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Abstract

When working in optimisation or privacy protection, one may need to estimate the sensitivity of
computer programs, i.e., the maximum multiplicative increase in the distance between two inputs
and the corresponding two outputs. In particular, differential privacy is a rigorous and widely
used notion of privacy that is closely related to sensitivity. Several type systems for sensitivity
and differential privacy based on linear logic have been proposed in the literature, starting with
the functional language Fuzz. However, they are either limited to certain metrics (L1 and L∞),
and thus to the associated privacy mechanisms, or they rely on a complex notion of type contexts
that does not interact well with operational semantics. We therefore propose a graded linear type
system —inspired by Bunched Fuzz [27]— called Plurimetric Fuzz that handles Lp vector metrics
(for 1 ≤ p ≤ +∞), uses standard type contexts, gives reasonable bounds on sensitivity, and has
good metatheoretical properties. We also provide a denotational semantics in terms of metric
complete partial orders, and translation mappings from and to Fuzz.

1 Introduction

The sensitivity of a program is a measure of how much the result of the computation depends on its
inputs, and is defined with respect to some metrics on data. Concretely, if dX and dY are metrics
on the input and output spaces respectively, and if f is the function computed by the program, its
sensitivity is the smallest positive real s such that dY

(
f(x), f(x′)

)
≤ s·dX(x, x′), for any pairs of inputs

(x, x′). This notion is important for analysing the stability of some machine-learning algorithms, or the
privacy properties of a program [9, 12]. In particular, sensitivity is a key notion for differential privacy
[14, 15], a popular approach to the protection of sensitive data, like medical records, that provides
mathematically-based, rigorous and composable guarantees. The intuition behind differential privacy
is that one can hide the information about whether or not a given individual is included in the input
dataset by perturbating the result of the function. In practice, one adds a well-calibrated amount of
random noise to the result, by means of specific mechanisms: one should not be able to deduce from
the output whether the individual belongs to the input or not, but the result should still be accurate
enough.

As the analysis of sensitivity and the implementation of differential privacy are delicate and error-
prone tasks, some approaches in the programming languages community have been developed to assist
programmers. They can be categorised into two classes: those based on Hoare logics [6, 7, 5], which
are interactive and suitable for verifying mechanism implementations, and those based on type systems
[23, 16], which are automatisable and well-suited for verifying functional programs that compose mech-
anisms. Moreover recent works [21, 24] on type systems have suggested that the analysis of sensitivity
and privacy in these systems could be handled essentially separately, by using two different classes of
typing judgements.

In this paper, we are interested in the type systems for the analysis of sensitivity. The seminal work
on the Fuzz language by Reed and Pierce [23] has shown how ideas from linear logic [18, 19] can be used
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to design a type system for a functional language which statically bounds the sensitivity of a program
by providing connectives which can express two metrics on vectors: the L1 and the L∞ metrics.
However depending on the applications some other metrics on vectors are relevant. For instance, for
many geometric algorithms one is interested in the Euclidean distance L2, and more generally, in the
literature on optimisation and statistical applications [10, 20], Lp distances with 1 ≤ p ≤ +∞ have
been used to advantage. For this reason, wunder et al. [27] have introduced an extension of Fuzz, called
Bunched Fuzz, which features connectives allowing to handle Lp-metrics (1 ≤ p ≤ +∞) on vectors.
The derivations of this system use generalised typing judgements inspired by the logic of Bunched
Implications [22], where typing contexts have a tree structure. The authors established a soundness
result analogous to that of Fuzz, showing that the functions computed by well-typed programs admit
a certain sensitivity property.

In the following, we will discuss why Bunched Fuzz does not satisfy the desired properties with
respect to an operational semantics, and we will design a type system for Lp metrics inspired by
Bunched Fuzz with the following expectations: (i) sensitivity soundness property, (ii) substitution and
subject-reduction property, (iii) subtyping property, and (iv) expressiveness. Requirement (iii) refers
to the fact that for all p and q, the Lp and Lq-metrics are related by two inequalities that can be used
for coercions between data types convenient for composing functions. As to (iv), we mean that we
want the system to be able to type some meaningful examples.

Concretely, we keep the same type language as Bunched Fuzz, but we consider a system of rules that
uses standard judgements with list contexts, we call this system Plurimetric Fuzz. As an additional
benefit, we will define (partial) translation mappings from Fuzz to Plurimetric Fuzz, and vice versa,
that we think shed some light on how the new system refines Fuzz.

