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We develop a transferable machine learning model which predicts structural relaxation from amor-
phous supercooled liquid structures. The trained networks are able to predict dynamic heterogeneity
across a broad range of temperatures and time scales with excellent accuracy and transferability.
We use the network transferability to predict dynamic heterogeneity down to the experimental glass
transition temperature, Tg, where structural relaxation cannot be analyzed using molecular dynam-
ics simulations. The results indicate that the strength, the geometry and the characteristic length
scale of the dynamic heterogeneity evolve much more slowly near Tg compared to their evolution
at higher temperatures. Our results show that machine learning techniques can provide physical
insights on the nature of the glass transition that cannot be gained using conventional simulation
techniques.

I. INTRODUCTION

Dense liquids display a drastic slowing down of struc-
tural relaxation when approaching the experimental glass
transition temperature [1, 2]. The glass transition is char-
acterized by several important properties, such as a very
homogeneous amorphous structure but a strongly hetero-
geneous relaxation dynamics, leading to the spatial co-
existence of frozen and active regions [3]. Understanding
the connection between the microstructure and dynamic
heterogeneity is an important field of research [4–7].

Over the years, several structural order parameters
have been proposed which show some degree of corre-
lation with the local relaxation dynamics, including den-
sity [8], potential energy [9, 10], geometry of Voronoi
cells [11], soft modes [4], locally-favored structures [5, 12–
14], and more [6, 7, 15, 16]. Recently, the applica-
tion of machine learning (ML) techniques to automati-
cally construct suitable structural order parameters has
significantly advanced this line of research. The range
of methodologies includes unsupervised learning to au-
tomatically detect structural heterogeneities [8, 17–19]
and supervised learning using linear regression [20–22],
support vector machines [23–25], multilayer perceptrons
(MLP) [26] and graph neural networks (GNN) [27–30].
The performance of these techniques significantly sur-
passes traditional approaches based on hand-made order
parameters, and allows to infer the microscopic structural
relaxation from structural properties with high accuracy,
including aspects of dynamic heterogeneity [26, 28].

Thanks to this progress, ML approaches lead to new
physical results. Applications of trained neural net-
works have used scalability in system size to extract
new results on dynamic length scales and the geome-
try of rearranging domains [26], transferability to other
state points to analyze structural differences between
strong and fragile glass formers [31]. Trained models

were also used to construct effective glass models [32].
While the performance of ML approaches is remarkable,
one of the main drawbacks of the supervised learning
techniques is that they need to be trained separately
for each state point, thus requiring that training sets
already exist at each time and temperature. Transfer-
ability to lower temperature has been analyzed in one of
the first ML applications [27, 28]. It was shown that for
GNNs some correlation between structure and dynamics
persists when applying the trained networks to different
temperatures [27, 28]. However, a full analysis of trans-
ferability is lacking. The aim of this article is to fill this
gap, and present an efficient method to predict physical
properties outside of the training regime, possibly includ-
ing physical regimes that cannot easily be accessed using
conventional numerical techniques.
We develop a transferable ML framework, which is able

to learn and predict time-dependent dynamical proper-
ties when given amorphous structures of deeply super-
cooled liquids. Different from most previously proposed
ML techniques, the network is trained using data ex-
tracted from very different temperatures and time scales,
and is thus able to maintain both an excellent perfor-
mance over the whole range of data provided. We show
that the network can be transferred to predict relax-
ation beyond the range of temperatures provided dur-
ing training. As an important application, we create
equilibrium structures down to the experimental glass
transition temperature, Tg, using the swap Monte-Carlo
algorithm [33, 34] and apply the transferable network
to investigate dynamic susceptibilities and lengths scales
at these very low temperatures, which correspond to
time scales that are not accessible by molecular dynamics
(MD) simulations.
The manuscript is organized as follows. First, the

transferable ML methodology is described in Sec. II.
The performance of the trained network is analyzed in
Sec. III, both for state points within the range of training
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FIG. 1. Geometry of the transferable machine learning model,
which we name ‘tGlassMLP’. The various layers and their
respective role are described in Sec. II.

data and beyond to study transferability. In Sec. IV we
use the transferability to obtain new results for structural
relaxation at the experimental glass transition tempera-
ture. In Sec. V, we analyze in detail the dynamic corre-
lation lengths of our system. To better understand the
trained network, we study some of its intrinsic proper-
ties, such as inherent length scales and properties of the
bottleneck layer in Sec. VI. We discuss the results and
conclude in Sec. VII.

II. MACHINE LEARNING METHODOLOGY

The transferable ML technique presented in this work
is a generalization of the GlassMLP network introduced
in Ref. [26] which we modify and improve to enable trans-
ferability. We will refer to this model as ‘transferable
GlassMLP’ and use the acronym ‘tGlassMLP’ for the
model. The geometry of tGlassMLP is sketched in Fig. 1.
It is comprised of an input layer, an attention layer, and
a dense multi-layer perceptron (MLP) network includ-
ing a bottleneck layer. We now describe these individual
parts, define the glass-forming system under study and
the dynamical observables used to train the network.

A. Physical system and dynamical observables

We study the same system and dynamical observables
used in Ref. [26], but we briefly recapitulate the most
important details and definitions to make the paper self-
contained.

