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Abstract

In this paper, we build on optimal transport (OT) theory to present a novel
asymmetrically unbalanced variant, the semi-unbalanced optimal transport (SUOT),
specifically designed for imaging applications with the presence of a reference.
SUOT addresses the lack of robustness of OT and the rigidity inherited from its
formulation by taking inspiration from the unbalanced OT formulation. Rather
than relaxing the constraints on both the source and the target measures, we relax
only the marginal related to the reference. We consider both the unregularized
and entropy-regularized versions, deriving dual formulations, corresponding mini-
mization algorithms and formulas for the gradient. These derivations enable us to
employ SUOT in variational inverse imaging and synthesis problems, as well as a
loss for training a neural network. We evaluate the use of SUOT in a reference-
driven super-resolution problem and show its benefits. We also incorporate it into
a state-of-the-art single-image generation algorithm and show that it leads to in-
creased diversity. Our results advocate for the adoption of SUOT as a general tool
for variational and learning-based inverse imaging and synthesis problems with the
presence of a reference.

1 Introduction

At the heart of numerous algorithms designed to tackle image processing problems is
the modeling of image statistics. Two related yet distinct considerations are usually
involved: how to model image statistics, and how to incorporate a known given model
into a computational procedure. In this article, we consider inverse imaging and synthesis
problems, presenting both a unified modeling tool and a corresponding algorithm. Our
working hypothesis is that we have access, at recovery or synthesis time, to a reference
image, related to (but different from) the specific unknown image one seeks to recover or to
synthesize. We turn this reference into an image model and an associated computational
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procedure by adopting a variational approach. In doing so, we leverage recent advances in
computational optimal transport to explicitly penalize deviation of the patch distribution
of the solution from the one of the available reference. Additionally, we illustrate the use
of a neural network to amortize the cost involved in minimizing the proposed energy,
that is, we use the proposed energy as a loss for training a neural network.

1.1 Related Work

Inverse Imaging Problems

In inverse imaging problems, one seeks to recover an image x⋆ ∈ X := RN from noisy
measurements y ∈ Y := RK , K ≤ N . The classical approach for solving such problems
involves two modeling assumptions: a forward model that relates the sought image x⋆ to
the obtained measurements y, and a prior model that encapsulates existing knowledge
about the class of images one aims to recover. In the variational approach, the two
previous modeling assumptions translate into an energy function E composed of a data
fitting term D(·; y) and a regularizer R. An estimate x̂(y) of x⋆ is then obtained as a
minimizer of E :

x̂(y) ∈ argmin
x∈X

E(x; y) := R(x) +D(x; y), (1)

where argmin E is the set of minimizers of E .
Classical analytical regularizers that impose structural properties such a sparsity [59,

66] or patch redundancy [13] have now been largely replaced by data-driven ones. These
come in two flavors: either explicit or implicit, the latter corresponding to the family of
plug-n-play methods. Considering the substantial volume of relevant literature, we refer
the interested readers to the survey papers [3, 35,52].

The recent years have also seen the emergence of neural-network-based end-to-end ap-
proaches for solving inverse imaging problems [35, 49, 52]. These methods employ paired
examples (x⋆

i , yi) to learn a mapping from Y to X . Despite demonstrating favorable em-
pirical performance, numerous issues have been reported in the literature. Notably, a
significant challenge involves the need to retrain the network whenever the degradation
model changes. Additional concerns include potential instability [31], a lack of inter-
pretability, and how to incorporate the forward model into the network architecture.

Enforcing Statistical Constraints

A series of works [18,21,67,68] has proposed to complement established variational meth-
ods with penalties that enforce soft statistical constraints on the solution. These penalties
usually seek to align the distribution of certain features of the solution with a reference
empirical distribution. In [18], the authors consider penalizing the Kullback-Leibler (KL)
divergence between the gradient distribution of the solution and a reference gradient dis-
tribution. The latter is estimated, locally, from the degraded image. Pixel values are used
as features in [42, 67] with an optimal transport (OT) [72] cost. Closeness to reference
histograms of high-pass filter responses is also enforced in [21, 68] through the use of an
OT cost.

The OT-based methods mentioned earlier [21,42,67,68] use one-dimensional features
due to the availability of a closed-form expression for the OT cost in this case. In [37],
Hertrich et al. enforce OT-closeness to the patch distribution of a reference image. This
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so-called Wasserstein patch prior (WPP) is applied to a super-resolution (SR) problem
where one assumes that a reference image is available.

Statistical losses between feature distributions have also been used for training end-to-
end networks that perform image restoration. Mechrez et al. [47] use an approximation
of the KL divergence between the distributions of the features of the predicted output
and the ground truth. Interestingly, the features themselves are computed as the feature
maps generated by a neural network, generally VGG [64]. This approach was introduced
by Gatys et al. [27] in the context of texture synthesis and has since been employed to
define what are now commonly referred to as perceptual losses [41]. In [20], a pixelwise
loss is combined with an OT-based perceptual loss. The authors of [1] amortize the
minimization of the WPP energy proposed in [37] by training a neural network called
WPPNets. Additionally, they propose to learn a conditional normalizing flow [53] that
samples from the distribution whose negative log density is the WPP energy.

Texture and Single-Image Synthesis

Synthesizing a texture from a single example is a long-standing image processing problem.
In the variational formulation of this problem, an optimization problem is solved for each
new synthesis. This optimization problem constrains the statistics of relevant descriptors
of the synthesized image to be close to those of the example [55]. As mentioned earlier,
Gatys et al. [27] pioneered the use of the feature space of a deep convolutional neural
network as a descriptor. Synthesis is then performed by matching the Gram matrices
of the feature maps. The link to the Maximum Mean Discrepancy distance [33] has
been established in [45]. An OT cost between aggregated one-dimensional features is
used in [68] and texture mixing has been conducted in [71] using OT distance between
elliptical distributions in feature space. OT in patch space for texture synthesis has been
introduced in [26, 34]. Extension to deep features is considered in [40]. A sliced-OT
formulation has been adopted in [36], following the formulation initially proposed for
texture mixing in [57].

The variational approach of Gatys et al. has been amortized using a neural network
in [70]. Once such a texture network G is trained, one can sample a new texture x = G(z)
starting from a random vector z. A GAN approach [30] to texture networks has been
considered in [10].

Closely related to texture synthesis is the single-image generation (SIG) problem
popularized by the SinGAN approach [63]. The primary objective of SIG is to generate
visually realistic and diverse images that bear a strong resemblance to a given reference
image. This allows a diverse range of image editing applications [32]. A variational
sliced-OT approach for SIG that uses the patch distribution of the reference as a prior
is presented in [22]. An approach combining patch-nearest-neighbors search with an OT
cost is proposed in [16].

Robust Optimal Transport

The previously mentioned works that employ OT to impose statistical constraints on the
recovered or synthesized image are all based on the classical formulation of OT, where
strict marginal constraints are enforced on the transport plan. This leads to two well-
known issues: non-robustness to outliers, and preservation of the relative frequencies of
the features. Both issues are illustrated in Section 2. The first issue is related to the
fact that a small fraction of outlier mass can significantly influence the value of the OT
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cost [4, 50, 65]. The second concern is related to the fact that the use of OT as a cost
tends to replicate, in the computed image, the frequencies of the features of the reference.
This behaviour is generally not the one sought: one is interested in finding an image that
exhibits coherence with respect to the reference, rather than one that exactly matches
the frequencies of its features.

To address the latter concern, the authors of [37] apply the WPP regularizer to an
artificially padded version of the unknown image, keeping the fidelity term unaffected.
This allows outlier patches of the reference to be aggregated into the artificial bounds of
the output. Rather than matching the feature distribution of a single output image to a
single reference, the approach taken by the authors of [22] involves generating N output
images. These output images have their aggregate feature distribution matched to that
of the reference. This strategy ensures strict preservation of the total feature distribution
of the reference, while still allowing for variation within each generated image.

A more principled and systematic way of addressing both previous issues consists
in adopting an OT formulation that allows for partial displacement of mass. This for-
mulation has been introduced by Benamou in [7] under the name unbalanced optimal
transport (UOT), initially for dealing with measures of different masses. A static formu-
lation with (information) divergence-based approximate marginal constraints has been
introduced in [46] and considered in [11, 14]. [17, 25] consider the same formulation but
with an added entropy term, following [19]. Interested readers can refer to [62]. For com-
pleteness, we note that robust versions of OT have also been proposed in [4, 44, 50, 51].
The main difference between these versions and UOT is that, in the latter, the divergence-
based approximate marginal constraints appear as regularizers added to the objective,
while in the former, they are included as constraints.

Let us finally remark that a semi-relaxed version of OT, where one relaxes only one
marginal constraint, has been considered in [56] in the context of color image transfer. A
similar formulation has since been mentioned in [11,44].

1.2 Contributions and Plan of the Paper

We consider in this paper both inverse imaging and synthesis problems with the presence
of a reference image. In the case of inverse problems, the reference corresponds to a high-
quality image related to, but different from the one we want to recover. This setting is
relevant each time one aims at recovering an image from a narrow family of images, e.g.,
the same texture or the same material [37] for which reference samples are available. In
the case of image synthesis, the reference corresponds to an example from which we want
to synthesize similarly looking samples but with a high degree of diversity [16, 22, 63].
Following [26, 37], we tackle both problems through a variational approach where we
explicitly penalize deviation of the multiscale patch distribution of the solution from the
one of the reference. We also consider the use of the introduced penalty as a loss for
training a neural network, as done in [1].

A principled and well understood way to penalize such a discrepancy is to use OT as a
cost [22,37,40]. As discussed earlier, this approach is not robust to outliers present in the
reference and it also tends to replicate the frequencies of the features of the reference into
the solution. Rather than relying on heuristic solutions, we present a systematic approach
for dealing with these issues. Taking inspiration from the static UOT formulation of
[17,25,46], we propose an asymmetric formulation, hereafter called semi-unbalanced OT
(SUOT) where we relax the constraint related to the preservation of the mass of the
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reference, while enforcing strict preservation of the mass of the unknown image. We
study both the unregularized and entropy-regularized versions of SUOT, deriving dual
formulations, corresponding minimization algorithms and formulas for the gradient of
the cost with respect to the support of one of the measures. The latter allows to use a
gradient descent scheme either to minimize an energy, or to learn a neural network, both
involving a SUOT cost.

For the numerical evaluation of our method in the context of inverse imaging problems,
we concentrate on the SR problem described in [1, 37] that already produces state-of-
the-art results, improving upon variational methods that use learned deep regularizers.
We observe that our proposed method improves robustness when the reference presents
outlier values. Even without outlier values, the ability of our method to explicitly modify
the frequency of the patches between the reference and the computed solution leads to
improved results with respect to the original OT-based works [1, 37].

In the context of single image synthesis, the PSinOT method [16] exhibits superior
performance compared to SinGAN [63], and its results are on par with those achieved by
the state-of-the-art methods [22, 32]. We show that incorporating SUOT into PSinOT
leads to increased diversity, as measured by the Single Image Fréchet Inception Distance
(SIFID) [63] and by the per-pixel standard deviation calculated from 50 generated images.