1.1 Summary of Contributions

We introduce Plurimetric Fuzz, a type system with recursive types and a form of subtyping (see
Section 3.4) for bounding the Lp-sensitivity of vector-valued functions, which subsumes Fuzz (p = 1).
We show that Plurimetric Fuzz enjoys the subject reduction property (Theorem 5.2), and that it
is sound with respect to its denotational semantics (Theorem 4.11). We also show that it gives
significantly lower bounds on sensitivity compared to a näıve extension of Fuzz, and that it is expressive
enough to prove a classification algorithm (ϵ, 0)-private (see Section 6).

2 Background

We first give an overview of the notions and results about sensitivity, differential privacy and type
systems that will be needed in the paper.

2.1 Metric Spaces and Sensitivity

Definition 2.1. An extended pseudosemimetric space, or metric space for short, is a pair (X, d) where
X is a set and d : X ×X → [0,∞] is a function such that for all x, y, z ∈ X: (1) d(x, y) = 0 if x = y;
and (2) d(x, y) = d(y, x).

Note that we do not require the triangle inequality to hold.
In this paper, we are interested in a family of metrics over Rd, which are defined as follows, and

related by the inequalities of Theorem 2.1.

Definition 2.2. For all parameter p ≥ 1 and for all vectors x = (x1, . . . ,xd) and y = (y1, . . . ,yd)
in Rd, we define the Lp-distance or the vector metric of parameter p between x and y by dp(x,y) =(∑d

i=1

∣∣xi − yi

∣∣p)1/p.
Lemma 2.1. For all parameters p and q such that 1 ≤ p, q ≤ ∞, let c(p, q) = 2|1/p−1/q|. If p ≤ q,
then we have dp ≥ dq ≥ c(p, q) · dp.
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The sensitivity of a map between metric spaces is a measure of how much its output changes when
its input changes. This notion is useful for analysing the privacy guarantees of probabilistic algorithms,
as we will see in Section 2.2.

Definition 2.3. A map f between two metric spaces (X, dX) and (Y, dY ) is said to be s-sensitive, or s-
Lipschitz continuous, for s ∈ [0,∞] if for all points x and x′ inX, we have dY

(
f(x), f(x′)

)
≤ s·dX(x, x′).

The sensitivity of f is the least real s such that f is s-sensitive. When it is bounded by 1, we say
that f is non-expansive.

Remark 1. To perform operations on sensitivities, we extend addition to possibly infinite reals in a
straightforward way and multiplication in the same way as [3, Section 2], that is such that s ·∞ equals
∞, and ∞· s equals 0 if s = 0 and ∞ otherwise. Note that this operation is not commutative, see [24,
Section 4.2] for a discussion on the soundness of this choice.

For differentiable real functions, sensitivity is related to the magnitude of the derivative.

Lemma 2.2. Let f be a differentiable function from R to R such that for all x ∈ R, we have
|f ′(x)| ≤ s. Then f is s-sensitive.

2.2 Differential Privacy

A strong motivation for studying sensitivity lies in the field of privacy-preserving data analysis. Infor-
mally, differential privacy [14, 15] is a strong statistical notion of privacy, probably the most widely
used and studied, which requires that the outcome of a computation should not depend too much on
the presence or absence of a single record in the input database.

Definition 2.4. A probabilistic algorithm A endowed with an adjacency relation is said to be (ϵ, δ)-
differentially private for some ϵ ≥ 0 and δ ∈ [0, 1] if, for all adjacent inputs x and x′, and all subsets S
of codom(A), we have Pr[A(x) ∈ S] ≤ eϵ Pr[A(x′) ∈ S] + δ.

Remark. Differential privacy can also be defined in terms of a hypothesis-testing problem, where
an adversary attempts to distinguish between two adjacent inputs by observing the outcome of the
algorithm [25].

In practice, X will often be the set of databases, and two databases will be adjacent if one can be
obtained from the other by adding or removing a single record. Moreover, the codomain will often
be of the form Rd and endowed with a vector metric such as the Manhattan distance (p = 1) or the
Euclidean distance (p = 2).

In order to guarantee differential privacy, it is enough to add noise to the computation, as long as
the noise is sufficiently large compared to the sensitivity of the function being computed. Let us give
more precise statements.

Let f be a vector-valued function from a metric space (X, dX) to Rd. We write ∆pf for the
sensitivity of f when the codomain is endowed with the Lp-distance, that is for the Lp-sensitivity of f .
Recall that the Laplace distribution of parameter b > 0 is the probability distribution with density
function x 7→ 1/2b · e−|x|/b, for x in R.