We investigate a two-dimensional ternary glass-former,
which generalises the Kob-Andersen binary binary mix-
ture (KA2D) [35]. To enable fast equilibration using the
swap Monte-Carlo algorithm [33, 34, 36] we include a
third particle type with an intermediate size [37]. We
use reduced units, which are defined in terms of length
σ = 1 (corresponding to the size of the large particles),

mass m = 1 (mass of the particles) and energy ϵ = 1
(Lennard-Jones energy scale of the interactions between
large particles). In these units, the standard system size
is LS = 32.896, with periodic boundary conditions, in
which we create amorphous packings of N = 1290 par-
ticles (N1 = 600, N2 = 330, N3 = 360), if not other-
wise stated. Using swap Monte Carlo, we create equi-
librium configurations in a temperature range between
T = 0.4, which is slightly below the onset temperature
(Ton ≈ 0.5), and the estimated experimental glass tran-
sition temperature Tg = 0.15 (see SM in Ref. [26] for
details). Equilibrium averages over these configurations
are denoted as ⟨. . .⟩. No sign of crystallization was ob-
served even at Tg. Starting from the equilibrated config-
urations we perform molecular dynamics (MD) simula-
tions for five different temperatures, T = 0.4, T = 0.3,
T = 0.25, T = 0.23 and T = 0.21, to investigate the
physical relaxation dynamics. We analyze the isoconfig-
urational average [38, 39], which means that we perform
NR = 20 different simulations starting from each struc-
ture (denoted as replicas) which are created by randomly
drawing initial velocities from the Maxwell distribution.
The isoconfigurational average ⟨. . .⟩iso for a given initial
structure denotes the average over these NR replicas.

The labels used to train tGlassMLP are extracted
from the MD trajectories using the bond-breaking cor-
relation function (BB). The isoconfigurational average
of BB, which we refer to as ‘propensity’ in the follow-
ing [38, 39], is defined as Ci

B(t) = ⟨ni
t/n

i
0⟩iso, where ni

0

denotes the initial number of neighbors of particle i, and
ni
t the number of these neighbors which remain neigh-

bors of i after a time t [40]. Therefore, Ci
B(t) ∈ [0, 1],

where Ci
B(t) = 1 denotes arrested particles which did

not loose a single neighbor in any of the replicas (visu-
alized as blue in all snapshots) and Ci

B(t) ≪ 1 denotes
very active particles (visualized as red). From the av-

eraged propensity C̄B(t) = 1
N1

∑N1

i=1 Ci
B(t), we extract a

bond-breaking structural relaxation time, τBB
α , which is

defined as ⟨C̄B(t = τBB
α )⟩ = 0.5. More details are docu-

mented in the SM of Ref. [26]. We mostly report results
for particles of type 1 but verified that all findings are
independent of the particle type. We calculate BB from
MD simulations for each temperature introduced above
at various times, yielding many sets of labels at differ-
ent state points for the supervised learning procedure of
tGlassMLP.

To describe the state point of each set of labels,
we use the temperature T and the averaged propen-
sity ⟨C̄B(t)⟩. In particular, using ⟨C̄B(t)⟩ instead of the
time t itself is a crucial choice due to a near perfect
time-temperature superposition, i.e. perfect collapse of
the function ⟨C̄B(t/τBB

α )⟩ measured at different tempera-
tures. Interchanging time for the value of ⟨C̄B(t)⟩ simpli-
fies the training procedure significantly since ⟨C̄B(t)⟩ ∈
[0, 1], while t grows exponentially with decreasing tem-
perature. To translate ⟨C̄B(t)⟩ back into a time, we as-
sume that time-temperature superposition continues to
hold at any temperature, combined with the extrapo-
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lated value for τBB
α . More details of this procedure are

provided in App. A. While this assumption might affect
slightly the time-dependence of the ML predictions pre-
sented in Secs. IV-VI, they do not change the quality of
the predictions themselves. Thus, the above encoding of
time does not affect our analysis of transferability.

B. Physics-inspired structural input

The structural input is the same as for GlassMLP [26].
In particular, we use MS physics-inspired and coarse-
grained input features for the description of the local
structure of each particle i. The descriptors are based
on K = 4 different observables:

1. The coarse-grained local density:

ρiL,β =
∑
j∈Ni

β

e−Rij/L, (1)

which sums over the N i
β particles of type β within

distance Rij = |Ri −Rj | < 20 of particle i;

2. The coarse-grained potential energy:

E
i

L,β =
∑
j∈Ni

β

Eje−Rij/L/ρ̄iL,β , (2)

extracted from the pair interaction potential Ei =∑
j ̸=i V (Rij)/2;

3. The coarse-grained Voronoi perimeter:

piL,β =
∑
j∈Ni

β

pje−Rij/L/ρiL,β , (3)

based on the perimeter pi of the Voronoi cell around
particle i, extracted using the software Voro++[41];

4. The local variance of potential energy:

∆E
i

L,β =
∑
j∈Ni

β

(Ej − E
i

L,β)
2e−Rij/L/ρiL,β . (4)

Particle positions are evaluated in inherent struc-
tures Ri. Slightly differently from Ref. [26], we use
only MCG = 11 different values of the coarse-graining
lengths L, which are non-uniformly distributed: L =
{0.0, 1.0, 1.5, 2.0, 2.5, 3.0, 4.0, 5.0, 6.0, 7.0, 9.0}. The four
descriptors are separately coarse-grained by iterating
over each of the Mtype = 3 particle types. We addi-
tionally calculate the coarse-grained average by running
over all particles independently of their type.

Overall, we start with a set of MS = KMCG(Mtype +
1) = 176 descriptors. To enable more efficient training,
each descriptor is shifted and rescaled to have zero mean
and unit variance.

C. Attention layer

The first real difference between tGlassMLP and its
GlassMLP ancestor is the introduction of an attention
layer between the input and bottleneck layers (see Fig. 1).
The concept of attention and transformers have increased
significantly the performance of many ML models in com-
puter science [42], and it has already been used in glass
physics for the development of an improved GNN [30].
The purpose of the attention layer in tGlassMLP is to
learn a state-dependent weight wj which is assigned to
each structural descriptor j. In this way, the dependence
of the dynamical descriptor on the considered state point
is efficiently encoded in the network.

If we denote the MS values of the physics-inspired de-
scriptors by {S1, ..., SMS}, then the attention layer can
be written as,

Ak = Skfk
1 +MLP11outf

k
2 +MLP12outf

k
3 + fk

4 (5)

wk = softmax({A1, ..., AMS})k (6)

Sk
out = Skwk. (7)

Here, fk
n denote the learnable parameters (4 ·MS = 688

in total) and MLP1nout is the two-dimensional output of
a small MLP (denoted as MLP1). The softmax function
ensures that the weights are normalized. The output of
the attention layer still has dimensionMS , where each in-
put descriptor, Sk is multiplied by its specific weight wk.
The attention layer is able to reweight the input before
encoding it in the bottleneck layer. It can thus learn, for
example, that the relative importance of different struc-
tural indicators depends on time and temperature. We
will explicitly analyze these weights wk, obtained after
training tGlassMLP, in Sec. VI to extract meaningful
physical information from interpreting the network itself.