The organization of the paper is as follows: In Section 2, we provide a brief review of
optimal transport, illustrate the issue related to its lack of robustness and explain how
we adapt it to our semi-unbalanced formulation. We also provide all relevant details
for its use as a loss in inverse imaging and synthesis problems. We finally provide ex-
act formulas and asymptotics for the case involving one Dirac and two Dirac measures,
showcasing quantitatively the difference between OT and SUOT. Section 3 studies the
entropy-regularized SUOT formulation. In Sections 4 and 5, we demonstrate the effec-
tiveness of our approach in the context of inverse imaging problems and SIG, respectively.
Conclusions and perspectives are drawn in Section 6.

A preliminary version of this work appeared in [48] wherein only the entropy-regularized
version was proposed and the only application considered was related to inverse problems.
Our code is available at: https://github.com/SimonMignon/SUOT-for-reference-based-
image-restoration-and-synthesis.

2 Semi-Unbalanced Optimal Transport

We start this section by describing the notations that we use in the rest of the paper.
For an integer N ≥ 1, let JNK = {1, . . . , N}. We consider discrete probability measures
with support in Rn, n ≥ 1. Throughout the rest of the paper, α =

∑N
i=1 aiδxi

and

β =
∑M

j=1 bjδyj will denote two such measures, with xi, yj ∈ Rn, a = (ai)i∈JNK ∈ ΣN ,

b = (bj)j∈JMK ∈ ΣM , ΣP being the probability simplex in RP . Without loss of generality,
we assume throughout the paper that ai > 0 and bj > 0 for all i and j. The product
measure of α and β will be denoted α ⊗ β. Given a continuous ground cost function
c : Rn × Rn → R+, we consider the cost matrix C ∈ RN×M such that ci,j = c(xi, yj).
For any matrix π ∈ RN×M , let π1 = π1M and π2 = πT1N . The set of matrices with
nonnegative entries is denoted RN×M

+ .
Given a set E, ιE denotes its characteristic function: ιE(x) = 0 if x ∈ E and ιE(x) =

+∞ if x ∈ Ec. When E = {v}, we write ιv instead of ι{v}. Given two vectors f ∈ RN

and g ∈ RM , f ⊕ g ∈ RN×M is defined by (f ⊕ g)ij = fi + gj, and f ⊗ g ∈ RN×M is

5

https://github.com/SimonMignon/SUOT-for-reference-based-image-restoration-and-synthesis
https://github.com/SimonMignon/SUOT-for-reference-based-image-restoration-and-synthesis


defined by (f ⊗ g)ij = figj. When N = M , element-wise multiplication is denoted f ⊙ g.
The order relations between matrices are to be understood element-wise. We define 0N

as the zero vector of length N .

2.1 Background on Optimal Transport

The OT cost between α and β is defined as

OT(α, β) = min
π∈RN×M

+

⟨C, π⟩+ ιa(π1) + ιb(π2), (2)

where ⟨·, ·⟩ is the Frobenius inner product. Strong duality of linear programs allows to
express (2) in a dual form [54,60]:

OT(α, β) = max
(f,g)∈Γ(C)

⟨a, f⟩+ ⟨b, g⟩ , (3)

with Γ(C) = {(f, g) ∈ RN × RM | f ⊕ g ≤ C}.
Considering the function to be maximized in the dual Problem (3), and keeping the

value of g constant, it appears that a solution for maximizing with respect to (wrt) f is
given by the c-transform gc ∈ RN of g defined by

∀i ∈ JNK, gci = min
j∈JMK

ci,j − gj. (4)

This leads to a concave unconstrained maximization formulation of the OT cost, referred
to as the semi-dual problem [54,60]:

OT(α, β) = max
g∈RM

⟨a, gc⟩+ ⟨b, g⟩ . (5)

The function

SGF (g) = b−
N∑
i=1

aiej(i,g) (6)

is a super-gradient of the concave function F (g) = ⟨a, gc⟩+⟨b, g⟩, where (ej)j∈JMK denotes
the canonical basis of RM and

j(i, g) ∈ argmin
j∈JMK

c(xi, yj)− gj (7)

is a minimal index for the c-transform gc [39]. This allows to solve (5) using a standard
averaged (super-)gradient ascent algorithm (AGAA) [29,37].

When c(x, y) = ∥x − y∥p for some p ≥ 1, OT1/p corresponds to the p-Wasserstein
distance [72]. This distance has been extensively used as a loss function in parameter
estimation problems [6], usually with α = αθ being a model distribution, parameterized
by an unknown vector θ, and β an empirical measure associated with training data
[54, Chap. 9]. In this paper, we are interested in the setting where θ = (xi)i∈JNK,
that is, the parameters to infer are the support of α. Evaluating ∇(xi)i∈JNK OT(α, β)
is thus necessary for gradient-based learning. It is known that the differentiability of
OT(α, β) wrt to a mass location xi is related to the Laguerre tesselation associated
with the solution g⋆ of the maximization Problem (5) [39]: If xi belongs to the open
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Laguerre cell Lj(g
⋆) = {x ∈ Rd | ∀j′ ̸= j, c(x, yj)− g⋆j < c(x, yj′)− g⋆j′} for some (unique)

j = j(i, g⋆) ∈ JMK then OT(α, β) is differentiable wrt xi and

∇xi
OT(α, β) = ∇xi

OT

(
N∑
k=1

akδxk
, β

)
= ai∇xi

c(xi, yj(i,g⋆)). (8)

However, this formula is only valid for points xi whose mass is fully transported to a single
target yj. In general, mass splittings necessarily happen and the formula is not valid for all
xi. Still, in practice, one computes the gradient using this formula by randomly selecting
one of the points yj for which the c-transform is minimal. As shown by previous work,
this is sufficient for image processing applications [1, 37, 39].

2.2 Motivation

As explained in the introduction, our use of an OT-type cost in this paper aims at
enforcing statistical coherence between the multiscale patch distribution of a restored or
synthesized image, and the one of a reference image. Before presenting both applications,
and the solution we propose, we would like to illustrate, through 2-D examples, the
shortcomings mentioned in the introduction, related to the use of the standard, balanced,
version of the OT cost (2).

In Figure 1, we show the evolution of an initial point cloud x = (xi)i∈JNK ∈ RN×2

under the gradient flow
.
z(t) = −∇z OT(αz(t), β), (9)

where β = 1
M

∑M
j=1 δyj is fixed and αz =

1
N

∑N
i=1 δzi , zi ∈ R2 for all i. The discrete measure

α in the figure corresponds to αz(0) = αx = 1
N

∑N
i=1 δxi

. The notation ∇z OT(αz, β) in (9)
refers to the gradient wrt the support of αz. The flow is implemented through a forward
Euler scheme, the gradients ∇z OT(αz(t), β) being computed with Equation (8). We
stress that each evaluation of such gradients involves approximating an OT cost using an
AGAA.

The first column of Figure 1 displays the initial distribution α = αz(0) and the target
distribution β. The second column displays the evolution of α to the distribution α∞ :=
αz∞ associated with the steady state solution z∞ of the ODE (9), as implemented by
the forward Euler scheme. The trajectories of the points (zi)i∈{1,...,N} during the gradient
descent process are depicted with green lines, illustrating the transportation of points
from the support of α to their destination within the support of α∞. The first row
corresponds to a configuration where the target β has two clusters, while in the second
row β has a unique cluster but with a single outlier point. It is worth noticing that in
both rows, α and β have the same number of atoms.

As can be seen in Figure 1, throughout the OT-based gradient flow, the mass of α
gets redistributed across the entire support of the target β. However, this characteristic
can pose challenges, particularly in imaging applications, where the distribution of the
features of the computed image is not expected to precisely match the one of the reference,
because of either a difference in the proportion of the atoms, or the existence of outliers
in the reference.

To address this issue, we take inspiration from the static formulation of unbalanced
OT [17,46], and decide to relax the constraint π2 = b into a penalty ρD(π2|b), where ρ > 0,
and D is a given divergence, while strictly enforcing the constraint π1 = a. Columns 3 to
7 of Figure 1 show the steady state distribution αρ

∞ obtained by replacing in (9) OT by
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our semi-unbalanced formulation SUOT, for different values of ρ (with D = KL). One
can see that, by adjusting the parameter ρ, SUOT can selectively ignore distant data
points in β. As ρ approaches infinity, SUOT reverts to OT, and the support of α∞ is
again spread across the one of β. The precise definitions and computational tools are
given next.

α, β OT SUOT(ρ = 0.01) SUOT(ρ = 0.1) SUOT(ρ = 1) SUOT(ρ = 10) SUOT(ρ = 100)

Figure 1: Two instances of 2D gradient flows achieved by minimizing OT and
SUOT between the distributions represented by α and β. These gradient flows
are realized through gradient descent concerning the data points of α, with the trajectory
of each point during descent illustrated by green lines. By fine-tuning the parameter ρ
(values: 0.01, 0.1, 1, 10,100), SUOT can selectively exclude distant data points in β,
whereas OT takes into account all data points within β. In the first example, it becomes
feasible to specifically target the first “croissant” in β that closely resembles α. In the
second example, we have the capability to exclude anomalous data points from β.

2.3 Semi-Unbalanced Optimal Transport

2.3.1 Primal, Dual, Semi-Dual Formulations and Gradient

Let us now precisely define the problem of semi-unbalanced optimal transport.

Definition 1 (Semi-Unbalanced Optimal Transport). For ρ > 0, the SUOT cost of level
ρ between α and β is defined by

SUOTρ(α, β) = min
π∈RN×M

+

⟨C, π⟩+ ιa(π1) + ρKL(π2|b), (10)

where

KL(u|v) =
K∑
j=1

uj log

(
uj

vj

)
−

K∑
j=1

uj +
K∑
j=1

vj

is the KL divergence between two vectors u ≥ 0 and v > 0 of size K, with the convention
0 log(0) = 0.

Remark 2. When dealing with probability vectors u and v, KL divergence can be reduced
to
∑K

j=1 uj log(
uj

vj
). However, we choose to use the general expression as it simplifies the

calculation of the gradient wrt u.

As discussed earlier, the difference between SUOT (10) and OT (2) is that we have
replaced the constraint π2 = b with the penalty ρKL(π2|b). It is worth noticing that due
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to the constraint on π1, π2 is still in ΣM , though now some of its entries might be equal
to zero. The choice of the parameter ρ plays a crucial role in determining the balance
between the source and target distributions. A very low value of ρ will result in a strong
imbalance, where the transportation plan might be heavily biased towards regions that
are close to the support of α. Conversely, a high value of ρ will lead to a classical OT
plan.

Theorem 3 (Dual formulation). The SUOT cost can be expressed in the following dual
form:

SUOTρ(α, β) = max
(f,g)∈Γ(C)

⟨a, f⟩ − ⟨b, ϕ∗(−g)⟩ , (11)

where Γ(C) = {(f, g) ∈ RN × RM ; f ⊕ g ≤ C} and ϕ∗(q) = ρ
(
exp

(
q
ρ

)
− 1
)
, the exp

function being applied component-wise.

The proof given in Appendix A.1 relies on applying the Fenchel-Rockafellar theorem,
which is recalled in the appendix (see Theorem 12).