Theorem 2.3 (Laplace Mechanism [15, Theorem 3.6]). If ∆1f is finite, then for all positive real
number ϵ, the function x 7→ f(x) +

(
Lap(∆1f/ϵ), . . . ,Lap(∆1f/ϵ)

)
is ϵ-differentially private.

However, in some cases, we may prefer to add Gaussian noise instead of Laplace noise. This way,
the noise added to protect privacy is of the same type as other sources of perturbation in the original
data. Moreover, the effects of the privacy mechanism on the statistical analysis may be easier to
account for given that the sum of normally distributed random variables is itself normally distributed
[15, Section 3.5.3]. To do so, we need to bound the L2-sensitivity of f .

Theorem 2.4 (Gaussian mechanism [15, Theorem 3.22]). If ∆2f is finite, then for all positive real
numbers ϵ and δ, if σ >

√
2 ln(5/4δ) ·∆2f/ϵ, then the function x 7→ f(x) +

(
N (0, σ2), . . . ,N (0, σ2)

)
is (ϵ, δ)-differentially private.
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Remark 2. In this paper, we will only consider discrete probability distributions, but the above two
theorems can be adapted to this setting [17, 11].

2.3 Type Systems for Bounding Sensitivity

Reed and Pierce have introduced the Fuzz type system [23] based on the fact that L1-sensitivity can
be viewed as an affine resource (in the sense of linear logic [18, 19]). For example, the judgement
[x : A]2 ⊢ (x, x) : A ⊗ A means that the map x 7→ (x, x) is 2-sensitive (for the L1-distance). See the
following tensor rules for an example of Fuzz typing rules:

Γ ⊢ a : A ∆ ⊢ b : B ⊗I
Γ +∆ ⊢ (a, b) : A⊗B

∆ ⊢ e : A⊗B Γ, [x : A]s, [y : B]s ⊢ c : C
⊗E

Γ + s∆ ⊢ (let (x, y) = e in c) : C

where the sum of two contexts is the result of adding the sensitivities of the involved variables.
It was subsumed by Bunched Fuzz [27], which allows for the analysis of Lp-sensitivity for p ∈ [1,∞]

by the introduction of a family of tensor products (⊗p)p∈[1,∞] and affine arrows (⊸p)p∈[1,∞]. Moreover
contexts Γ are no longer represented as lists, but as trees (or bunches). We reproduce the tensor rules
below:

Γ ⊢ a : A ∆ ⊢ b : B ⊗I
Γ ,p ∆ ⊢ (a, b) : A⊗p B

∆ ⊢ e : A⊗p B Γ
(
[x : A]s ,p [y : B]s

)
⊢ c : C

⊗E
Γ(s∆) ⊢ (let (x, y) = e in c) : C

where Γ(∆) denotes a composite bunch formed by substituting the bunch ∆ into another bunch Γ(⋆),
which features a unique, distinguished hole ⋆.

Remark 3. We write b[a/x] for the capture-avoiding substitution of b for x in a.

The contraction rule enables the identification of variables with the same type in two different
subtrees of a context,

Γ(∆ ,p ∆
′) ⊢ a : A ∆ ≈ ∆′

Contr
Γ
(
Contr(p; ∆;∆′)

)
⊢ a[vars∆/ vars∆′] : A

where Contr(p; Γ;∆) is defined by induction on the structure of Γ by the following equations, and
where we write · for the sensitivity scaling operation.

Contr(p; ∅; ∅) def
= ∅

Contr(p; [x : A]r; [y : A]s)
def
= [x : A] p

√
rp+sp

Contr(p; Γ1 ,q Γ2; ∆1 ,q ∆2)
def
= 2|1/p−1/q| ·

(
Contr(p; Γ1; ∆1) ,q Contr(p; Γ2; ∆2)

)
The authors have proved that if types and contexts are interpreted as metric spaces, then the

derivations correspond to non-expansive functions.

Theorem 2.5 ([27, Theorem 7]). Given a derivation π proving Γ ⊢ a : A, the function JπK : JΓK → JAK
is non-expansive.

However, the use of bunches comes at the cost of the loss of the substitution property: there exists
derivations Γ ⊢ a : A and ∆([x : A]s) ⊢ b : B such that ∆(sΓ) ̸⊢ b[a/x] : B.