D. Dense MLP with bottleneck

Similar to GlassMLP, after the attention layer, the
high-dimensional input is encoded into a two-dimensional
bottleneck layer, to avoid having a huge amount of free
parameters in the subsequent hidden layers, which would
lead to overfitting. We visualize and interpret the bot-
tleneck layer of trained tGlassMLP networks in Sec. VI.

After the bottleneck layer, the state point (T, ⟨C̄B(t)⟩)
is again explicitly inserted into the network using a sec-
ond small MLP (denoted as MLP2). The bottleneck layer
concatenated with the output of MLP2 will then be fur-
ther processed in two hidden layers to yield the final out-
put (see Fig. 1).

E. Two-step training of tGlassMLP

The total number of free parameters of tGlassMLP is
slightly above 1000. This number is several orders of
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magnitude less than for the GNNs proposed in Refs. [27–
30]. Importantly also, this number is not much larger
than in the original version of GlassMLP where about
650 fitting parameters were used [26]. To be as effi-
cient as GlassMLP, which was separately trained at each
state point, the tGlassMLP network is therefore inher-
ently forced to learn universal aspects in the structural
relaxation across time scales and temperatures. This ap-
pears instrumental to construct a model with good trans-
ferability.

To train the network, we use a supervised ML proce-
dure, in which the output of tGlassMLP, X i

MLP, is rated
by a differentiable loss function, which is the same as used
in Ref. [26]. It includes the mean absolute error, but also
additional terms which penalize deviations between the
predicted and the true variance, as well as spatial corre-
lations of the propensities (see SM of Ref. [26]). We use
NS = 300 initial structures, which are equally divided
into a training and a test set. For the training we apply
stochastic gradient descent with an Adam optimizer [43].

The training of tGlassMLP is performed in two steps.
First, we train in an ‘equal-time’ mode, meaning that
separate networks are trained for given values of ⟨C̄B(t)⟩
(i.e., at equal times relative to the structural relaxation
time), but different temperatures T ≥ Tmin. We found
that these individual networks transfer better to lower
temperatures than the ones who were directly trained on
all state points.

These individual networks are then applied to lower
temperatures T < Tmin and the average of the predicted

propensity, XMLP = 1
N1

∑N1

i X i
MLP, is calculated. We

have found that depending on the initial condition of the
training, not all resulting networks are equally efficient.
We keep all networks which fulfill |XMLP − ⟨C̄B(t)⟩| <
10−4 for further processing. This is a self-consistency
test, as the average predicted propensity is an input data.
The networks which satisfy the above criterion are used
to predict propensities for the low temperature configu-
rations T < Tmin at the values of ⟨C̄B(t)⟩ for which MD
results are not available (typically low values of ⟨C̄B(t)⟩).
Similarly to knowledge distillation in machine learning,
we include them into the training procedure of the full
and final tGlassMLP model. See Table I in the App. B
for a more detailed description.

In the second training step, a single tGlassMLP net-
work is trained using data from all times and tempera-
tures, including the extrapolated data at T < Tmin pro-
duced in the first step. As before, we only retain net-
works such that |XMLP − ⟨C̄B(t)⟩| < 10−4 for predicted
propensities at T < Tmin. Out of 16 networks trained ini-
tially in this way in the second step, four networks were
selected for the predictions shown in the remainder of
this manuscript. Error bars on dynamic quantities cal-
culated from the predictions of tGlassMLP correspond
to the variance between the predictions made by these
individual networks.

Additional details on hyperparameters, values for
⟨C̄B(t)⟩ and temperatures used for training are presented
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T = 0.25
T = 0.3
T = 0.4
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tGlassMLP(Tmin = 0.25)
GlassMLP (Torig = 0.25)

GlassMLP

FIG. 2. Pearson correlation coefficient of several trained ML
models with MD simulations. Squares correspond to results
shown in Ref. [26] for GlassMLP trained at each state point.
Dotted lines correspond to a GlassMLP model trained at
t = τα and Torig = 0.25 and transferred to different times
and temperatures. Full and dashed lines describe results for
two transferable tGlassMLPs trained until minimum temper-
atures Tmin = 0.21 and Tmin = 0.25. Vertical lines indicate
the structural relaxation times τBB

α at each temperature.

in App. B. The training of tGlassMLP was performed on
a Laptop GPU (NVIDIA T600 Laptop) and with a total
computational cost of about one day. This includes the
training of all 16 individual networks per time scale in
the first training step, and of 16 networks using the full
data for all times and temperatures in the second step.
In the following we present our results, which are or-

ganised in four parts. In the first part we validate the
performance and the transferability of tGlassMLP using
results known from MD simulations. In the second part,
we use the trained models to predict structural relax-
ation at the experimental glass transition temperature
which is not accessible by computer simulations. The
third and fourth parts include a detailed analysis of dy-
namic correlation lengths and of the properties of the
trained tGlassMLP network itself.

III. VALIDATION OF TGLASSMLP

We follow common practice [27] and investigate the
performance of the trained model using the Pearson cor-
relation coefficient,

ρP = cov(Ci
B ,X i

MLP)/
√

var(Ci
B)var(X i

MLP), (8)

which quantifies the correlation between the predicted
propensities and the ground truth extracted from the
MD simulations. The Pearson correlation varies between
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MD tGlassMLP (Tmin = 0.21)

tGlassMLP (Tmin = 0.25) GlassMLP (Torig = 0.25)

CB(t) 0.0 0.2 0.4 0.6 0.8 1.0

FIG. 3. Snapshots comparing the spatial variations of the
structural relaxation at T = 0.21 and ⟨C̄B⟩ = 0.8 obtained
in MD simulations, to three different models: tGlassMLP
networks trained using Tmin = 0.21 and Tmin = 0.25, and
GlassMLP trained at Torig = 0.25 and t = τBB

α .