Remark 4. In a broader context, as outlined in [17], ϕ∗ denotes the Legendre conjugate
of an entropy function ϕ : R+ → R+, which is convex, positive, lower-semi-continuous,
and satisfies ϕ(1) = 0. The domain of ϕ is extended to R by setting ϕ(x) = +∞ for
x < 0. This function ϕ is associated with a ϕ-divergence, defined in our case (i.e., for

discrete measures with the same support) as Dϕ(α|β) =
∑M

i=1 biϕ
(

ai
bi

)
. We have selected

ϕ(q) = ρ(q log(q)− q + 1), which results in Dϕ = ρKL.

Similar to OT, SUOT can be expressed as an unconstrained concave problem.

Proposition 5 (Semi-dual formulation for SUOT). The SUOT cost can be expressed as
follows

SUOTρ(α, β) = max
g∈RM

⟨a, gc⟩ − ⟨b, ϕ∗(−g)⟩ . (12)

The proof is given in Appendix A.2.
Now we can establish the differentiability of SUOTρ(α, β) with respect to (xi)i∈JNK ∈

Rn.

Proposition 6 (Gradient with respect to (xi)i∈JNK). Let g
⋆ be a solution to Problem (12)

and assume that xi belongs to a Laguerre cell Lj(g
⋆) for some unique j = j(i, g⋆). Then,

SUOTρ(α, β) is differentiable wrt xi, and we have

∇xi
SUOTρ

(
N∑
k=1

akδxk
, β

)
= ai∇xi

c(xi, yj(i,g⋆)). (13)

The proof is adapted from the similar result for OT [39] and is given in Appendix
A.3.

2.3.2 Computing the SUOT Cost

We propose to adapt the approach of [40] to solve Problem (12) using a standard AGAA.

Proposition 7 (Concavity and Super-gradient of the semi-dual SUOT Functional). The
functional F (g) = ⟨a, gc⟩ − ⟨b, ϕ⋆(−g)⟩ associated with Problem (12) has the following
properties:
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(i) F is concave.

(ii) For any g ∈ RM and j(i, g) ∈ argminj∈{1,··· ,M} c(xi, yj)− gj, the expression

SGF (g) = b⊙ exp (
−g
ρ
)−

N∑
i=1

aiej(i,g), (14)

is a super-gradient of F (g).

The proof is given in Appendix A.4

2.3.3 Exact Computation of SUOT in a Simple Case

We consider the simple scenario where α = δx and β = b1δy1 + b2δy2 , with b1+ b2 = 1 and
x, y1, y2 ∈ Rn. Accordingly, in our notations, N = 1, M = 2, a = 1, and b = (b1, b2).

To compute (balanced) OT, we need to optimize π11|y1−x|2+π12|y2−x|2 with respect
to the transport map π = (π11, π12), subject to the constraints π11 = b1 and π12 = b2.
Therefore, there is nothing to optimize, and we have

OT(α, β) = b1∥y1 − x∥2 + b2∥y2 − x∥2,

achieved for π∗
OT = (b1, b2). The computation of the SUOT cost between α and β is

detailed in Appendix B and proves that, for d = ∥y2 − x∥2 − ∥y1 − x∥2, the optimal
transport plan is π∗

SUOT = (1− η∗, η∗) with

η∗ =
b2e

− d
ρ

b1 + b2e
− d

ρ

(15)

and that
SUOTρ(α, β) = ∥y1 − x∥2 − ρ log(b1 + b2e

− d
ρ ). (16)

In Figure 2, we illustrate this result with a 2-D example. The left plot illustrates the
two distributions with the red point symbolizing α and the two blue points representing
β, where the area of each point indicates its mass: 1 for the red point and 0.1 and 0.9
for the two blue points, respectively. On the right side of the figure, we plot the OT
and SUOT transport plans as a function of ρ, represented by dashed and solid lines,
respectively. The OT transport plan, which is independent of ρ, redistributes the mass
of α to exactly match the distribution β. In contrast, with SUOT, a wider range of
possibilities emerges. It is observed that selecting a small value of ρ allows redistributing
most of the mass of the red point to the nearest light blue point. Conversely, choosing a
large value of ρ forces π12 to tend towards b2, pushing SUOT towards OT.

Now let us provide some more thorough insight into the transport plan π∗
SUOT =

(1 − η∗, η∗) and SUOTρ(α, β). First, let us consider η∗ from (15) as a mere function of
d/ρ. As soon as ∥y1 − x∥ < ∥y2 − x∥, we have η∗ < b2. This means that in SUOT,
the mass allocated to the more distant point y2 is necessarily reduced compared to OT.
Additionally, η∗ is a decreasing function of d/ρ. It goes to b2 when d/ρ → 0 with an
affine behavior given by the first-order expansion:

η∗ ≈
d
ρ
→0

b2 − b1b2
d

ρ
.

10



points cloud OT/SUOT transport plans

Figure 2: From left to right: the first plot presents the considered 2D example, followed
by the plot of the corresponding OT and SUOT transport plans as a function of ρ. The
OT transport plan is represented with dashed lines, while the SUOT transport plan is
depicted with solid lines. OT is observed to split the mass of the red point to precisely
match β. SUOT, in contrast, offers greater flexibility: with a smaller value of ρ, it can
prioritize the closer light blue point over the farther dark blue one. Increasing ρ gradually
aligns the SUOT transport plan with that of OT, showcasing SUOT’s adaptability and
advantages over OT.

Considering the only dependence in ρ, this is a rather slow convergence, which shows
that the choice of the unbalance parameter ρ is not very sensitive. When d/ρ → ∞, η∗

converges to 0 with the asymptotic behavior

η∗ ≈
d/ρ→∞

b2
b1
e−

d
ρ ,

demonstrating that the mass quickly vanishes when sent too far.
Now let us give some comments on SUOTρ(α, β). A first remark, stemming from the

very definition of SUOT, is that regardless of the values of the variables, the inequality
SUOTρ(α, β) < OT(α, β) holds true. Contrary to η∗, SUOTρ(α, β) cannot be written as
a function of d/ρ, which explains the following analysis wrt d and ρ taken separately. Let
us start by noting that SUOTρ(α, β) is not bounded, but considering only its dependence
wrt ρ (resp. d, contrary to OT(α, β)) makes it bounded. Thanks to (16), it is immediate
to see that SUOTρ(α, β) is an increasing function of d and that when d→∞,

SUOTρ(α, β) −−−→
d→∞

∥y1 − x∥2 − ρ log(b1),

Moreover, as ρ → ∞, a first-order Taylor expansion in (16) confirms that SUOTρ(α, β)
approaches OT(α, β), with a second-order expansion revealing

SUOTρ(α, β) = OT(α, β)− b1b2d
2

2ρ
+ o(

1

ρ
).

Lastly, as ρ → 0, SUOTρ(α, β) converges to ∥y1 − x∥2 which means that y2 is regarded
as an outlier, all the mass from x being transported to its nearest neighbor y1.

We now come back to the general case and consider the SUOT formulation in the
context of entropic regularization [19].
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3 Regularized Semi-Unbalanced Optimal Transport

3.1 Background on Entropic Optimal Transport

To speed up the computation of the OT cost, a now common strategy [19] is to add a
(negative) entropy term to the objective function in Problem (2), leading to a regularized
OT (ROT) formulation. Apart from the computational benefit, the empirical version of
the entropic ROT is known to converge to its population version at a rate independent
of the dimension of the space on which the measures are defined [28]. However, a well-
known problem with the entropic ROT is that it is biased [24]. This is made precise by
Rigollet and Weed [58] who show that the ε-ROT-projection of a discrete measure on a
class of measures satisfying a so-called closure under dominance hypothesis corresponds
to a maximum likelihood estimator in a Gaussian deconvolution model whose standard
deviation is precisely ε. Nevertheless, for small values of ε, ROT allows to compare
distributions. It is computable, using Sinkhorn’s algorithm, and differentiable.

Definition 8 (Regularized Optimal Transport [24, 54]). Let ε > 0 be fixed. The ε-ROT
cost between α and β is defined as:

ROTε(α, β) = min
π∈RN×M

+

⟨C, π⟩+ ε KL(π|a⊗ b) + ια(π1) + ιβ(π2). (17)

Entropic ROT admits the following dual formulation:

ROTε(α, β) = max
(f,g)∈RN×RM

⟨a, f⟩+ ⟨b, g⟩ − ε

〈
a⊗ b, exp

(
f ⊕ g − C

ε

)
− 1

〉
. (18)

Assuming that f ⋆, g⋆ are the solutions to Problem (18), we have [23, p. 124]:

∇xi
ROTε

(
N∑
i=1

aiδxi
, β

)
= ai∇φ(xi), (19)

where φ : Rn → R has the expression

φ(x) = −ε log

(
M∑
j=1

bj exp

(
g⋆j − c(x, yj)

ε

))
. (20)

Problem (18) is a concave maximization problem which can be solved by Sinkhorn’s
algorithm.

Theorem 9 (Sinkhorn’s algorithm [19,23,54]). (i) Starting from any f 0 ∈ RN , the
following algorithm converges to a solution of Problem (18):

gt+1
j = −ε log

(
N∑
i=1

ai exp

(
f t
i − ci,j
ε

))
, j ∈ JMK,

f t+1
i = −ε log

(
M∑
j=1

bj exp

(
gt+1
j − ci,j

ε

))
, i ∈ JNK.

(21)

(ii) The sequence of vectors (f t, gt) satisfies

F (f t, gt) =
〈
a, f t

〉
+
〈
b, gt

〉
, (22)

where F (f, g) is the function to maximize in Problem (18).
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(iii) Alternatively, a symmetric fixed-point method [23] can be employed: starting from
any (f̃ 0, g̃0) ∈ RN × RM , the following iterations converge to a solution of (18):

g̃t+1
j =

1

2

(
g̃tj − ε log

(
N∑
i=1

ai exp

(
f̃ t
i − ci,j
ε

)))
, j ∈ JMK,

f̃ t+1
i =

1

2

(
f̃ t
i − ε log

(
M∑
j=1

bj exp

(
g̃tj − ci,j

ε

)))
, i ∈ JNK.

(23)

In our experiments, we adopt the symmetric scheme (23) with the initial values
(f̃ 0, g̃0) = (0N ,0M) completed with a final single asymmetric step (21) to output an
estimate of ROTε using (22) that has a linear complexity (while (18) has quadratic com-
plexity). The gradient in (19) is obtained using automatic differentiation by plugging gt∞

into (20), where t∞ is the index of the last iteration. To accommodate large distributions
α and β, we employ the KeOps library [15], which enables the computation of reductions
for large matrices with no risk of memory overflows.

3.2 Regularized Semi-Unbalanced Optimal Transport

In this section, we present an entropy-regularized version of SUOT, which we refer to as
the Regularized Semi-Unbalanced Optimal Transport (RSUOT) cost. The corresponding
proofs are given in Appendix C.

3.2.1 Regularized Semi-Unbalanced Optimal Transport: Primal, Dual For-
mulation and Gradient

Definition 10 (Regularized Semi-Unbalanced Optimal Transport). For ε > 0 and ρ > 0
fixed, the RSUOT cost between α and β is defined as

RSUOTρ
ε(α, β) = min

π∈RN×M
+

⟨C, π⟩+ εKL(π|a⊗ b) + ια(π1) + ρKL(π2|b). (24)

Similarly to ROT, the addition of εKL to the RSUOT objective function makes it
strongly convex. Consequently, by applying the Fenchel-Rockafellar theorem, we can
reformulate Problem (24) in a dual form:

RSUOTρ
ε(α, β) = max

(f,g)∈RN×RM
⟨a, f⟩ − ⟨b, ϕ⋆(−g)⟩ − ε

〈
a⊗ b, exp

(
f ⊕ g − C

ε

)
− 1

〉
.