Proof. To see this, let us look at the following example. Here, we use the algorithmic approach to the
rules, which means we systematically apply a contraction after each typing rule:

+
∅ ⊢ (+) : Nat⊗1 Nat ⊸1 Nat

var
[a : Nat]1 ⊢ a : Nat

var
[b : Nat]1 ⊢ b : Nat

⊗I
[a : Nat]1 ,1 [b : Nat]1 ⊢ (a, b) : Nat⊗1 Nat

⊸ E
[a : Nat]1 ,1 [b : Nat]1 ⊢ (+)(a, b) : Nat
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If we could substitute (+)(a, b) for x in the derivation

var
[x : Nat]1 ⊢ x : Nat

var
[x : Nat]1 ⊢ x : Nat

⊗I
[x : Nat]√2 ⊢ (x, x) : Nat⊗2 Nat

we would obtain [a : Nat]√2 ,1 [b : Nat]
√
2 ⊢

(
(+)(a, b), (+)(a, b)

)
: Nat ⊗2 Nat, which is not derivable.

Indeed, a derivation of this judgement would have the following shape:

...
[a : Nat]ra ,1 [b : Nat]rb ⊢ (+)(a, b) : Nat

...
[a : Nat]sa ,1 [b : Nat]sb ⊢ (+)(a, b) : Nat

⊗I
c(2, 1) ·

(
[a : Nat]1 ,1 [b : Nat]1

)
⊢
(
(+)(a, b), (+)(a, b)

)
: Nat⊗2 Nat

=
[a : Nat]√2 ,1 [b : Nat]

√
2 ⊢

(
(+)(a, b), (+)(a, b)

)
: Nat⊗2 Nat

where ra, rb, sa and sb would be such that r2a + s2a = 1 and r2b + s2b = 1. We would have min{ra, sa} ≤√
2/2 < 1, which is absurd as (a, b) 7→ a+ b is 1-sensitive for the L1-metric.

Claim 2.6. Bunched Fuzz doesn’t meet the subject reduction property when it is given a standard
operational semantics similar to that of Fuzz (see Figure 3).

In addition, the failure to satisfy the substitution property implies that we cannot meaningfully state
certain properties regarding denotational semantics (see Section 5 for the metatheoretical properties
our type system enjoys). This includes the assertion, using the notations above, that Jb[a/x]K is equal
to JbK when partially applied to a, as the first term may not have a valid derivation, and therefore a
well-defined interpretation.

In conclusion, the flexibility provided by representing contexts as trees is offset by the loss of
important syntactic and semantic properties.

3 Syntax

In a nutshell we will consider the terms of Fuzz, that is to say an extended λ-calculus, with the types
of Bunched Fuzz, but with a new notion of typing context.

3.1 Types and Terms

Types are defined by the following context-free grammar where s and p range over [0,∞] and [1,∞]
respectively: A,B, · · · ::= Unit | A⊕ B | µα. A | ⃝A | !sA | A⊗p B | A ⊸p B. We write Bool for the

type Unit⊕ Unit; Listp(A) for the iso-recursive type µα. Unit⊕ (A⊗p α); and
⊗d

p A =

d times︷ ︸︸ ︷
A⊗p . . .⊗p A.

On the other hand, the terms of the language are defined by the following grammar, for c ∈ Const,
x, y ∈ Var and A ∈ Typ:

a, b, c, d, e, f, . . . ::= ∗ | c | x | (a, b) | let (x, y) = e in b | πie | λx. e | f e

| inj1 e | inj2 e | case e of x ⇒ a or y ⇒ b | !e | let !x = e in b

| fold
A

e | unfold
A

e | return e | let ⃝x = e in b

(1)

Remark 4. In examples, we write terms in an ML-like syntax instead of the one described in Section 3.
In particular, we may write x |> f for f x, we may use pattern matching and let bindings (let x = e
in b is syntactic sugar for (λx. b) e), and we may omit the Y combinator (see Remark 5) when defining
recursive functions.
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3.2 Precontexts and Contexts

We refer to elements of the set defined by the grammar Γ ::= ∅ | [x : A]s,Γ —where s, x and A range
over [0,∞], Var and Type respectively— as precontexts. In addition, we define the scaling sΓ of a

precontext Γ by a sensitivity s by s · ∅ def
= ∅ and s · ([x : A]r,Γ)

def
= [x : A]rs, sΓ for all s ∈ [0,∞].

