrix system would not be diagonal with respect to�. In effect, look-

ing at the eigenvalue problem corresponding to equation (28), the diagonalization is obtained

by solving the ’structural’ problem involving additional stiffness and mass due to static effects

of the internal fluid. The in vacuo structural modes are orthogonal with respect to� and� but

not with respect to���� and����.

Wall Impedance Condition

Wall impedance condition corresponds to a particular fluid-structure interface modeling.

This interface is considered as a third medium with infinitesimal thickness, without mass, and

with the following constitutive equation

	 � ��"�������� �� ��� ����

in which "��� denotes a complex impedance. Equations (7) and (11) must be replaced by equa-

tion (35), using �	��� � �� �� �� ��.

Case of a liquid with a free surface

Let us consider a liquid with a free surface at rest denoted as �, If we neglect gravity effects,

the boundary condition on � is such that

	 � 
 �	 ����

In this case, constraint condition (12) (or (15)) is replaced by equation (36). Equation (9) is

replaced by 	� � 
. Admissible space defined by equation (16) becomes ��
� � �	 � �� � 	 � 

.
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In this case, the static problem defined Section 3, leads to a zero pressure field.

Let us remark that in this case, the “structural” modal basis may be constituted by the hydroelas-

tic incompressible modes using the classical added mass operator (Morand and Ohayon, chapter

5, 1995, Belytschko and Hughes, 1983).

The reduced modal matrix models has been extended to the dissipative case using a wall local

homogeneous impedance condition (Kehr-Candille and Ohayon, 1992) or introducing a dissi-

pative internal fluid with nonhomogeneous local impedance wall condition (Ohayon and Soize,

1998).
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Incompressible hydroelastic-sloshing problem

We consider the linear vibrations of an elastic structure partially filled with an homogeneous,

inviscid and incompressible liquid, taking into account gravity effects on the free surface �

(Tong, 1966; Liu and Uras, 1992; Morand and Ohayon, 1995). We neglect in the present

analysis compressibility effects of the liquid and we refer to Andrianarison PhD dissertation for

those aspects (Andrianarison and Ohayon, 2006). After a derivation of the linearized equations

of the fluid-structure coupled problem, introducing an appropriate linear constraint in order to

obtain a “regularized” problem at zero frequency, we construct a reduced model of the “liquid

subsystem”. For this analysis, sloshing modes in rigid motionless cavity are introduced as Ritz

projection vector basis, including the static solution of the coupled system.

2 Hydroelastic-sloshing equations

2.1 Structure subjected to a fluid pressure loading

The notations are the same that those defined in Section 3 adapted to liquid with a free surface

at rest denoted � (see Figure 4).

ηΓ

Σ Ω

Ω

Figure 4: Structure containing a liquid with a free surface

The weak variational formulation describing the response of the structure �� to given vari-

ation � � of the applied forces with respect to the equilibrium state on the external structure

boundary ��� ��, and to fluid pressure field 	 acting on the internal fluid-structure interface �

is written as follows.

For all real � and �Æ� � ��, find � � �� such that



��� Æ�� � ��

�
��

�� ��Æ� 
��

�
�

	 ��Æ� 
� �

�
�����

� ��Æ� 
� ����

in which
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 � �
 	 
� ����

In equation (38), �
��� Æ�� is defined by equation (2), and 
� is the elastogravity stiffness in

symmetric bilinear form such that (Morand and Ohayon, chapter 6, 1995; Schotté and Ohayon,

2003, 2005)


���� Æ�� � �
�



��#�

�
�

�$������Æ�	 ��Æ���� 
� 	

�
�

�$���Æ����	 Æ������ 
�
 ����

2.2 Fluid subjected to a wall normal displacement

We assume that the liquid is homogeneous, inviscid and incompressible. Free surface � is

horizontal at equilibrium. We denote by $ the external unit normal to �, and by # the gravity.