(25)
As for ROT, if f ⋆, g⋆ denote the solutions of Problem (25), we have

∇xi
RSUOTρ

ε

(
N∑
k=1

akδxk
, β

)
= ai∇φ(xi), (26)

with

φ(x) = −ε log

(
M∑
j=1

bj exp

(
g⋆j − c(x, yj)

ε

))
. (27)
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3.2.2 Resolution by Sinkhorn’s algorithm

We next present a Sinkhorn-like algorithm for Problem (25).

Theorem 11 (Sinkhorn’s algorithm for RSUOT). (i) Starting from any f 0 ∈ RN , the
following sequence (f t, gt)t≥0 converges linearly to the unique solution (f ⋆, g⋆) of
Problem (25):

gt+1
j = − ε

1 + ε
ρ

log

(
N∑
i=1

ai exp

(
f t
i − ci,j
ε

))
, j ∈ JMK,

f t+1
i = −ε log

(
M∑
j=1

bj exp

(
gt+1
j − ci,j

ε

))
, i ∈ JNK.

(28)

(ii) Denoting F (f, g) the function to be maximized in Problem (25), the sequence of
vectors (f t, gt)t≥0 satisfies

F (f t, gt) =
〈
a, f t

〉
−
〈
b, ϕ⋆(−gt)

〉
. (29)

(iii) Alternatively, the solution vectors (f ⋆, g⋆) can be computed by iterating a symmet-
ric fixed-point method [23]: starting from any (f̃ 0, g̃0) ∈ RN × RM , the following
sequence (f̃ t, g̃t)t≥0 also converges linearly to the solution of (25):

g̃t+1
j =

1

2

(
g̃tj −

ε

1 + ε
ρ

log

(
N∑
i=1

ai exp

(
f̃ t
i − ci,j
ε

)))
, j ∈ JMK,

f̃ t+1
i =

1

2

(
f̃ t
i − ε log

(
M∑
j=1

bj exp

(
g̃tj − ci,j

ε

)))
, i ∈ JNK.

(30)

In our experiments, unlike ROT, we opt for the non-symmetric scheme (28), which,
for the values of ρ we use, converges faster than its symmetric counterpart. We initialize
it with f 0 = 0N .

3.2.3 Exact Computation of RSUOT in the Simple Case of Section 2.3.3

Here, we revisit the scenario where α = δx and β = b1δy1 + b2δy2 , with b1 + b2 = 1 and
x, y1, y2 ∈ Rn. Since, in this case, the product measure α ⊗ β is the only measure with
prescribed marginals α and β, we have that

ROTε(α, β) = OT(α, β) = b1∥y1 − x∥2 + b2∥y2 − x∥2,
where the minimizing transport plan π∗

ROT is again (b1, b2).
In RSUOT, the functional to be minimized includes the regularization term εKL(π|a⊗

b). Since a is scalar, this term simplifies to εKL(π2|b). Therefore, RSUOT reduces to
SUOT, but with a higher level of regularization, as demonstrated by

RSUOTρ
ε(α, β) = SUOTρ+ε(α, β) = ∥y1 − x∥2 − (ρ+ ε) log(b1 + b2e

− d
ρ+ε ),

where the minimum is attained for π∗
RSUOT = (1− η∗, η∗), with

η∗ =
b2e

− d
ρ+ε

b1 + b2e
− d

ρ+ε

.

As long as α is a single Dirac, increasing the regularization is equivalent to decreasing
the semi-unbalancing effect. However, this equivalence does not hold when α has more
than one atom.
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4 Applications to Inverse Imaging Problems

4.1 The Semi-Unbalanced Wasserstein Patch Prior

We now explain how we use the SUOT cost in the context of inverse imaging problems.
For this, we consider a general linear inverse problem with forward model

y = Ax⋆ + η, (31)

where x⋆ ∈ X = RN , y ∈ Y = RK , A ∈ RK×N , and η ∈ Y is an error term. The goal is
to construct an estimate x̂(y) of x⋆. For this, we adopt a variational approach where we
solve the optimization problem

min
x∈X

λ

2
∥Ax− y∥2 +R(x), (32)

for λ > 0 and a regularizer R. Other fidelity terms can be used in (32) instead of the
squared Euclidean distance.

Besides y, we assume that we also have access to a reference image xref ∈ RM related
to x⋆. The first row of Figure 3 shows an example where the first column is the reference
xref , the second one is a simulated noisy version y of the ground-truth x⋆ appearing in
the third column. As can be seen, xref is related to x⋆ in the sense that its statistics are
similar to those of x⋆. Pixelwise values of xref and x⋆ are nonetheless not expected to be
close.

In this context, Hertrich et al. [37] have introduced the use of the Wasserstein patch
prior (WPP) R0(x) = OT(αx, βxref

), where αx = 1
N

∑N
i=1 δPix, βxref

= 1
M

∑M
j=1 δPjxref

, Pk

being the operator that extracts the kth patch from a given image. To simplify notation,
we have implicitly assumed that the number of patches extracted from each image is
equal to the number of its pixels, however, in practice, there are less patches than pixels
due to border considerations. Solving Problem (32) with R = R0 thus favors images
whose patch distribution is close to the one of the reference xref in the sense of OT, while
being consistent with the observation y.

The regularizer R0 involves patches of a fixed given size. In order to capture and
incorporate both fine and coarse details, [37] also proposes the regularizer

RL(x) =
1

L+ 1

L∑
ℓ=0

OT(αxℓ , βxℓ
ref
), (33)

where xℓ = Aℓx, xℓ
ref = Aℓxref , A represents a downsampling operator, A0 is the identity

and Aℓ+1 = AAℓ. In practice, a convolution with a Gaussian blur kernel of size 4× 4 and
standard deviation of 1, followed by a subsampling of factor 2 is used for A. The empirical
distributions αxℓ and βxℓ

ref
are given by: αxℓ = 1

Nℓ

∑Nℓ

i=1 δPixℓ and βxℓ
ref

= 1
Mℓ

∑Mℓ

j=1 δPjxℓ
ref
.

It should be noted that the size of the patches extracted by the operators Pk does not
depend on the scale level ℓ. Consistent with our notation, when L = 0, the multiscale
WPP reverts to the single-scale one.

4.2 A First Illustrative Example: Denoising Using Single Scale
WPP

In this subsection, our goal is to showcase the effectiveness of the single-scale regular-
izer R0 in a denoising example, illustrating the potential improvements in image quality
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through the utilization of SUOT over OT. Specifically, we consider the scenario where A
is the identity operator and η ∼ N (0, (30/256)2I) is a realization from a Gaussian random
variable. We utilize patches of size 6 × 6. All patches are extracted from the reference
and noisy images.

The optimization problem (32) with R(x) = R0(x) is solved with 500 (outer) iterations
of gradient descent, employing the Adam optimizer [43]. In each outer iteration, OT is
approximated using 10 (inner) iterations of AGAA on the semi-dual formulation (see
(6)). We warm start the semi-dual variable, that is, the last semi-dual variable in inner
iteration p is used to initialize the first one in iteration p + 1. We later address ROT,
SUOT and RSUOT variants in a similar manner, approximating the transport using 10
iterations of AGAA in the case of SUOT, and 10 iterations of Sinkhorn in the case of
ROT and RSUOT. We assess the denoising quality by computing the Peak Signal-to-
Noise Ratio (PSNR), the Structural Similarity Index (SSIM) [73], as well as the Learned
Perceptual Image Patch Similarity (LPIPS) [74], each time considering a central crop of
6 pixels away from the image edges. We obtained the result labeled as OT in Figure 3.

When minimizing (32) with R = R0, the tendency of OT to preserve the frequencies of
the patches of xref is balanced by the presence of the data fidelity term λ

2
∥A · −y∥2. It is

however interesting to see if the relaxation provided by SUOT, allowing an explicit control
of those frequencies, can improve the denoising results. In particular, we expect the use
of SUOT to enable discarding some patches in xref not suitable for estimating x⋆. We
thus introduce the semi-unbalanced Wasserstein patch prior R̃0(x) = SUOTρ(αx, βxref

),
ρ > 0, and its multiscale extension R̃L. With ρ = 0.01, the result labeled as SUOT in
Figure 3 improves upon the one obtained with OT in terms of all considered metrics.

In Figure 3, we also show the result obtained when minimizing (32) with R(x) being
equal to the entropy-regularized fully unbalanced OT cost of [17, 25], hereafter denoted
RUOTρ

ε(αx, βxref
). The strength of entropy regularization is dictated by the value of ε.

The result labeled as RUOT in Figure 3 corresponds to ε = 10−4, making RUOT a good
approximation of its unregularized counterpart UOT, proposed in [11, 46]. The latter
differs from SUOT in that the constraints on both marginals of the OT plan are relaxed.
As can be expected, when employing RUOTρ

ε as a regularizer, some patches might not
evolve trough the gradient descent iterations. This is confirmed in Figure 3 where, after
initializing the ADAM optimizer with the noisy image y, we see that some regions in the
image labeled RUOT have not been denoised. In comparison, our proposed SUOT-based
result ensures spatially homogeneous denoising and achieves the best performance. To
summarize, SUOT is a robust version of OT, that denoises all the patches while allowing
for a partial match to the reference distribution, the proportion of matching being tuned
by the parameter ρ.

Figure 4 investigates how denoising performance is affected by replacing OT and
SUOT by their entropy-regularized counterparts ROT and RSUOT. Both ROT and
RSUOT are approximated using Sinkhorn’s algorithms given in Theorems 9 and 11.
It is observed that as ε increases, the quality of denoising decreases, particularly in terms
of LPIPS score. This decline is related to the bias discussed in Section 3.1. Nevertheless,
with small values of ε, ROT and RSUOT enable reasonable distribution comparisons.

4.3 Reference-Driven Super-Resolution using Multiscale WPP

We concentrate in this subsection on the problem of super-resolution (SR) with the
presence of a reference, as considered in [37]. The forward model is given by (31), with
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Reference Noisy Ground truth

OT RUOT (ρ = 0.02, ε = 10−4) SUOT (ρ = 0.01)

26.42/0.787/0.078 21.34/0.635/0.408 27.14/0.811/0.068

Figure 3: Application of OT, SUOT and RUOT to denoising. The top row displays the
reference image (Reference), the noisy image (Noisy), and the original image (Ground truth).
The bottom row presents denoising results using OT, RUOT, and SUOT with λ = 0.03. For each
result, a triplet of metrics PSNR

/
SSIM

/
LPIPS is provided, with the best score highlighted in

bold and the second-best underlined. The computation time is 325 seconds for OT, 326 seconds
for SUOT, and 725 seconds for RUOT.