ρP = 1 (perfect correlation) and ρP = −1 (perfect anti-
correlation), while no correlation yields ρP = 0.
We find that the maximum of the Pearson correlation

reaches values of roughly ρmax
P ≈ 0.8 for the lowest tem-

peratures, thus indicating very strong correlations (see
Fig. 2). Most importantly, we observe that the perfor-
mance of the trained tGlassMLP networks (full lines) is
as good as the results reported in Ref. [26] in which the
networks were individually trained on each state point
(squares). This is a significant result considering that
the tGlassMLP network only uses twice the number of fit-
ting parameters to describe more than 50 different state
points. This shows that the transferable network indeed
discovers common features in the description of struc-
tural relaxation from the microscopic structure at differ-
ent times and temperatures.

We have also trained tGlassMLP using a smaller
dataset down to Tmin = 0.25 (dashed line in Fig. 2).
The model very favorably transfers to lower tempera-
tures and can predict structural relaxation on time scales
that are orders of magnitude longer than in the train-
ing dataset with nearly as much accuracy as the directly
trained model. This demonstrates excellent transferabil-
ity of tGlassMLP in the regime where this can be tested
quantitatively.

0.01

0.1

1

10

101 102 103 104 105 106 107 108

χ4

t

T = 0.21
T = 0.23
T = 0.25
T = 0.3
T = 0.4

MD
GlassMLP

tGlassMLP(Tmin = 0.21)
tGlassMLP(Tmin = 0.25)

FIG. 4. Dynamic four-point susceptibility χ4(t). Points
are MD results, squares are results shown in Ref. [26] for
GlassMLP trained at each state point. Full and dashed lines
correspond to transferable tGlassMLPs trained until mini-
mum temperatures Tmin = 0.21 and Tmin = 0.25. Vertical
lines indicate τBB

α at each temperature.

In addition, tGlassMLP outperforms the directly
transferred GlassMLP model which was trained at the
state point t = τα and Torig = 0.25 (dotted lines). This
conclusion similarly holds when comparing the results to
other ML techniques such as GNNs [27, 28]. In particu-
lar, the equivariant network proposed in Ref. [28] shows
very comparable transferability as the original GlassMLP
network [26], but cannot match the improved transfer-
ability performance of tGlassMLP.
To visualize the correlation between the propensities

obtained fromMD simulations and the different MLmod-
els we show snapshots for a large configuration with
N = 25800 at T = 0.21 in Fig. 3. The tGlassMLP
models are very accurate in predicting the location of
both strongly rearranging regions and frozen regions in
which no rearrangements take place. Stronger differ-
ences with the MD result are observed when using the
GlassMLP network trained at Torig = 0.25 and trans-
ferred to T = 0.21. While also for this model, the propen-
sities are correlated with the MD results, dynamic hetero-
geneities are less pronounced and the contrast between
active and frozen regions is not captured properly.
To analyze spatial correlations of the propensity quan-

titatively, we compute the four-point susceptibility χ4(t),

χ4(t) = N1

(
⟨C̄2

B(t)⟩ − ⟨C̄B(t)⟩2
)
, (9)

which was used extensively to characterize dynamic het-
erogeneity in supercooled liquids [3]. As expected after
inspection of the snapshots in Fig. 3, we find very good
agreement between the susceptibilities extracted from the
MD results and the trained ML model (see Fig. 4). The
results are as good as those reported in Ref. [26] for
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GlassMLP models trained at each state point. In fact,
for T = 0.4, the transferable tGlassMLP model even
surpasses the performance of GlassMLP, despite being
much more broadly applicable to dynamic susceptibilities
which can differ by more than two orders of magnitude
in amplitude.

This conclusion holds for the two models trained using
different values of Tmin. Therefore, the tGlassMLP model
is able to predict a realistic increase in dynamic het-
erogeneity with decreasing the temperature even when
it is extrapolated beyond the range used in the train-
ing set. This excellent transferability sets it apart from
techniques which are trained on a single state point and
are therefore unable to capture variations in the over-
all dynamic heterogeneity. The tGlassMLP models also
predict a realistic decay of the susceptibility for times
longer than the structural relaxation time even though
for T < 0.25 no training data for times t > 0.3τBB

α were
used during training. The models are therefore not only
transferable in temperature, but also in time.

The above analysis clearly highlights that the
tGlassMLP network is able to extrapolate its predictions
outside of the range covered in the training set. It is
therefore tempting to train tGlassMLP with as much
data as is currently possible using MD simulations, and
then use the network to predict features of structural
relaxation at times and temperatures where MD simula-
tions can no longer be performed. This is investigated in
the next section.

IV. PREDICTING THE DYNAMICS AT THE
EXPERIMENTAL GLASS TRANSITION

TEMPERATURE

The glass transition temperature Tg is conventionally
defined as the temperature at which structural relaxation
occurs roughly 1012 times slower than in the simple liq-
uid. Simulating the relaxation of supercooled liquids at
Tg would require integrating about 1014 time steps. The
computational cost of the data provided in this section
would thus roughly amount to 1011 CPUhours. Equiv-
alently, this would require about 100 days of simulation
by completely exhausting the Top 500 supercomputers in
the world.

Our approach is obviously more parsimonious and
combines two algorithms: (i) the swap Monte Carlo algo-
rithm allows us to efficiently create independent equilib-
rium configurations of our glass-model down to Tg, and
(ii) the transferable tGlassMLP model which can predict
dynamic propensities for each particle from the equilib-
rium configurations obtained in (i). This unique com-
bination enables us to predict and analyze the strength,
geometry and length scale of dynamic heterogeneity at
unprecedentedly low temperatures and large times.