Definition 3.1. Two precontexts Γ and ∆ are said to be compatible if they do not assign different
types to the same variable. The p-contraction of two compatible precontexts Γ and ∆ is defined by
induction on the structure of Γ by the following equations:

Cp
(
∅; ∆

) def
= ∆

Cp
(
[x : A]r,Γ;∆

) def
= [x : A]r, C

p (Γ;∆) if x /∈ ∆

Cp
(
[x : A]r,Γ; [x : A]s,∆

) def
= [x : A] p

√
rp+sp , C

p (Γ;∆)

(2)

We write Γ +∆ for C1 (Γ;∆).

Lemma 3.1. For all precontexts Γ and ∆, and all parameters p:

• Cp (Γ;∆) = Cp (∆; Γ);

• if Cp (Γ;∆) = ∅, then Γ = ∅ and ∆ = ∅;

• for all sensitivity s, we have s · Cp (Γ;∆) = Cp (sΓ; s∆).

Definition 3.2. For any two precontexts Γ and ∆, we write Γ ≤ ∆ if every variable of Γ also occurs
in ∆, and with greater or equal sensitivity.

Finally, we define a context as a pair of a parameter and a precontext, which can be seen as a
Bunched Fuzz context where all parameters are equal, and which can therefore be flattened into a list.
More precisely, a context is a pair (p,Γ) written (p) Γ.

3.3 Typing Rules

The typing rules and typing rules schemas for Plurimetric Fuzz are given in Figure 1 where Γ and ∆
range over contexts, A, B, and C range over types, etc.

We omit the →p type constructor, and encode it with ⊸p and !∞ as follows: A →p B
def
= !∞A ⊸p

B. Similarly, the & constructor can be encoded by ⊗∞ like in [27, Section 3]. Observe that, as
C1 (Γ;∆) = Γ + ∆, all rules but the last two, (≥ W ) and (≤ W ), correspond to Fuzz rules when
p = 1 (by identifying connectives of parameter 1 with the corresponding Fuzz ones). So all Fuzz type
derivations can be seen as Plurimetric Fuzz type derivations (up to the encoding of &). We will see in
Section 7 other ways of translating Fuzz derivations, by choosing other values of p.

Also note that the weakening rules (≥ W ) and (≤ W ) are the only ones that make the parameter
of the judgement change. One direction (≥ W ) is direct, but the other one (≤ W ) requires a coef-
ficient c(p, q) = 2|1/p−1/q| (see Theorem 2.1). In addition, as a particular case of these rules, for all
parameters p and q, from (p) ∅ ⊢ a : A we can derive (q) ∅ ⊢ a : A. For this reason, we may simply
write ⊢ a : A.

Remark 5. As shown in [23, Section 3.1], recursive types let us encode a fix-point combinator for any
two types A and B, and parameters p without a specific rule:

Y
def
= λf.

(
λx. λa. f

(
(unfold

A0

x)x
)
a
)(

fold
A0

(
λx. λa. f

(
(unfold

A0

x)x
)
a
))

where A0
def
= µα

(
α →p (A ⊸p B)

)
, and Y :

(
(A ⊸p B) →p (A ⊸p B)

)
→p (A ⊸p B).

We can extend the type system to handle primitive operations on natural and real numbers, as
well as on sets, having extending the syntax of types and terms accordingly in Figure 2.
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var
(p) [x : A]1 ⊢ x : A

Unit
⊢ ∗ : Unit

(p) Γ ⊢ a : A (p) ∆ ⊢ b : B
⊗I

(p) Cp (Γ;∆) ⊢ (a, b) : A⊗p B

(p) Γ ⊢ e : A⊗p B (p) ∆, [x : A]s, [y : B]s ⊢ c : C
⊗E

(p) Cp (sΓ;∆) ⊢ (let (x, y) = e in c) : C

(p) Γ ⊢ a : A
⊕I◁

(p) Γ ⊢ inj1 a : A⊕B

(p) Γ ⊢ b : B
⊕I▷

(p) Γ ⊢ inj2 b : A⊕B

(p) Γ ⊢ e : A⊕B (p) ∆, [x : A]s ⊢ c1 : C (p) ∆, [y : B]s ⊢ c2 : C
⊕E

(p) Cp (sΓ;∆) ⊢ (case e of x ⇒ c1 or y ⇒ c2) : C

(p) Γ ⊢ a : A
!I

(p) sΓ ⊢ !a : !sA

(p) Γ ⊢ e : !rA (p) ∆, [x : A]rs ⊢ c : C
!E

(p) Cp (sΓ;∆) ⊢ (let x = e in c) : C

(p) Γ, [x : A]1 ⊢ b : B
⊸ I

(p) Γ ⊢ (λx. b) : A ⊸p B

(p) Γ ⊢ f : A ⊸p B (p) ∆ ⊢ a : A
⊸ E

(p) Cp (Γ;∆) ⊢ f a : B

(p) Γ ⊢ e : A[µα. A/α]
µI

(p) Γ ⊢ fold
µα. A

e : A

(p) Γ ⊢ a : A
µE

(p) Γ ⊢ unfold
µα. A

a : A[µα. A/α]