A = S ◦ H, where H is a low-pass convolution operator, S a downsampling operator
and η ∼ N (0, 0.012). The observation y is thus a low-resolution (LR) version of the
high-resolution (HR) ground-truth x⋆. The reference xref is in this context a HR image,
whose statistics are similar to those of x⋆. While pixelwise differences between x⋆ and xref

are not expected to be close to zero, its is nonetheless assumed that the distribution of
patches extracted from xref can serve as a prior for estimating x⋆. The reference-driven SR
scenario emerges whenever time and/or system resources are allocated to acquire high-
quality images, which are subsequently used to improve related lower-quality acquisitions.
This scope can be further expanded by using higher-level features instead of patches,
in particular if these features are robust to image transformations such as changes in
brightness, color, contrast, scale, and rotation.

The authors of [37] propose to use their multiscale WPP prior RL, defined in (33), as
a regularizer in (32). This leads to an estimate x̂(y) whose multiscale patch distribution
is close to the one of xref in the sense of OT, while maintaining pixel values consistent
with y. The balance between these two objectives is determined by λ.

In practice, in order to deal with the previously discussed issues encountered when
using OT as a cost, the authors of [37] formulate the optimization problem (32) in terms
of an unknown image z obtained by artificially expanding the boundaries of x. The
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Reference Noisy Ground truth

ROT

ε = 10−4 ε = 10−3 ε = 10−2 ε = 0.1 ε = 1

25.51/0.770/0.079 25.81/0.778/0.080 26.67/0.814/0.126 23.88/0.522/0.477 19.83/0.079/0.624

RSUOT (ρ = 0.01)

ε = 10−4 ε = 10−3 ε = 10−2 ε = 0.1 ε = 1

27.11/0.810/0.068 27.07/0.809/0.069 27.11/0.803/0.140 23.35/0.365/0.393 20.15/0.153/0.546

Figure 4: Impact of the regularization on a denoising example. The top row displays the
original image (Ground truth), the noisy image (Noisy), and the reference image (Reference).
The bottom rows present denoising results employing ROT and RSUOT for different values of
ε and λ = 0.03. Each result is accompanied by a triplet of metrics PSNR

/
SSIM

/
LPIPS. The

best score is denoted in bold, and the second-best is underlined. The computation time for each
result was 725 seconds.

fidelity term is applied to the central part of z, leading to the problem

min
z

λ

2
∥SHCz − y∥2 + 1

L+ 1

L∑
ℓ=0

OT(αzℓ , βxℓ
ref
), (34)

where C is the operator that discards the artificial boundaries. In this way, patches
from xref that are unsuitable for super-resolving y are expected to accumulate within the
artificial boundaries of z instead of being concentrated at its center.

Instead of dealing with the rigidity of OT by artificially expanding the boundaries of
the unknown, we propose to use our SUOT and RSUOT regularizers, as they intrinsically
allow for partial mass displacement. We thus consider Problem (32) with A = S ◦H and
R(x) = 1

L+1

∑L
ℓ=0 SUOTρ(αxℓ , βxℓ

ref
) or R(x) = 1

L+1

∑L
ℓ=0 RSUOTρ

ϵ (αxℓ , βxℓ
ref
).

In our experiments, we use images sourced from the MVTec database [8, 9], resized
to 256 × 256. This database contains images of different object and texture categories,
such as “Tile” and “Wood” (see Columns 2 and 3 in Figure 5 for grayscale versions, and
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in Figure 6 for the corresponding color versions). Each category contains images with
and without anomalies. Considering Column 2 in Figure 5, the topmost row shows a
“Tile” without anomaly, while the next row shows a “Tile” presenting an anomaly. The
subsequent rows show two other categories, without and with anomalies.

From the MVTec database, we constructed two sub-datasets, the “anomaly-free” and
“with anomalies” datasets. The “anomaly-free” dataset consists of eighteen pairs of
images (yi, xref,i), where each yi is a LR anomaly-free image and xref,i a HR anomaly-free
image from the same category as yi. The “with anomalies” dataset follows a similar
structure except that now, the references are chosen among the HR images of the same
category but with anomalies. In both datasets, the LR images yi have been simulated
by convolving the corresponding original HR images x⋆

i with a Gaussian kernel of size
16× 16 and standard deviation equal to 2. A subsampling of factor 4 along each spatial
dimension has been applied and Gaussian white noise of standard deviation 0.01 added.
The two sub-datasets allow to compare the relative performance of OT and SUOT in
two different regimes. With the “anomaly-free” dataset, the patch distribution of each
reference is expected to differ only marginally from the one of the corresponding ground-
truth. In the “with anomalies” dataset, a limited portion of patches from each reference
correspond to outliers, that is, they are very different from the typical patches found in
the corresponding ground-truth.

To super-resolve each LR image yi, we used the associated reference xref,i as a prior
and set the parameters as follows: λ = 0.006, ρ = 0.01, ε = 10−4, L = 1 (2 scales),
and a patch size of 6. All patches were extracted from x (or z) and 10000 patches
were extracted, once and for all, from each reference image. Similar to [37], we solve
Problem (34) with 500 (outer) iterations of gradient descent using the Adam optimizer.
In each outer iteration, OT is approximated with 10 iterations of AGAA. The semi-
dual variables are warm-started as explained in the previous subsection. We address our
SUOT and RSUOT variants in a similar manner, approximating SUOT using AGAA and
RSUOT using 10 iterations of Sinkhorn’s algorithm presented in Theorem 11.

We evaluate PSNR, SSIM and LPIPS scores for each dataset, each time considering a
central crop of 6 pixels away from the image edges. The results are presented in Table 1
and Figure 5. In Figure 5, each LR image is associated with two rows: the first row
corresponds to the result obtained using an anomaly-free reference HR image, while the
second row corresponds to the one obtained using a reference HR image with anomalies.
The results shown in Table 1 and Figure 5 demonstrate that the improved robustness
achieved by replacing OT with SUOT or RSUOT leads to higher PSNR values when the
references lack anomalies. Furthermore, it leads to significantly higher PSNR and LPIPS
scores when the references present outliers.

Table 2 and Figure 6 lead to the same conclusions in the case of color images. Con-
sidering the computational time, we opted to solely compare with SUOT.

4.4 Neural Network Amortization

We consider in this subsection a neural network amortization [2] of Problem (32) with
A = S ◦H and R = SUOT. In this context, amortization amounts to training a neural
network Gθ, whose input is a LR image y, and whose output should be close to the
estimate x̂(y) obtained as a solution of Problem (32). The amortization of Problem (32)
with the WPP regularizer R = RL has been developed in [1]. Therein, the authors
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Table 1: Average PSNR, SSIM and LPIPS obtained on two datasets of 18
grayscale image pairs from the MVTec image database [8, 9]. Reference images
from the first dataset are anomaly-free while those in the second dataset contain anomalies
(see Figure 5). The average running time is provided.

Anomaly-free With anomalies

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ Runtime

WPP [37] 30.11 0.651 0.094 30.15 0.670 0.099 109s
ROT 29.81 0.659 0.088 29.74 0.682 0.101 230s
RSUOT (Ours) 30.48 0.655 0.094 30.90 0.676 0.092 230s
SUOT (Ours) 30.43 0.653 0.092 30.80 0.672 0.093 73s

Table 2: Average PSNR, SSIM and LPIPS obtained on two datasets of 18
color image pairs from the MVTec image database [8,9]. Reference images from
the first dataset are anomaly-free while those in the second dataset contain anomalies
like in Figure 5.

Anomaly-free With anomalies

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ Runtime

WPP [37] 29.75 0.660 0.135 30.01 0.680 0.131 161s
SUOT (Ours) 30.37 0.676 0.131 30.83 0.701 0.128 136s

propose to minimize the following loss:

min
θ

1

NB

NB∑
j=1

1

b

∑
i∈Bj

∥f(Gθ(yi))− yi∥2 + λOT
(1
b

∑
i∈Bj

αGθ(yi), βxref

)
, λ > 0, (35)

referred to as the WPPNets loss. In order to augment the number of training examples,
all training LR images yi in (35) are smaller in size compared to the reference image.
They are thus expected to have a patch distribution close to a subset of the one of xref .
Once trained, Gθ is used to super-resolve LR images whose patch distribution is supposed
to be close to the specific reference used during training. To put it another way, retraining
Gθ is necessary as soon as the reference changes. In (35), the division of training images
into batches B = (Bj)j∈NB

aims at alleviating the rigidity induced by using OT as a
cost. This rigidity is especially pronounced here, since LR images may present only a
small part of the considered object or texture. With this strategy, the aggregate patch
distribution inside a batch closely matches the one of the reference in the sense of OT,
while still allowing for variation within the batch. The architecture for Gθ proposed in [1]
is adapted from the fully convolutional CNN proposed in [69].

To further augment the flexibility of the approach, we suggest replacing OT in Prob-
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LR input Reference HR Original HR WPP [37] ROT RSUOT (Ours) SUOT (Ours)

26.58
/
0.747

/
0.093 26.47

/
0.743

/
0.097 26.97

/
0.758

/
0.114 26.90

/
0.755

/
0.106

25.70
/
0.726

/
0.117 25.32

/
0.732

/
0.118 26.80

/
0.757

/
0.105 26.68

/
0.753

/
0.099

30.33
/
0.473

/
0.102 30.47

/
0.479

/
0.090 30.74

/
0.490

/
0.095 30.71

/
0.491

/
0.096

29.69
/
0.509

/
0.135 28.90

/
0.527

/
0.179 30.36

/
0.493

/
0.108 30.19

/
0.486

/
0.117

35.86
/
0.659

/
0.175 33.43

/
0.677

/
0.148 36.51

/
0.684

/
0.151 36.47

/
0.676

/
0.149

35.13
/
0.808

/
0.175 29.18

/
0.787

/
0.214 36.05

/
0.697

/
0.132 35.97

/
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/
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Figure 5: Application to super-resolution with a reference image. From left to right:
LR input, reference HR input, original HR image, sSR by WPP [37], ROT, RSUOT and SUOT
priors. For each result we provide the triplet PSNR

/
SSIM

/
LPIPS.

lem (35) with our SUOT variant. We denote this modified problem as WPPNetsSU:

min
θ

1

NB

NB∑
j=1

1

b

∑
i∈Bj

∥f(Gθ(yi))− yi∥2 + λ SUOTρ
(1
b

∑
i∈Bj

αGθ(yi), βxref

)
, λ > 0. (36)

The authors of [1] solve Problem (35) with the Adam optimizer. To approximate OT,
they utilize AGAA with 20 iterations per step. We address Problem (36) with the im-
plementation provided by the authors, substituting the computation of OT with that of
SUOT.

In our experiments, we focused on images belonging to the “Wood” and “Tile” classes
of the MVTec dataset [8, 9]. These images underwent grayscale conversion and were
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LR input Reference HR input Original HR WPP [37] SUOT (Ours)
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Figure 6: Application to color super-resolution with a reference image. From left to
right: LR input, reference HR input, original HR image, SR by WPP [37] and SUOT priors.
For each result we provide the triplet PSNR

/
SSIM

/
LPIPS.
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resized to a resolution of 600 × 600 pixels. We then extracted six 100 × 100 HR crops
from the training sets associated with each category. We simulated the LR version of
each 100×100 HR image by applying a Gaussian blur kernel of size 16×16 and standard
deviation of 2. We then applied a subsampling factor of 4 in each spatial dimension, and
added Gaussian noise η ∼ N (0, 0.012). We selected an anomaly-free reference image from
each category.