In Fig. 5 we show snapshots describing the predicted
time evolution of the structural relaxation in a given sam-
ple at T = Tg with N = 82560 using the tGlassMPL

〈C̄B〉 = 0.94 〈C̄B〉 = 0.9

〈C̄B〉 = 0.75 〈C̄B〉 = 0.5

CB(t) 0.0 0.2 0.4 0.6 0.8 1.0

FIG. 5. Snapshots visualizing the time evolution of the struc-
tural relaxation at Tg = 0.15, with the corresponding value of
the average ⟨C̄B⟩ indicated, corresponding to estimated times
t = 1011, 3 × 1011, 1012, 3 × 1012. The corresponding movie
can be found in the SM [44].

model. The same process is displayed as a movie in the
SM, which better highlights how relaxation sets in at
specific localised regions within the amorphous structure
before slowly spreading over the entire system. This qual-
itative description is similar to results produced by MD
simulations performed for a lesser degree of supercooling.
Since these predictions are made for temperatures

where direct MD simulations can no longer be performed,
there is no way to directly test the quality of these pre-
dictions. The plausibility of the result is guaranteed by
the excellent transferability demonstrated in the previous
section for a higher temperature regime and the physi-
cally consistent behaviour that is predicted.
We quantify the dynamic heterogeneities visible in

these snapshots using the four-point susceptibility χ4(t),
defined in Eq. (9). The results are presented in Fig. 6.
The time-dependence is extracted by predicting the value
of Ci

B for each particle for a given value of the aver-
age quantity ⟨C̄B⟩, and converting ⟨C̄B⟩ into a time us-
ing time-temperature superposition, as discussed above
in Sec. II A. The predicted χ4(t) functions continue to
have the non-monotonic time dependence they have at
higher temperatures, and we note that the amplitude of
the maximum of χ4 grows very modestly for tempera-
tures T < 0.21 (see Fig. 6). It should be emphasized
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FIG. 6. Dynamic four-point susceptibility χ4(t) for
tGlassMLP (using Tmin = 0.21). Square data points corre-
spond to results shown in Ref. [26] and points to MD re-
sults. Vertical lines indicate τBB

α at each temperature. Er-
ror bars correspond to the variance between individual net-
works, trained using the same dataset but with different initial
weights.

that this is not a trivial result. Indeed in Sec. III we have
observed that tGlassMLP with Tmin = 0.25 has correctly
predicted a slowly-increasing χ4 when transfered beyond
the temperature range it has been trained on.

V. DYNAMIC LENGTH SCALES

A. Four-point dynamic length scale

The dynamic heterogeneities visualized in Fig. 5 and
quantified via χ4(t) in Fig. 6 can also be characterized
by a dynamic correlation length, which describes spa-
tial correlations of the dynamic propensity. Calculating
static and dynamic length scales, in particular at very
low temperatures, is of high importance in glass physics,
since the emergence and growth of dynamic correlation
length scales is a key element of various different theories
of the glass transition [45–48].

Here, we first adopt the same methodology as used
in Ref. [26] to extract a dynamic length scale from the
four-point dynamic structure factor [46],

S4(q, t) = N−1
1 ⟨W (q, t)W (−q, t)⟩ (10)

W (q, t) =
∑
i∈N1

(Ci
B(t)− ⟨C̄B(t)⟩) exp[iq ·Ri(0)].

The dynamic structure factor S4(q, t) characterizes the
geometry and spatial extent of the regions defined by
correlated fluctuations of Ci

B(t). In the limit q → 0, it has
been predicted to decay quadratically with 1/q, according
to the Ornstein-Zernicke form [46],

S4(q, t) ≈
χ̃4

1 + (qξ4(t))2
. (11)
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FIG. 7. Four-point dynamic length scale ξ4(t) extracted from
S4(q, t). Results are shown for the tGlassMLP model with
Tmin = 0.21. We also show the length scale extracted in
Ref. [26] using GlassMLP. Colors are the same as in Fig. 6.

Here, χ̃4 is connected (but not equal) to the dynamical
susceptibility χ4 [46] defined above, and ξ4(t) denotes the
time-dependent dynamic length scale. This correlation
length can be extracted by fitting the measured dynamic
structure factor for small q. Recently, we have applied
this method to GlassMLP networks by utilizing the scal-
ability of the network in system size [26]. This last step
was necessary, since an accurate extraction of ξ4 requires
very large system sizes with linear size LS ≫ ξ4 [46, 49–
51]. Here, we apply the same methodology as in Ref. [26],
using the same fitting parameters, to extract the dynam-
ical length scale ξ4 from systems with N = 82560 parti-
cles, but we now use tGlassMLP models.
The results for ξ4 are shown in Fig. 7. At any given

temperature, the length scale increases with time up to a
maximum value which is located roughly at the structural
relaxation time, τBB

α . This maximum increases steeply
with decreasing the temperature up to T = 0.25, below
the growth is much less pronounced to reach maximal
values of the order ξ4 ≈ 6 − 7 at most. This result is
consistent with the findings in Ref. [26] for T ≤ 0.23, and
is also consistent with the slow increase of the dynamic
susceptibility χ4 in Fig. 6.

Similarly to Ref. [26] we have also extracted a higher-
order contribution to the dynamic structure factor, as
shown in App. C. Its evolution with time and tempera-
ture again mirrors the behaviour of χ4 and ξ4.

B. Average chord length

To enable a more detailed comparison of these results
to MD simulations we propose an alternative definition
for a dynamic length scale, which is connected to the
average chord length recently defined in Ref. [48]. One
advantage of the chord length is that is does not require
very large system sizes, in contrast to the extraction of
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FIG. 8. Average chord length, ⟨ξchord⟩, which can be used
to measure dynamic length scales. Colors are the same as
in Fig. 6. For each temperature we show times in the range
0.95 > ⟨C̄B(t)⟩ > 0.3.

ξ4 which does [46, 49–51]. To calculate the average chord
length, particles are mapped onto a discrete lattice, and
the propensity a of each lattice site is defined as the av-
erage propensity of the particles within the lattice site.
If the propensity of a site is a < 0.5, it is denoted as mo-
bile, and immobile otherwise. After discretisation and
thresholding, chords are defined as series of adjacent mo-
bile sites along all rows and columns of the lattice. The
linear size of a chord is ξchord, and the average over all
chords provides the average chord length ⟨ξchord⟩. See
Section VI. D and Fig. 18 in Ref. [48] for further expla-
nations and visualization.