(1) Γ ⊢ a : A
⃝I

(1) ∞ · Γ ⊢ return a : ⃝A

(1) Γ ⊢ e : ⃝A (1) ∆, [x : A]∞ ⊢ b : ⃝B
⃝E

(1) Γ +∆ ⊢ (let ⃝x = e in b) : ⃝B

(p) Γ ⊢ a : A Γ ≤ ∆ p ≥ q
≥ W

(q) ∆ ⊢ a : A

(p) Γ ⊢ a : A Γ ≤ ∆ p ≤ q
≤ W

(q) c(p, q) ·∆ ⊢ a : A

Figure 1: Typing Rules for Plurimetric Fuzz

3.4 Subtyping

For all p and q, the Lp and Lq-metrics are related by two inequalities that can be used for coercions
between data types: if p ≤ q, from (p) Γ ⊢ e : A⊗pB, we can derive (p) Γ ⊢

(
let (x, y) = e in (x, y)

)
:

A⊗q B; and similarly from (q) Γ ⊢ e : A⊗q B, we can derive (q) c(p, q) ·Γ ⊢
(
let (x, y) = e in (x, y)

)
:

A⊗p B. Let us give the derivation of the first case:

(p) Γ ⊢ e : A⊗p B

var
(q) [x : A]1 ⊢ x : A

var
(q) [y : B]1 ⊢ y : B

⊗I
(q) [x : A]1, [y : B]1 ⊢ (x, y) : A⊗q B ≥ W
(p) [x : A]1, [y : B]1 ⊢ (x, y) : A⊗q B ⊗E

(p) Γ ⊢
(
let (x, y) = e in (x, y)

)
: A⊗q B

Example. As an example, say we want to compose a function f : Real ⊸1 Real⊗2 Real with a function
g : Real ⊗1 Real ⊸1 Real, both typable in an empty context. We can first apply f to an input x, and
then coerce the result to obtain the judgement (1) [x : Real]√2 ⊢ e : Real⊗1Real for some term e which
is semantically equivalent to the term f(x). At this point, we can apply g to e, and use the (!I) and
(⊸ I) rules to derive the judgement (1) ∅ ⊢ h : !√2Real ⊸1 Real for some term h which behaves like
g ◦ f .
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Nat
⊢ n : Nat

Real
⊢ r : Real

(p) Γ ⊢ x : N (p) ∆ ⊢ y : N N ∈ {Nat,Real}
+

(p) c(1, p) · Cp (Γ;∆) ⊢ x+ y : N

(p) Γ ⊢ x : N k ∈ N N ∈ {Nat,Real}
×

(p) kΓ ⊢ k × x : N

(p) Γ ⊢ x : A
Set

(p) ∞ · Γ ⊢ {x} : Set(A)

(p) Γ ⊢ e : Set(A)
card

(p) Γ ⊢ card(e) : Nat⊕ Unit

setfilter
⊢ setfilter : (A →p Bool) →p Set(A) ⊸p Set(A)

setmap
⊢ setmap : (A →p B) →p Set(A) ⊸p Set(B)

setfold
⊢ setfold : (A ⊸p B ⊸p B) →p B →p Set(A) ⊸p B

Figure 2: Typing Rules for Primitive Operations

4 Semantics

4.1 Operational Semantics

We consider the same big-step operational semantics as for Fuzz [23]. First, values are given by the
following grammar: u, v, · · · ::= ∗ | (u, v) | λx. b | !v | µ | foldA v | inj1 v | inj2 v where µ ranges over
multisets of probability-value pairs.

See Figure 3 for the complete set of evaluation rules, which can be extended with rules for primitive
operations. We will see in the Section 5 that this semantics enjoys the desired properties such as subject
reduction (also known as type preservation).

4.2 Denotational semantics

We also introduce a denotational semantics by interpreting types as metric spaces and type derivations
as non-expansive maps, following the denotational semantics of Bunched Fuzz [27].