Following [1], we choose b = 25, λ = 12.5, a patch size of 6, and opted for ρ =
0.01. Table 3 presents the average PSNR, SSIM, and LPIPS values for WPPNets and
WPPNetsSU, calculated over the entire test dataset in the “Wood” and “Tile” classes.
The dataset consists of 18 samples for the “Wood” class and 32 samples for the“Tile”
class. It is worth noting that while the overall results appear comparable, a noticeable
improvement in PSNR is observed specifically for the “Wood” class, which exhibits a
more diverse texture compared to the “Tile” class. It demonstrates the capability of
SUOT to focus on regions of the reference distribution that align with the ground-truth.
We present some results from Table 3 in Figure 7. Furthermore, we generated Table
4 and Figure 8 for color images, observing consistent conclusions with those drawn for
grayscale images. The neural network training time was 2.5 hours for grayscale images
and 5 hours for color images using an Nvidia A100 GPU. After training, each image is
processed with an average time of 0.013 seconds.

Table 3: Average PSNR, SSIM and LPIPS scores for the SR of two grayscale
image sets: “Wood” and “Tile” from [8, 9]. The network was trained using the
reference images shown in Figure 7. The “Wood” dataset consists of 18 images, while
the “Tile” dataset contains 32 images. From top to bottom: SR by WPPNets [1], WPP-
NetsSU.

Wood Tile

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

WPPNets [37] 31.99 0.5307 0.1804 32.88 0.8504 0.2257
WPPNetsSU (Ours) 32.33 0.5494 0.1896 32.83 0.8514 0.2358

Table 4: Average PSNR, SSIM, and LPIPS scores for the SR of two sets
of color images:“Wood” and “Tile” sourced from [8, 9]. The model was trained
using the reference images shown in Figure 8. The “Wood” dataset consists of 18 images,
while the “Tile” dataset contains 32 images. From top to bottom: SR by WPPNets [1],
WPPNetsSU.

Wood Tile

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

WPPNets [37] 32.07 0.6651 0.1743 33.83 0.8747 0.2282
WPPNetsSD (Ours) 32.88 0.6758 0.1694 33.93 0.8769 0.2646
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LR Reference HR HR WPPNets [37] WPPNetsSU (Ours)

31.63
/
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/
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/
0.5862

/
0.1628

32.70
/
0.8475

/
0.2458 32.64

/
0.8484

/
0.2572

Figure 7: Application of WPPNets [1] and WPPNetsSU to a grayscale “Wood” and
“Tile” image from [8,9]. Images are arranged from left to right: Low-resolution image (LR),
reference image (Reference HR), high resolution image (HR), SR using WPPNets [1], and SR
using WPPNetsSU. For each result, a triplet of metrics PSNR

/
SSIM

/
LPIPS is provided.

LR Reference HR HR WPPNets [37] WPPNetsSU (Ours)

31.69
/
0.6721

/
0.1625 32.70

/
0.6931

/
0.1501

33.37
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0.8640

/
0.2641 33.43

/
0.8666

/
0.3014

Figure 8: Application of WPPNets [1] and WPPNetsSU to a color “Wood”
and “Tile” image from [8, 9]. Images are presented from left to right: Low-resolution
image (LR), reference high-resolution image (Reference HR), high-resolution image (HR),
SR using WPPNets [1], and SR using WPPNetsSU. For each result, a triplet of metrics
PSNR

/
SSIM

/
LPIPS is provided.
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5 Single Image Generation using SUOT

5.1 PSinOT and its Semi-Unbalanced Version

Let us turn to another task for which OT between image patches is particularly adapted,
namely single-image generation (SIG). The goal of SIG is to generate realistic images
resembling a given reference image xref . The Patch-based algorithm for Single image gen-
eration with OT (PSinOT), introduced in [16], addresses this challenge by implementing
OT projection and Nearest Neighbor Matching (NNM) at various scales. Namely, the ref-
erence image undergoes L successive downscalings using an operator A, which combines
a convolution with a 3×3 Gaussian kernel of standard deviation 1.5 and a downsampling
operator of factor 2. This results in the image sequence

(
xℓ
ref

)
ℓ∈{0,...,L}, where x0

ref = xref

and xℓ+1
ref = Axℓ

ref . PSinOT starts by synthesizing the image at the coarsest scale L. At
each scale ℓ, the generated image x̂ℓ, after being scaled up, serves as initialization for
the previous finer scale ℓ − 1, until the initial resolution is reached. To synthesize the
image at some scale ℓ, PSinOT works either with OT or NNM. OT is chosen at coarse
scales, in order to establish the overall structure of the image, while at finer scales, NNM
is preferred, in order to enhance the details of the generated image while preserving the
structure. At a given scale ℓ, synthesizing an image using OT is done by solving (with
gradient descent, starting from a given initialization)

min
x

OT(αx, βxℓ
ref
), (37)

where αx is the empirical distribution of all patches extracted from x, and βxℓ
ref

the

empirical distribution of all patches extracted from xℓ
ref . NNM-based synthesis at scale ℓ

works by solving

NNM(xℓ
ref) = argmin

x

N∑
i=1

min
j∈JMK

∥Pix− Pjx
ℓ
ref∥22, (38)

where Pk is the operator that extracts the kth patch. The NNM problem is efficiently
solved by means of the PatchMatch algorithm [5].

In order to give a clear algorithmic description of the process, we introduce the func-
tions solveOT(xinit, xref) and solveNNM(xinit, xref) that respectively solve Problems (37)
and (38), starting from an initial image xinit. Regardless of the function used, the out-
put x̂ℓ is upscaled with a factor of 2 by determining the Nearest Neighbor Assignment
(NNA) between the patches of x̂ℓ and those of xℓ

ref , and then by interpolating the NNA
map [16]. The resulting image is used as the initialization at scale ℓ−1. The initialization
at the coarsest scale is a Gaussian noise image. PSinOT uses 4 scales; at coarse scales
(ℓ ∈ {2, 3}), OT is used, whereas NNM is used at fine scales ℓ ∈ {0, 1}. The procedure is
detailed in Algorithm 1.

When the number of patches in the synthesized image equals the one in the reference
image, solving (37) leads to a unique matching of each patch in the synthesized image with
a single, distinct patch from the reference. This results in a one-to-one correspondence,
which often makes the synthesized image look very similar to the reference.

To increase the variety in the synthesized images, we propose to replace OT with
SUOT in (37). This transforms the optimization problem (37) into

min
x

SUOTρ(αx, βxℓ
ref
), (39)
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Algorithm 1 PSinOT/PSinSUOT

Input: z (initialization image),
(
xℓ
ref

)
ℓ∈{0,...,3} (downscaled versions of xref), ρ (the

unbalance parameter, for the SUOT variant)
Output: x̂0 (the synthesized image at the initial resolution)
for ℓ = 3 to 0 do
if ℓ == 3 then
xℓ
init ← z

else
xℓ
init ← upscale(x̂ℓ+1)

end if
if ℓ ∈ {2, 3} then
x̂ℓ ← solveOT(xℓ

init, x
ℓ
ref)

else
x̂ℓ ← solveNNM(xℓ

init, x
ℓ
ref)

end if
end for
return x̂0

and allows multiple patches in the synthesized image to evolve to the same closest ref-
erence patch. We show below that this flexibility leads to variations in the synthesized
images, enhancing their diversity. Our variant of PSinOT using SUOT, denoted as PSin-
SUOT, is also described by Algorithm 1, considering that the function solveOT now
performs a gradient descent on (39) instead of (37).

5.2 Numerical Results

In our experiments, we utilized reference images from the
Places50 and SIGD16 datasets [32]. To solve Problem (37) and Problem (39), we used, as
in Houdard et al. [40], 1000 iterations of the Adam gradient descent optimizer. To approx-
imate OT and SUOT, we utilized AGAA with 10 iterations per step. An exception was
made for the initial step, for which we allowed 10000 iterations for improved convergence.
Following the procedure detailed in [16], we initialized the image with white Gaussian
noise sampled from N (0.5, 1) at the coarsest scale and chose to work with patches of size
11× 11.

In Table 5, we present the SIFID and Diversity scores averaged on 50 generated
images on the three reference images displayed in Figure 9 using PSinOT and PSinSUOT
with ρ = 0.01. As explained in [63], SIFID is a single-image version of the Fréchet
Inception Distance (FID) [38]. Diversity is defined as the per-pixel standard deviation
calculated from 50 generated images, averaged over all pixels, and normalized by the
standard deviation of the reference image. Consequently, a low SIFID suggests that
the synthesized image shares a similar distribution of features with the reference image,
indicating similar content. Conversely, a high Diversity score indicates a wide range
of possible generated images. As expected, PSinSUOT demonstrates higher SIFID and
Diversity scores compared to PSinOT, indicating a more varied set of elements and a
greater diversity in the generated images. Additionally, in Figure 9, we showcase six
image synthesis results for each reference image, visually emphasizing the diversity of
images obtained with SUOT compared to OT. Finally, in Figure 10, we explore the
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impact of the unbalance parameter ρ on the images generated with PSinSUOT using
various initialization images. We observe that the choice of the initialization image has
a significant influence on the generated image with PSinSUOT, whereas PSinOT is less
affected by this change. Moreover, the parameter ρ enables interpolating between NNA
and OT, significantly influencing the final image. Higher values of ρ shift the result closer
to OT, while lower values tilt it towards NNA. Indeed, when ρ→ 0, the penalty on π2 is
relaxed, leading to a solution that corresponds to NNA.

Table 5: SIFID and Diversity scores obtained from 50 generated images with
PSinOT and PSinSUOT on three reference images depicted in Figure 9. SUOT
achieves a higher diversity score compared to OT in the generated images.

Reference 1 Reference 2 Reference 3

SIFID↑ Diversity↑ SIFID↑ Diversity↑ SIFID↑ Diversity↑

PSinOT [16] 1.0e-5 0.75 3.5e-6 0.40 1.0e-5 0.62
PSinSUOT (Ours) 7.9e-5 0.77 9.3e-6 0.51 3.4e-5 0.78

6 Conclusion

In this paper, we introduced SUOT, an asymmetric form of OT targeted towards in-
verse imaging and synthesis problems. SUOT is explicitly designed to alleviate the is-
sues encountered when using OT as a cost in imaging problems. We studied both the
unregularized and entropy-regularized version of SUOT, deriving dual formulations, cor-
responding minimization algorithms and formulas for the gradient of the cost. Those
derivations allowed us to use a gradient descent scheme either to minimize an energy, or
to learn a neural network, both involving a SUOT cost. We evaluated our proposal for a
reference-driven SR problem and showed its benefits. We also incorporated SUOT into a
state-of-the-art single-image generation algorithm and showed that it leads to increased
diversity, as measured by SIFID and per-pixel standard deviation metrics. Future work
will focus on achieving fine-grained control over the proportion of the target distribution
considered by SUOT and exploring other relevant image processing problems.
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A Proofs of Section 2.3

A.1 Proof of Theorem 3

The proof consists in applying the Fenchel-Rockafellar theorem that we now recall.