We adapt the definition of the lattice propensity a to
make the resulting chord length more comparable to ξ4,
in particular for times of the order of τBB

α . For each
time and temperature, we calculate the median of the
bond-breaking propensities for all particles. If a particle
propensity is below this median it is defined as active
(ai = 0), and passive otherwise (ai = 1). Afterwards, we
follow the same procedure as described above by map-
ping the newly defined dynamical quantity, ai, onto a
lattice, thus redefining the lattice propensity a, and cal-
culating the chord length ξchord. This leads to a different
time evolution compared to the definition in Ref. [48],
which features a monotonic growth of the average chord
length with time as relaxed regions gradually fill the en-
tire system. In the present version, only the clustering of
the mobile particles contributes to the calculation of the
chord length.

We show the results for the time and temperature evo-
lution of ⟨ξchord⟩ in Fig. 8. As anticipated, the aver-
age chord length behaves similarly to ξ4 (compare with
Fig. 7). Both quantities display a non-monotonic de-
pendence in time, although the non-monotonicity is less

pronounced for ⟨ξchord⟩. Most importantly, both length
scales display the same temperature dependence when
evaluated in the order of the structural relaxation time
τBB
α . This result therefore establishes ⟨ξchord⟩ as an in-
teresting measure to extract dynamic length scales, also
from smaller systems and for times t < τBB

α . Conse-
quently, we can also calculate ⟨ξchord⟩ from the MD
simulations performed to train tGlassMLP. The MD re-
sults are in good agreement with the predictions of the
ML model (see Fig. 8). The MD length scales are sys-
tematically slightly larger than the ones extracted using
tGlassMLP. This offset, however, does not grow system-
atically in temperature. The MD results therefore draw
the same picture of a dynamic correlation length which
does not grow significantly beyond ⟨ξchord⟩ > 14.

VI. EXTRACTING PHYSICAL INFORMATION
FROM THE NETWORK

A natural question when applying machine learning
to science is whether one can interpret what the neural
network learns in order to achieve its task, and whether
it is possible to extract some physical information from
the trained network. In the following we will focus on
this question for tGlassMLP.

A. Attention layer

We presented in Sec. II the structure of the tGlassMLP
network, where we emphasized the addition of an atten-
tion layer, which enables tGlassMLP to adapt the weight
of different structural descriptors depending on the tem-
perature. We now study these weights explicitly, and re-
late the observed evolution to the dynamic length scales
discussed in Sec. V.

After training, each of the physics-inspired structural
input descriptors is assigned a statistical weight which de-
pends on time and temperature. To relate these weights
to a length scale, we first calculate the particle-averaged
weight of each descriptor, and average this result over all
descriptors which are coarse-grained over the same length
scale L. The resulting normalized averaged weights for
each L value are then used to construct the function
Pint(L). This function is estimated after training the
network, and depends on temperature T .

The temperature evolution of the distribution Pint(L)
is shown in Fig. 9. One can clearly observe how the net-
work puts increasing weight on larger length scales when
the temperature is decreased. This evolution demon-
strates that descriptors which are coarse-grained over
larger length scales have an increased weight at lower
temperatures. This implies that the network learns the
existence of a length scale growing at low temperature
and thus determining the range over which structural
heterogeneities matter for dynamical behaviors.
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FIG. 9. Normalised distribution of statistical weights Pint(L),
determined from the average weights of the attention layer
of the tGlassMLP model with Tmin = 0.21 for each coarse-
graining length L. Results are shown for different tempera-
tures T and a single time corresponding to ⟨C̄B⟩ = 0.8. These
distributions can be used to define an intrinsic, temperature-
dependent dynamic length scale ξint(T ) =

∫
dLPint(L)L.

We have studied this length scale ξint(T ) =∫
dLPint(L)L (recall that Pint(L) is normalised). The

temperature evolution of ξint(T ) compares well to the
other dynamic length scales, as shown below in Fig. 12
and discussed further in Sec. VII. This result confirms, a
posteriori, the utility of the attention layer in tGlassMLP
to represent different temperatures with different dynam-
ical correlation lengths. Additionally, it gives an interest-
ing interpretation from the perspective of glass physics to
the weights learned by the model.

B. Bottleneck layer

Following the attention layer, the structural input is
encoded into a two-dimensional bottleneck layer. This
dimensional reduction implies that the dynamics mainly
depends on two variables. However, those two variables
are obtained by the non-trivial aggregation of several
physical local features. Hence, it is unclear how to pro-
vide a simple interpretation of those two variables. It is
even possible that such an interpretation does not exist.

Still, we can provide some direct evidence of the rela-
tionship between these two variables and the dynamical
behavior. The output of the bottleneck layer for T = 0.25
and different time scales ⟨C̄B(t)⟩ is shown in Fig. 10. Each
point in the figure represents a single particle, its coor-
dinates correspond to the values of the bottleneck layer
while the color is used to code for the value of the particle
propensity extracted from MD simulations. In this rep-
resentation, we can observe a clear separation of struc-
ture into active and passive particles. All the intrica-
cies of amorphous structure are therefore hidden in the
complex encoding from the structural descriptors to the
bottleneck layer. Interestingly, in this description struc-

〈C̄B〉 = 0.99 〈C̄B〉 = 0.9

〈C̄B〉 = 0.75 〈C̄B〉 = 0.5

FIG. 10. Visualization of the amorphous structure, en-
coded by the two-dimensional bottleneck layer, at T = 0.25
for different times. Each point represents a single particle
(N = 90000 particles shown in total) at coordinates given
by the value of the bottleneck layer. Each point is colored
according to the value of the particle propensity Ci

B(t), as in-
dicated by the color bar.

tural relaxation over time is ‘simple’. Indeed, the figure
clearly demonstrates how the red color, corresponding
to the most mobile particles, gradually spreads from the
bottom left corner towards the top right. Thus, at early
times, only those particles with small values in both bot-
tleneck nodes are likely to rearrange. At longer times,
more particles become mobile even at larger values of the

T = 0.21 T = 0.25

T = 0.3 T = 0.4

FIG. 11. Visualization of the amorphous structure, encoded
by the two-dimensional bottleneck layer at fixed time, ⟨C̄B⟩ =
0.8, and different temperatures. The figure is constructed as
in Fig. 10.
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bottleneck nodes, until eventually all particles rearrange
at very long times.