Operations on metric spaces

Definition 4.1. Let (X, dX), (Y, dY ) and (Z, dZ) be three metric spaces, p be a parameter, and s be

a sensitivity. The scaling of (X, d) by s is the metric space !sX
def
= (X, s · dX). Moreover, the p-tensor

product X ⊗p Y of X and Y is the set X × Y endowed with

dX⊗pY

(
(x, y), (x′, y′)

) def
= p
√

dX(x, x′)p + dY (y, y′)p ; (3)

the p-affine arrow X ⊸p Y from X to Y is the set Y X endowed with

dX⊸pY (f, f
′)

def
= inf

{
r ≥ 0 : ∀x, x′ ∈ X, dY

(
f(x), f ′(x′)

)p ≤ rp + dX(x, x′)p
}

; (4)

and the disjoint union X ⊕ Y of X and Y is the set X ⊔ Y endowed with

dA1⊕A2(e, e
′)

def
=

{
di(e, e

′) if e, e′ ∈ JAiK
∞ otherwise.

(5)
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∗ ⇓ ∗ λx. b ⇓ λx. b

f ⇓ λx. b a ⇓ va b[va/x] ⇓ v

f a ⇓ v

a ⇓ va b ⇓ vb

(a, b) ⇓ (va, vb)

c ⇓ (va, vb) e[va/x][vb/y] ⇓ v

(let (x, y) = c in e) ⇓ v

e ⇓ v

inji e ⇓ inji v

e ⇓ inji v ei[v/x] ⇓ vi

(case e of x ⇒ e1 or x ⇒ e2) ⇓ vi

e ⇓ v

!e ⇓ !v

b ⇓ !vb e[vb/x] ⇓ v

(let !x = b in e) ⇓ v

e ⇓ v

foldA e ⇓ foldA v

e ⇓ foldA v

unfoldA e ⇓ v

e ⇓ v

return e ⇓ (1, v)

d ⇓ (pi, vi)i∈I

i ∈ I

b[vi/x] ⇓ (qij , wij)j∈J

let ⃝x = d in b ⇓ (piqij , wij)i∈I,j∈J

Figure 3: Evaluation rules for (Plurimetric) Fuzz

Given two maps f : X → Z and g : Y → Z, the coproduct [f, g] : X ⊕ Y → Z of f and g is the map

defined by [f, g]
(
i1(x)

) def
= f(x), and [f, g]

(
i2(y)

) def
= g(y).

Note that it follows directly from the definitions above that for all p, the operation ⊗p is commu-
tative and associative up to isomorphism, and that the evaluation map Ev: (X ⊸p Y )⊗p X ⊸p Y is
non-expansive. Moreover, we have (X ⊕ Y )⊗p Z ≃ (X ⊗p Z)⊕ (Y ⊗p Z).

We also define probability distributions over metric spaces.

Definition 4.2. A discrete probability distribution over a metric space with countable support X is a
function µ : X → [0, 1] such that

∑
x∈X µ(x) = 1. We write Dist(X) for the set of such distributions

endowed with the following distance, parametrised by a positive real ϵ0:

max div(µ, µ′)
def
=

1

ϵ0
max
x∈X

∣∣∣∣ ln µ(x)

µ′(x)

∣∣∣∣ (6)

with the convention that 0/0
def
= 1 and | ln(0/x)| def

= | ln(x/0)| def
= ∞ for all x > 0. We write δx for the

Dirac distribution at x: δx(x) = 1 and δx(x
′) = 0 for all x′ ̸= x.

Recall that the support suppµ of a distribution µ over a set X is the set of elements of X with
non-zero probability, and note that if µ and µ′ are two discrete distributions over the same set X,
then maxdiv(µ, µ′) is finite if and only if suppµ = suppµ′. This distance is “carefully chosen” [23,
Section 4.2] to ensure that the following lemma holds.

Lemma 4.1. A non-expansive map from X to Dist(Y ) is exactly an ϵ0-differentially private random
map from X to Y .

To compose probabilistic programs, we define the Kleisli extension of a map.

Definition 4.3. The Kleisli extension f† : Dist(X) → Dist(Y ) of a map f : X → Dist(Y ) is defined

by the following formula: f(µ)(y)
def
=
∑

x∈X µ(x)f(x)(y).