Theorem 12 (Fenchel-Rockafellar). [12, Theorem 3.3.5] Let E and H be two normed
vector space, A : E → F a linear mapping, r : E → (−∞,+∞] and h : H → (∞,+∞]
two convex functions satisfying the qualification condition:

0 ∈ core(dom(h)− Adom(r)), (40)
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where the core of a set S denoted as core(S) is defined as the set of points x in S such
that for every direction d, x+ td lies in S for all sufficiently small t.

Moreover, assume that infE(r + h ◦ A) > −∞. Then, we have:

inf
x∈E

r(x) + h(Ax) = max
y∈H
−r⋆(AT y)− h⋆(−y), (41)

where r⋆ and h⋆ are the Legendre conjugates of r and h, respectively.

The proof is conducted for discrete distributions α and β with strictly positive weights
a and b, respectively. We can write primal SUOT as follows:

SUOTρ(α, β) = inf
π∈RM×N

⟨C, π⟩+ ιRM×N
+

(π) + ιa(π1) + ρKL(π2|b).

Defining:
A : RN×M → RN × RM

π 7→ (π1, π2)
,

the linear operator that extracts the first and second marginals from π, the function r as

r : RN×M → R
π 7→ ⟨C, π⟩+ ιRM×N

+
(π),

and the function h as
h : RN × RM → R

(π1, π2) 7→ ιa(π1) + ρKL(π2|b),
we can rewrite the primal SUOT as follows

SUOTρ(α, β) = inf
π∈RM×N

r(π) + h ◦ A(π).

The conditions of the Fenchel-Rockafellar theorem 12 are satisfied in this context:

• r and h are two convex functions,

• since the function to be minimized is positive, its minimum is positive,

• the condition (40) is satisfied: 0 ∈ core(dom(h)− Adom(r)).

Let us justify the latter condition. Firstly, consider that (a, b) ∈ dom(h) and (a ⊗
b) ∈ dom(r). As (a, b) − A(a ⊗ b) = 0, it implies that 0 ∈ dom(h) − Adom(r). Now,
let d = (d1, d2) ∈ RN × RM be an arbitrary direction. Since a > 0 and b > 0, we
can select a sufficiently small value for t such that all components of (a − td1, b − td2)
are strictly positive. As a consequence of (a − td1) ⊗ (b − td2) ∈ dom(r) and since
(a, b) − A(a − td1) ⊗ (b − td2) = (td1, td2), we have 0 + td ∈ (dom(h) − Adom(r)). By
observing this, we can conclude that the condition (40) is satisfied.

According to the Fenchel-Rockafellar theorem, we obtain

SUOTρ(α, β) = max
(f,g)∈RN×RM

−r⋆ ◦ AT (f, g)− h⋆(−(f, g)),
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with

r⋆ ◦ AT (f, g) = r⋆(f ⊕ g)

= sup
π̃∈RN×M

+

⟨f ⊕ g, π̃⟩ − ⟨C, π̃⟩

= sup
π̃∈RN×M

+

⟨f ⊕ g − C, π̃⟩ =

{
0 if f ⊕ g ≤ C,

+∞ otherwise,

and

h⋆(f, g) = sup
(f̃ ,g̃)∈RN×RM

〈
(f, g), (f̃ , g̃)

〉
− h(f̃ , g̃)

= sup
(f̃ ,g̃)∈RN×RM

〈
f, f̃
〉
+
〈
g, g̃
〉
− ιa(f̃)− ρKL(g̃|b)

= sup
f̃∈RN

〈
f, f̃
〉
− ιa(f̃) + sup

g̃∈RM

〈
g, g̃
〉
− ρKL(g̃|b).

We observe that this problem is separable, and by the definition of ιa, we have:

sup
f̃∈RN

〈
f, f̃
〉
− ιa(f̃) =

〈
f, a
〉
.

We are left to compute:

sup
g̃∈RM

〈
g, g̃
〉
− ρKL(g̃|b).

Due to the strict convexity of the ρKL divergence, it is a strictly concave function that
attains its maximum when its gradient is zero:

∇g̃ ⟨g, g̃⟩ − ρKL(g̃|b) = 0M ⇐⇒ g − ρ log(
g̃

b
) = 0M ⇐⇒ g̃ = b⊙ exp

(
g

ρ

)
.

Defining g∗ = b⊙ exp
(

g
ρ

)
, and using the expression of KL(g∗|b), we have:

sup
g̃∈RM

⟨g, g̃⟩ − ρKL(g̃|b) = ⟨g, g∗⟩ − ρKL(g∗|b)

= ⟨g, g∗⟩ − ρ

(〈
g∗, log(

g∗

b
)

〉
− ⟨g∗, 1⟩+ ⟨b, 1⟩

)
= ⟨g, g∗⟩ − ρ

(〈
g∗,

g

ρ

〉
− ⟨g∗, 1⟩+ ⟨b, 1⟩

)
= ρ ⟨g∗ − b, 1⟩

= ρ

〈
b⊙ exp

(
g

ρ

)
− b, 1

〉
=

〈
b, ρ(exp

(
g

ρ

)
− 1)

〉
= ⟨b, ϕ⋆(g)⟩ .

So, we have
h⋆(f, g) = ⟨a, f⟩ − ⟨b, ϕ⋆(−g)⟩ .
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Finally,

SUOTρ(α, β) = max
(f,g)∈RN×RM

−r⋆ ◦ AT (f, g)− h⋆(−(f, g))

= max
(f,g)∈Γ(C)

⟨a, f⟩ − ⟨b, ϕ⋆(−g)⟩ ,

where Γ(C) = {(f, g) ∈ RN × RM ; f ⊕ g ≤ C}. This concludes the proof.

A.2 Proof of Proposition 5

For each (i, j) ∈ JNK× JMK, and (f, g) ∈ Γ(C), we have:

fi ≤ c(xi, yj)− gj.

Thus, fi ≤ minj∈JMK c(xi, yj) − gj. By definition of gc, and noting that α is a positive
measure, we have:

⟨f, a⟩ ≤ ⟨gc, a⟩ ,
and therefore

⟨a, f⟩ − ⟨b, ϕ⋆(−g)⟩ ≤ ⟨a, gc⟩ − ⟨b, ϕ⋆(−g)⟩ . (42)

Since (gc, g) ∈ Γ(C), it follows that if (f ⋆, g⋆) is a solution of the dual problem of
SUOT, as indicated by inequality (42), then (g⋆c, g⋆) is also a solution of the dual SUOT.

A.3 Proof of Proposition 6

This is the same proof as the one for OT presented in [39]. Let g⋆ be a solution of SUOT.
Then SUOTρ(α, β) = F (g⋆, x = (x1, x2, . . . , xN)), with F (g, x) = ⟨a, gc⟩ − ⟨b, ϕ⋆(−g)⟩.
Since by hypothesis, xi ∈ L(g⋆), it belongs to a unique Laguerre cell indexed by j(i, g⋆),
hence

F (g⋆, x = (x1, x2, . . . , xN)) = ai
(
c(xi, yj(i,g⋆))− g⋆j(i,g⋆)

)
+ C

where C is a constant wrt to xi. Consequently, one has∇xi
SUOTρ(α, β) = ai∇xi

c(xi, yj(i,g⋆)).

A.4 Proof of Proposition 7

(i) For every (i, j) ∈ JNK × JMK, we introduce the functions fi : g 7→ gci and hj : g 7→
−ϕ⋆(−gj/ρ). Let us observe that

F (g) = ⟨a, gc⟩ − ⟨b, ϕ⋆(−g)⟩ =
N∑
i=1

aifi(g) +
M∑
j=1

bjhj(g). (43)

First, we establish the concavity of each fi. Consider g1, g2 ∈ RM and t ∈ [0, 1] and
define g = tg1 + (1− t)g2. We have:

fi(g) = fi(tg
1 + (1− t)g2) = min

j∈JMK

[
c(xi, yj)− tg1j − (1− t)g2j

]
= c(xi, yj(i,g))− tg1j(i,g) − (1− t)g2j(i,g)

= t
[
c(xi, yj(i,g))− g1j(i,g)

]
+ (1− t)

[
c(xi, yj(i,g))− g2j(i,g)

]
≥ t min

j∈JMK

[
c(xi, yj)− g1j

]
+ (1− t) min

j∈JMK

[
c(xi, yj)− g2j

]
= tfi(g

1) + (1− t)fi(g
2).
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The concavity of hj directly stems from the convexity of the exponential function.
Thus, for all (i, j) ∈ JNK× JMK, both fi and hj are concave functions. Thanks to (43) we
can conclude that F , as a linear combination of concave functions with positive weights,
is a concave function.

(ii) For a given g ∈ RM , SGF (g) is a super-gradient of F in g if

∀g′ ∈ RM , F (g)− F (g′) + ⟨SGF (g), g
′ − g⟩ ≥ 0. (44)

We have, for every g′ ∈ RM ,

F (g)− F (g′) + ⟨SGF (g), g
′ − g⟩ =

N∑
i=1

ai min
j∈JMK

[
c(xi, yj)− gj

]
+

M∑
j=1

bjρ(1− exp
(
− gj

ρ

)
)

(45)

−
N∑
i=1

ai min
j∈JMK

[
c(xi, yj)− g′j

]
−

M∑
j=1

bjρ(1− exp
(
−

g′j
ρ

)
)

(46)

−
N∑
i=1

ai(g
′
j(i,g) − gj(i,g)) +

M∑
j=1

bj exp
(
− gj

ρ

)
(g′j − gj).

(47)

Let us concentrate on the sum formed by the first terms in lines (45), (46), (47),

N∑
i=1

ai min
j∈JMK

[
c(xi, yj)− gj

]
−

N∑
i=1

ai min
j∈JMK

[
c(xi, yj)− g′j

]
−

N∑
i=1

ai(g
′
j(i,g) − gj(i,g)),

and demonstrate that it has a positive value. We note that j(i, g) in the last sum satisfies
the minimum in the first sum. We can therefore rewrite the problem:

N∑
i=1

ai

[
c(xi, yj(i,g))− gj(i,g)

]
−

N∑
i=1

ai min
j∈JMK

[
c(xi, yj)− g′j

]
−

N∑
i=1

ai(g
′
j(i,g) − gj(i,g)).

which simplifies to :

N∑
i=1

ai

[
c(xi, yj(i,g))− g′j(i,g)

]
−

N∑
i=1

ai min
j∈JMK

[
c(xi, yj)− g′j

]
.

By definition of the last sum, we can conclude that the whole sum is positive.
Now, let us proceed to demonstrate that the sum formed by the second terms in lines

(45), (46), (47),

M∑
j=1

bjρ(1− exp
(
− gj

ρ

)
)−

M∑
j=1

bjρ(1− exp
(
−

g′j
ρ

)
) +

M∑
j=1

bj exp
(
− gj

ρ

)
(g′j − gj),

is positive. This sum can be rewritten as:

ϕ(g′) =

〈
b⊙ exp

(−g
ρ

)
, g′ − g − ρ

〉
+

〈
b⊙ exp

(
− g′

ρ

)
, ρ

〉
.
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ϕ is a convex function and we have ∇ϕ(g′) = 0⇐⇒ g′ = g with

∇ϕ =
〈
b, exp

(
− g

ρ

)
− exp

(
− g′

ρ

)
)
〉
. So, as a convex function, ϕ has a global minimum

in g with ϕ(g) = 0. We conclude that ϕ ≥ 0.
Since it is the sum of two positive functions, we can conclude that SGF is a super-

gradient of F .