We also study the temperature dependence of the bot-
tleneck layer for a fixed timescale relative to τBB

α in
Fig. 11. The aggregate output of the bottleneck layer
is slightly deformed by the change in temperature, which
arises from the temperature-dependent weights in the at-
tention layer. More importantly, however, we observe
that the separation between active and passive particles
becomes more pronounced at lower temperatures, which
indicates some sort of increasing structural heterogene-
ity. This observation explains the improved performance
of tGlassMLP at lower temperatures, as quantified by the
Pearson correlation in Fig. 2.

VII. DISCUSSION AND CONCLUSION

We presented and analyzed the tGlassMLP model,
which can predict the relaxation dynamics of deeply
supercooled liquids from the amorphous microstructure
over a large range of time scales and temperatures. The
approach has been verified by calculating Pearson cor-
relation coefficients ρP with direct MD simulations and
by evaluating dynamic susceptibilities χ4 and dynamic
correlation length scales ξ4.

Overall, the predictions of tGlassMLP regarding spa-
tial correlations support a scenario in which dynamic het-
erogeneities do not grow significantly when the temper-
ature is decreased far below TMCT and approaches the
experimental glass transition Tg. To summarize these re-
sults, we compare in Fig. 12 the different techniques used
above to calculate dynamic length scales at a time t cor-
responding to ⟨C̄B(t)⟩ = 0.8. We scale the results with a
method-dependent factor and thus find very good overlap
between all results [52]. The figure shows that all meth-
ods produce the same trend of a dynamic length scale
increasing quite rapidly at high temperatures, followed
by a much slower evolution when T < TMCT = 0.3. The
length scales directly determined by MD follow the same
trend, although of course on a much smaller temperature
range. We also found that the evolution of the dynamic
susceptibility χ4(t) follows a trend similar to the length
scales shown in Fig. 12.

Our data-driven approach to predict dynamic hetero-
geneity is quite general and is based on detecting struc-
tural heterogeneity which can easily be measured using
the swap Monte Carlo algorithm at very low tempera-
tures. Nevertheless, it still leaves open the possibility
that the extrapolated tGlassMLP networks do not cap-
ture all important mechanisms leading to growing hetero-
geneities at low temperatures. However, taking the ex-
trapolated data at face value, it is interesting to compare
the emerging scenario in which dynamic heterogeneities
only grow very weakly below T < TMCT to available nu-
merical and experimental data.

Several articles have featured strongly increasing dy-
namic heterogeneities and correlation lengths, includ-
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FIG. 12. Temperature-dependent length scales ξ as extracted
from various techniques described in the manuscript at ⟨C̄B⟩ =
0.8. The figure demonstrates a good agreement between the
different lengths.

ing colloidal experiments [53] and computer simula-
tions [45, 46, 54, 55] in the high temperature regime.
This is in agreement with our results. The change of this
behavior toward a weaker increase at temperatures lower
than TMCT is also found in several simulation and exper-
imental studies. In the three-dimensional Kob-Andersen
mixture a crossover from strongly increasing dynamic
heterogeneities to weakly-increasing has recently been
observed [56–61]. Also in other models, such as binary
mixtures of quasi-hard spheres [62] it has been observed
that dynamic heterogeneities do not continue to grow
significantly. A plateau and a crossover to a weakly in-
creasing heterogeneity has been observed in Ref. [63] for
Kob-Andersen binary mixtures over a range of mixing
ratios. Only very recently were measurements performed
at much lower temperatures in a two-dimensional soft
sphere system [48], but here the saturation was less pro-
nounced. These above numerical findings in three dimen-
sions are consistent with experiments on molecular glass-
formers near the experimental glass transition tempera-
ture, which show length scales in the order of 5 molecular
diameters [64, 65] and weakly increasing dynamic hetero-
geneity [66, 67].

The analysis of the intrinsic properties of the trained
tGlassMLP model shows that the effect of structure on
dynamics can be reduced to just two variables. How-
ever, we could not find any direct interpretation for them,
because they are an aggregate of several physical local
features. Despite their good predicting power, there is
no clear separation between mobile and immobile par-
ticles in this two dimensional representation, thus cast-
ing doubts on the possibility of finding a connection be-
tween simple form of amorphous order or simple local
structures and dynamics by unsupervised learning (simi-
lar ‘potato-shaped’ dimensional reductions were found in
various glass-formers in Ref. [68].) It would be interesting
to study whether this conclusion applies to the dynamics
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observed in individual trajectories [69, 70] instead of the
dynamic propensity.

Finally, we believe that the transferable ML approach
presented in this work can be an important step towards
the study of dynamic heterogeneities in a manifold of
glass-forming materials. This includes models in different
spatial dimensions, continuously polydisperse models [48]
as well as more fragile glass-formers, in which dynamic
heterogeneities might show a different fate at low temper-
atures [71]. Furthermore, quantifying the performance
of transferability is an important topic in the machine
learning community [72, 73]. Future work could include
advanced transferability measures [74] or self-supervised
learning [75]. Employing such techniques to our model
would be an important step to strengthen further the
reliability of transferred results.
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Appendix A: Conversion between times and
bond-breaking correlation values

In Sec. IIA we introduced the bond-breaking correla-
tion and explained how the average value ⟨C̄B(t)⟩ is used
to encode time in the machine learning procedure. Here,
we provide further evidence to support this approach.