The notations are similar to those of Section 3. The local equations describing the response of

the fluid to a prescribed arbitrary normal displacement ��� of the fluid-structure interface � are

such that

�	� �� ���� � 
 ��� ��
�

���� � 
 ��� ����

�� �� � ��� �� ��
�

	 � ��#�� �� �	 ����

���� �� � 
 ��� ����

Equation (41) corresponds to the incompressibility condition. Equation (43) is the constitu-

tive equation on the free surface � due to gravity effects.

A displacement potential � defined up to an additive constant chosen for instance as follows�
	
�
� � 
 can be therefore introduced in order to recast the system defined by equations (46-

49) into a scalar one. These aspects will be discussed below.
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Relation between static pressure 	� and ���

For � � 
, equations (41), (42) and (43) lead to the constant static pressure field which is

related to the normal wall displacement by the relation

	� � �
�� #

���

�
�

��� 
� ����

in which ��� denotes the measure of the area of free surface �.

2.3 Equations in terms of � or � and ���

The elimination of �� between equations (40) to (44) leads to

��	 � 
 ��� ����

�	

��
� ���

���� �� ����

�	

�$
�

��

#
	 �	 ����

with the constraint

�

��#

�
	

	 
� 	

�
�

��� 
� � 
 ����

The linear constraint defined by equation (49) ensures that the boundary problem defined

by equations (46) to (49) is equivalent to the problem defined by equations (40) to (44). This

condition is usually omitted in literature.

Using equations (44-45), the boundary value problem defined by equations (46-49) can be

recasted into the following equivalent one using the displacement potential field � introduced

above such that 	 � ���
��	 	������ with

�
	
�
� � 


��� � 
 ��� �����

��

��
� ��� �� �����

��

�$
�

��

#
���

�

���

�
�

��� 
� �	 �����
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with the constraint �
	

�
� � 
 �����

The two boundary value problems expressed in terms of 	 or in terms of � are well-posed

in the static case (� � 
). The equations (46a,47a, 48a) have been used, using a different

constraint relationship for �, after the introduction of the elevation%�� of the free surface, to

appropriate so-called ��� �� &� symmetric formulations with mass coupling (leading to a final

��� &� formulation (Morand and Ohayon, chapter 6, 1995; Schotté and Ohayon, 2002, 2003).

2.4 Variational formulation in terms of ��� ��

Let Æ	 be the test function, associated to 	, belonging to the admissible space ��. The weak

variational formulation corresponding to equations (46) to (49) is obtained by the usual test-

function method using Green’s formula. Recalling equation (37), the variational formulation of

the hydroelastic-sloshing problem is then stated as follows. Find � � �� and 	 � ��, such that

for all Æ� � �� and Æ	 � ��, we have



��� Æ�� � ��

�
��

�� ��Æ� 
��

�
�

	 ��Æ� 
� �

�
�����

� ��Æ� 
� ��
�

�

��

�
��

�	��Æ	 
� �
��

�� #

�
	

	Æ	 
�	 ��

�
�

���Æ	 
� ����

with the constraint

�

��#

�
	

	 
� 	

�
�

��� 
� � 
 ��
�

2.5 Symmetric Reduced Matrix Model

Let us consider the following two basic problems. The first one corresponds to the sloshing

modes in rigid motionless cavity and is obtained by setting � � 
 into equations (47) and (49).

The calculation of these acoustic modes is generally done by using a finite element procedure.