B Simple Case Example of Section 2.3.3

Here we give a proof of (15) and (16). For any ρ > 0, we have

SUOTρ(α, β) = min
π∈R1×2

π11∥y1 − x∥2 + π12∥y2 − x∥2 + ιπ1(a) + ρKL(π2|b)

where π ∈ R1×2 is denoted as π = (1 − η, η). With this, the constraint π1 = 1 becomes
redundant with π1 = a, and we obtain

SUOTρ(α, β) = min
η∈[0,1]

(1− η)∥y1 − x∥2 + η∥y2 − x∥2 + ρ
(
(1− η) log

1− η

b1
+ η log

η

b2

)
whose right-hand side is a convex function f of the real variable η. To minimize f , let
d = ∥y2 − x∥2 − ∥y1 − x∥2. Then, we have

f ′(η) = d+ ρ log
η(b1)

(1− η)b2
.

Denoting η∗ the minimizer of f , we deduce (15) from f ′(η∗) = 0.
Notice that η∗ is still in [0, 1], as a fraction of the form B/(A + B) with A ≥ 0,

B ≥ 0 and A + B > 0. The optimal transport plan is hence π∗ = (1 − η∗, η∗) and
SUOTρ(α, β) = f(η∗) yields (16).

C Proofs of Section 3.2

C.1 Proof of the Dual Formulation in Equation (25)

This proof is an adaptation of Theorem 3. We use the same notations, with the key
difference being the incorporation of the regularization term εKL into the function r:

r : RN×M → R
π 7→ ⟨C, π⟩+ εKL(π|a⊗ b),

which leaves its domain unchanged. Since r is a positive convex function defined on
RN×M

+ , the conditions of the Fenchel-Rockafellar theorem are met. Therefore, RSUOT
satisfies:

RSUOTρ(α, β) = max
(f,g)∈RN×RM

−r⋆ ◦ AT (f, g)− h⋆(−(f, g)). (48)

As demonstrated in the proof of Theorem 3, recall that:

h⋆(f, g) = ⟨a, f⟩ − ⟨b, ϕ⋆(−g)⟩ .
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Next, let us calculate the Legendre transform r⋆:

r⋆ ◦ AT (f, g) = r⋆(f ⊕ g)

= sup
π̃∈RN×M

⟨f ⊕ g, π̃⟩ − r(π̃),

= sup
π̃∈RN×M

⟨f ⊕ g, π̃⟩ − ⟨C, π̃⟩ − εKL(π̃|a⊗ b),

= sup
π̃∈RN×M

⟨f ⊕ g − C, π̃⟩ − εKL(π̃|a⊗ b),

which, being a strictly concave function, reaches its maximum when its gradient vanishes,
i.e., at:

π⋆ = (a⊗ b)⊙ exp

(
f ⊕ g − C

ε

)
,

Expanding the KL term leads to the following expression:

r⋆ ◦ AT (f, g) =

〈
(a⊗ b)⊙ exp

(
f ⊕ g − C

ε

)
, f ⊕ g − C

〉
−
〈
(a⊗ b)⊙ exp

(
f ⊕ g − C

ε

)
, f ⊕ g − C

〉
+ ε

〈
(a⊗ b)⊙ exp

(
f ⊕ g − C

ε

)
, 1

〉
− ε ⟨a⊗ b, 1⟩

= ε

〈
(a⊗ b)⊙ exp

(
f ⊕ g − C

ε

)
, 1

〉
− ε ⟨a⊗ b, 1⟩

= ε

〈
a⊗ b, exp

(
f ⊕ g − C

ε

)
− 1

〉
.

Finally, following (48), we have:

RSUOTρ
ε(α, β) = max

(f,g)∈RN×RM
⟨a, f⟩ − ⟨b, ϕ⋆(−g)⟩ − ε

〈
a⊗ b, exp

(
f ⊕ g − C

ε

)
− 1

〉
,

with ϕ⋆(q) = ρ(exp
(

q
ρ

)
− 1). This concludes the proof.

C.2 Proof of the Formulation of RSUOT Gradient in Equation
(26)

Let (f ⋆, g⋆) be the solution of the dual RSUOT. Then:

RSUOTρ
ε(

N∑
i=1

aiδxi
, β) = F (f ⋆, g⋆, x = (x1, . . . , xN)),

with

F (f, g, x) = ⟨a, f⟩ − ⟨b, ϕ⋆(−g)⟩ − ε

〈
a⊗ b, exp

(
f ⊕ g − C

ε

)
− 1

〉
.

When F is maximum, the gradient ∇fF (f ⋆, g⋆, x) is zero and a direct calculation leads
to the following expression of f ⋆ wrt g⋆:

f ⋆
i = −ε log

(
M∑
j=1

exp

(
log(bj) +

1

ε
g⋆j −

1

ε
ci,j

))
. (49)
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In addition, we have :

∇xi
RSUOTρ

ε(α, β) = ∇xi
F (f ⋆, g⋆, x)

= −∇xi
ε

〈
a⊗ b, exp

(
f ⋆ ⊕ g⋆ − C

ε

)
− 1

〉
= ai

M∑
j=1

bj exp

(
f ⋆
i + g⋆j − cij

ε

)
∇xi

cij

= ai exp

(
f ⋆
i

ε

) M∑
j=1

bj exp

(
g⋆j − cij

ε

)
∇xi

cij.

Now, including the expression of f ⋆ given in (49), we can write

∇xi
RSUOTρ

ε(α, β) = ai exp

−ε log
(∑M

j=1 exp
(
log(bj) +

1
ε
g⋆j − 1

ε
ci,j
))

ε


×

M∑
j=1

bj exp

(
g⋆j − cij

ε

)
∇xi

cij

= ai

∑M
j=1 exp

(
log(bj) +

1
ε
g⋆j − 1

ε
ci,j
)
∇xi

ci,j∑M
j=1 exp

(
log(bj) +

1
ε
g⋆j − 1

ε
ci,j
)

= ai∇xi
− ε log

(
M∑
j=1

exp

(
log(bj) +

1

ε
g⋆j −

1

ε
ci,j

))
= ai∇φ(xi).

This concludes the proof.

C.3 Proof of Theorem 11

Preliminaries For any u ∈ (R∗
+)

K , K ∈ N⋆, ε > 0, we define the operator:

Sminε
u : RK → R

v 7→ −ε log
(∑K

i=1 ui exp(−vi/ε)
)
,

and refer to as the Smin operator. In addition, let us define

F : RM → RN

g 7→ [Sminε
b(g − ci,·)]i∈JNK,

G : RN → RM

f 7→ [ 1
1+ ε

ρ
Sminε

a(f − c·,j)]j∈JMK,

where ci,· and c·,j are respectively the vectors obtained by extracting the i-th row and the
j-th column from the cost matrix C. The proof of (i) and (iii) requires the following two
lemmas:

Lemma 13 (Non-expansivity of F ). F is a non-expansive operator:

∀(g1, g2) ∈ RM , ∥F (g1)− F (g2)∥∞ ≤ ∥g1 − g2∥∞ (50)
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This result follows from the established non-expansivity property of the Smin operator
[61, Lemma 1].

Lemma 14 (Contractivity of G). G is a contractive operator:

∀(f1, f2) ∈ RN , ∥G(f1)−G(f2)∥∞ ≤
1

1 + ε
ρ

∥f1 − f2∥∞ (51)

This again is a consequence of the non-expansivity of Smin.
Now, let us come to the proof of Theorem 11.

(i) Using G and F , we can reformulate Sinkhorn’s algorithm as the recursion:

gt+1 = G(f t)

f t+1 = F (gt+1),

Furthermore, let (f ⋆, g⋆) ∈ RN×RM be the solution to Problem (25), which satisfies:

g⋆ = G(f ⋆),

f ⋆ = F (g⋆).

Then we have:

∥f t+1 − f ⋆∥∞ = ∥F (gt+1)− F (g⋆)∥∞ ≤ ∥gt+1 − g⋆∥∞ = ∥G(f t)−G(f ⋆)∥∞

≤ 1

1 + ε
ρ

∥f t − f ⋆∥∞,

and

∥gt+1 − g⋆∥∞ = ∥G(f t)−G(f ⋆)∥∞ ≤
1

1 + ε
ρ

∥f t − f ⋆∥∞ =
1

1 + ε
ρ

∥F (gt)− F (g⋆)∥∞

≤ 1

1 + ε
ρ

∥gt − g⋆∥∞.

Hence, we have :

∥gt+1 − g⋆∥∞ + ∥f t+1 − f ⋆∥∞ ≤
1

1 + ε
ρ

(
∥gt − g⋆∥∞ + ∥f t − f ⋆∥∞

)
.

Given that 1
1+ ε

ρ
< 1, the iterates (f t, gt) linearly converge to the unique solution

(f ⋆, g⋆) of the RSUOT problem.

(ii) Upon replacing f t with F (gt) in the third term of the dual expression (25) of
RSUOT and concomitantly using the definition of F , we obtain:

ε

〈
a⊗ b, exp

(
f t ⊕ gt − C

ε

)
− 1

〉
= ε

〈
a⊗ b, exp

(
f t ⊕ gt − C

ε

)〉
− ε

= ε

〈
a⊙ exp

(
F (gt)

ε

)
, exp

(
−F (gt)

ε

)〉
− ε

= ε ⟨a, 1⟩ − ε = 0.
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(iii) Using G and F , we can rewrite the symmetric fixed-point iterations algorithm:

g̃t+1 =
1

2

(
g̃t +G(f̃ t)

)
,

f̃ t+1 =
1

2

(
f̃ t + F (g̃t)

)
.

Furthermore, if (f ⋆, g⋆) ∈ RN × RM be a solution to Problem (25), utilizing

g⋆ =
1

2
g⋆ +

1

2
G(f ⋆),

f ⋆ =
1

2
f ⋆ +

1

2
F (g⋆),

alongside the non-expansivity of F and the contractivity of G, we can derive the
following two inequalities:

∥f̃ t − f ⋆∥∞ ≤
∥∥∥∥12 (f̃ t−1 − f ⋆

)
+

1

2

(
F (g̃t−1)− F (g⋆)

)∥∥∥∥
∞

≤ 1

2
∥f̃ t−1 − f ⋆∥∞ +

1

2
∥g̃t−1 − g⋆∥∞

and

∥g̃t − g⋆∥∞ =

∥∥∥∥12 (g̃t−1 − g⋆
)
+

1

2

(
G(f̃ t−1)−G(f ⋆)

)∥∥∥∥
∞

≤ 1

2
∥g̃t−1 − g⋆∥∞ +

1

2

1

1 + ε
ρ

∥f̃ t−1 − f ⋆∥∞.

By summing these two inequalities and subsequently applying them at rank t− 1,
we obtain:

∥f̃ t − f ⋆∥∞ +
∥∥g̃t − g⋆

∥∥
∞ ≤

3 + 1
1+ ε

ρ

4

(
∥f̃ t−2 − f ⋆∥∞ + ∥g̃t−2 − g⋆∥∞

)
.

Since 1
4
(3 + 1

1+ ε
ρ
) < 1 we conclude that these symmetrical fixed-point iterations

converge linearly to (f ⋆, g⋆).
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