In Fig. 13 it can be observed that the decay of ⟨C̄B(t)⟩
at various temperatures is very similar, although the
curves at different temperatures decay on different time
scales. We extract the structural relaxation time ⟨C̄B(t =
τBB
α )⟩ = 0.5 also for the curves which are not simu-
lated long enough by maximizing the overlap between the
curves. The result is shown in bottom panel of Fig. 13.
The curves display nice time-temperature superposition,
indicating that the shape of the time decay changes very
little (if at all) over a wide temperature range.

Based on the extracted values for τBB
α , which show an

Arrhenius dependence above T ≤ 0.25, we extrapolate
the corresponding values for τBB

α at lower temperatures
and find that the glass transition temperature τBB

α (T =
Tg) = 1012 can be estimated as Tg = 0.15, which is the
lowest temperature considered in the manuscript. To re-
construct the time-dependence of propensity at such low
temperatures, we predict propensity at a certain value of
⟨C̄B⟩, use Fig. 13 to estimate t/τBB

α and thus deduce t
using the previously estimated value for τBB

α .
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FIG. 13. Average bond-breaking correlation ⟨C̄B(t)⟩ for dif-
ferent temperatures. Top and bottom show the same results,
where bottom is rescaled by the estimated structural relax-
ation time, τBB

α .

Appendix B: Details on tGlassMLP and the training
procedure

The core of tGlassMLP is the MS-dimensional input
layer, followed by the attention layer, as described in
Sec. II and sketched in Fig. 1. The state point is in-
serted into the attention layer via MLP1. MLP1 has a
six-dimensional input layer, in which we feed the slightly
transformed state point, (1/T , 1/T 2, 1/T 3, ⟨C̄B(t)⟩,
⟨C̄B(t)⟩2, ⟨C̄B(t)⟩3), and two six-dimensional hidden lay-
ers, each with an ELU activation function [76]. The two-
dimensional output is then calculated using a linear ac-
tivation function.

After the attention layer, the data is encoded into the
two-dimensional bottleneck layer, which is concatenated
with the output by MLP2, and followed by two ten-
dimensional hidden layers, each with an ELU activation
function. MLP2 is similar to MLP1 just formed of two
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tGlassMLP (Tmin = 0.21)

⟨C̄B(t)⟩ ⧹ T 0.15 0.18 0.21 0.23 0.25 0.3 0.4

0.99 t t x x x x x

0.94 t t x x x x x

0.90 t t x x x x x

0.85 t t x x x x x

0.8 t t x x x x x

0.75 r t t x x x x

0.65 r t t t x x x

0.5 r t t t x x x

0.25 r r r r r x x

0.15 x

0.075 x

tGlassMLP (Tmin = 0.25)

⟨C̄B(t)⟩ ⧹ T 0.21 0.23 0.25 0.3 0.4

0.99 t t x x x

0.94 t t x x x

0.90 t t x x x

0.85 t t x x x

0.8 t t x x x

0.75 t t x x x

0.65 t t x x x

0.5 t t x x x

0.25 r r r x x

0.15 x

0.075 x

TABLE I. Overview over the different state points used for
the training of tGlassMLP. ‘x’ denotes training data extracted
from MD simulations, ‘t’ are transfered results using the first
training step in “equi-time” mode. ‘r’ are results shown for
the final trained tGlassMLP networks.

Phase 1 10e, 10−3 50e, 5 · 10−4 25e, 2 · 10−4

Phase 2 50e, 4 · 10−5

TABLE II. Accuracies of the Adam optimizer used for train-
ing. “e” stands for the number of epochs.

seven-dimensional hidden layers and a four-dimensional
output layer. The performance of tGlassMLP, however,
does not crucially depend on any of these choices. The
final output X i

MLP is then calculated using a linear acti-
vation function.

As described in the main text, tGlassMLP is then
trained in two steps: The first “equi-time” step for con-
stant ⟨C̄B(t)⟩ is followed by a self-consistency check and
transfer procedure. The results are then used for the fi-
nal training of the full tGlassMLP model. The data that
is used for the tGlassMLP models presented in this work
is summarized in Tab. I.

Each training step is performed in a similar way as the
training of GlassMLP [26]. The batch size is equal the
number of type 1 particles per configuration, Nbatch =
N1 = 600. The training of both the “equi-time” step
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FIG. 14. Higher-order prefactor A, extracted from S4 after
fitting the length scale ξS4 .

and the final step is separated into two phases. In the
first phase, the model is trained for 85 epochs with a loss
function that only considers the mean squared error. The
accuracy of the Adam optimizer is varied as described in
Tab. II. Afterwards, the model is trained for another 50
epochs using the loss function with the same parameters
as for GlassMLP.
When applying tGlassMLP on a large set of amor-

phous structures, in particular at low temperatures and
long times, we use an iterative procedure to constrain

the predicted mean propensity XMLP = 1
N1

∑N1

i=1 X i
MLP

to the expected value ⟨C̄B(t)⟩. To achieve this we define
C0
B = ⟨C̄B(t)⟩ as the initial input in tGlassMLP. Using

the output in iteration j, we update the input via the

recursive relation Cj+1
B = Cj

B + 0.75 · (XMLP
j − ⟨C̄B(t)⟩).

We iterate for a maximum of 6 iterations, and check for
convergence. The final Cj

B is never very different from
⟨C̄B(t)⟩ due to the self-consistency check described in the
main text.

Appendix C: Higher-order term in four-point
structure factor

In this appendix we analyze the higher-order prefactor
A as extracted from fitting the dynamic structure factor
S4 with an additional contribution which is of third order
in q,

S4(0.2 < q < 0.6, t) = χ̃4(t)/
(
1 + (ξq)2 +A(ξq)3

)
.
(C1)

As discussed in Ref. [26] this quantity shows a very
pronounced increase around the mode-coupling temper-
ature TMCT, which we can perfectly reproduce using
tGlassMLP (see Fig. 14). Now, we can also systemat-
ically study temperatures below TMCT. We find that
when entering deep into the glassy regime, also the pre-
factor A reaches a plateau, indicating that the geometry
of rearranging clusters is not significantly changing any-
more, consistent with Ref. [58].
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