If we introduce the admissible subspace ��
� of ��

��� �

�
	 � ���

�
	

	 
� � 


�
� ����
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the variational formulation of acoustic modes is stated as follows: find � � � 
 and 	 � ��� such

that, for all Æ	 � ��� , we have

�

��

�
��

�	��Æ	 
� � ��
�

�� #

�
	

	Æ	 
� ����

with the constraint �
	

	 
� � 
 ����

It should be noted that, in practice, if the constraint condition (55) is “omitted”, we only add

a first non physical zero frequency constant pressure mode, the other modes corresponding to

� �� 
 remaining the same as those defined by equations (54) and (55). This zero frequency

mode must not be retained in any Ritz-Galerkin projection analysis. In addition, we have the

following orthogonality conditions

�

�� #

�
	

	
	� 
� � �
Æ
� �
�

��

�
��

�	
��	� 
� � �
�
�


Æ
� ����

The second basic problem corresponds to the static response of the fluid to a prescribed wall

normal displacement ���. The solution, denoted as 	������, is given by equation (45). For any

deformation ��� of the fluid-structure interface, 	������ belongs to a subset of ��, denoted as

����

���� �

�
	� � �� � 	� � �

�� #

���

�
�

��� 
�

�
����

In the variational formulation defined by equations (50) to (52), 	 is searched under the form

	 � 	������ 	

���

��

�
	
 ����

in which �� denotes the number of retained sloshing modes. The decomposition (58) is

unique. In addition, it should be noted that, since each eigenvector 	
 corresponding to �
 �� 
,

verifies the constraint defined by equation (55), then, using equation (45), we deduce that 	 and

��� satisfy the constraint defined by equation (52). The decomposition defined by equation (58)

corresponds to a decomposition of the admissible class �� into the direct sum of the admissible

classes defined respectively by equations (56) and (57), �� � ���� 	 ��� .

The variational formulation in � defined by equation (50) becomes
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��� Æ�� 	 
���� Æ��� ��

�
��

�� ��Æ� 
��

���

��

�


�
�

	
 ��Æ� 
� �

�
�����

� ��Æ� 
� ����

in which 

��� Æ�� is defined by equation (38) and 
���� Æ�� is such that


���� Æ�� �
��#

���

��
�

��� 
�

���
�

Æ��� 
�

�
��
�

If we consider a finite element discretization of the structure, the corresponding discretized

form of equation (60) can be written as

�
�	�����
��


��

�
 �
 � ���� � �� ����

in which symmetric matrices 
� and �� correspond to finite element discretization of stiffness

symmetric bilinear forms defined by equations (38) and (60) respectively. The discretized form

of equation (51) in Æ	 can then be written as

��


�
�
 � ���
�
 	 ���

�� ��
�

From equations (61) and (62), we obtain a symmetric matrix reduced model whose expres-

sion is similar to the one given by expression (28).

Similarly to Section 3.6, further diagonalization can be obtained by setting

� �
���
���

���� ����

in which �� are the generalized coordinates describing the structure and�� are the eigenmodes

of an eigenvalue problem similar to the one described by equation (32). We then obtain a similar

matrix system than the one described by equation (34)

�
������ 



 ������




	�
�

�

	
� ��

�
 ��

�!�
�

�!�
�
�  ��

	�
�

�

	
�

�
��

	

	
����

It should be noted that we can also use the incompressible hydroelastic modes, i.e. the

modes of the coupled system constituted by the elastic structure containing an incompressible
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liquid, with 	 � 
 on � (through an added mass operator). In this case, the resulting matrix

system is not completely diagonal with respect to� variables.

Figure 5 and Figure 6 illustrate liquid motions in reservoirs.

Figure 5: Wing with stores containing liquids

Figure 6: Tank partially filled with liquid
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Conclusion

We have reviewed appropriate formulations for low modal density frequency computa-

tions of the eigenmodes of elastic structures containing linear inviscid homogeneous fluids

for structural-acoustics problems, using structural modes in vacuo for structure containing a

gas or hydroelastic modes including ”static” inertial and potential compressibility effects for

structure containing liquids, with acoustic modes in rigid motionless cavity, and incompressible

hydroelastic-sloshing problems. Those formulations, using modal interaction schemes, with dy-

namic substructuring techniques lead to symmetric reduced matrix systems expressed in terms

of generalized coordinates for the fluid-structure system.
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