Interpretation of Types, Contexts and Derivations Let Core Plurimetric Fuzz be the fragment
of Plurimetric Fuzz without recursive types. We interpret its types inductively as metric spaces:
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• JUnitK def
= ({∗}, 0);

• JNatK def
= (N, (m,n) 7→ |m− n|);

• JRealK def
= (R, (x, y) 7→ |x− y|);

• J!sAK def
= !sJAK;

• JA⊗p BK def
= JAK ⊗p JBK;

• JA ⊸p BK def
= JAK ⊸p JBK;

• JA⊕BK def
= JAK ⊕ JBK;

• J⃝AK def
= Dist JAK;

• JSet(A)K def
=
(
Pfinite(JAK), card(−△−)

)
.

where △ is the symmetric difference on sets. Next, we define the interpretation of contexts: J(p) ∅K def
=

{∗} and J(p) Γ, x : AK def
= J(p) ΓK ⊗p JAK. Derivations are seen as non-expansive maps between metric

spaces. More precisely, if π is a derivation whose last rule is R, we write πe for its premise whose
conclusion has term e, and Γ and ∆ for the contexts involved. Moreover, we write −̂ for the currying
map; Ev for the evaluation map; if R is a weakening rule, Ip for the inclusion map from J(p) ∆K to
J(p) ΓK when Γ ≤ ∆, and Iqp for the natural map from J(p) ΓK to J(q) ΓK; and if R is binary or ternary,
Dp for the diagonal-like map from J(p) Cp (Γ;∆)K to J(p) ΓK⊗p J(p) ∆K. We omit isomorphisms when
they are clear from the context.

(Unit) JπK def
= Const∗

(var) JπK def
= IdJAK

(⊗I) JπK def
=
(
JπaK × JπbK

)
◦Dp

(⊗E) JπK def
= JπcK ◦ (Id× r · JπeK) ◦Dp

(⊸ I) JπK def
= ĴπbK

(⊸ E) JπK def
= Ev ◦

(
Jπf K × JπaK

)
◦Dp

(⊕I◁) JπK def
= i1 ◦ JπaK

(⊕I▷) JπK def
= i2 ◦ JπbK

(⊕E) JπK def
= [Jπc1K, Jπc2K] ◦ (Id× s · JπeK) ◦Dp

(!I) JπK def
= s · JπaK

(!E) JπK def
= JπcK ◦

(
Id× r · JπeK

)
◦Dp

(⃝I) JπK def
= δ ◦∞ · JπaK

(⃝E) JπK def
= Ev ◦

(
(∞ · JπeK)× (·† ◦ ĴπbK)

)
◦D1

(≤ W ) JπK def
= c(p, q) · Ipq ◦ Iq ◦ JπaK

(≥ W ) JπK def
= Ipq ◦ Iq ◦ JπaK

Soundness of Core Plurimetric Fuzz Let Core Plurimetric Fuzz be the fragment of Plurimetric
Fuzz without recursive types.

Proposition 4.2 (Soundness). If π is a Core Plurimetric Fuzz derivation of (p) Γ ⊢ a : A, then JπK
is a non-expansive map from J(p) ΓK to JAK.

Properties we use repeatedly in the proof of this result are summarised in the following lemmata.
See Appendix A.1 for more details.

Lemma 4.3. For all precontexts Γ, and reals p ≥ 1 and s ≥ 0, we have J(p) sΓK = !sJ(p) ΓK.

Lemma 4.4. For all metric spaces X1, X2, Y1, and Y2, and parameters p, if f : X1 → Y1 and
g : X2 → Y2 are non-expansive maps, then so is f × g : X1 ⊗p X2 → Y1 ⊗p Y2.

Proof. The function (x, y) 7→ p
√
xp + yp is increasing in both arguments over R≥0 ×R≥0.

Lemma 4.5 ([27, Proposition 6]). For all metric spaces X and Y , and parameters p and q such
that p ≤ q, the identity map on pairs belongs to the following spaces: X ⊗p Y ⊸ X ⊗q Y and
!c(p,q)(X ⊗q Y ) ⊸ X ⊗p Y .

Lemma 4.6. For all compatible precontexts Γ and ∆, the diagonal-like map Dp from J(p) Cp (Γ;∆)K
to J(p) ΓK ⊗p J(p) ∆K is non-expansive. Moreover, if Γ ≤ ∆, then the inclusion map Ip : J(p) ΓK →
J(p) ∆K is non-expansive.
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Proof. By induction on Γ, using the fact that for all metric spaces X, and sensitivities r and s, we
have a non-expansive map from ! p

√
rp+spX to !rX ⊗p !sX given by x 7→ (x, x).

Lemma 4.7. The bind map defined by bind(f, µ)
def
= f†(µ) is non-expansive from DistY ⊗1 (Y →1

DistX) to DistX.

See Appendix A.2 for a proof of the soundness of the typing rule for the primitive operations.
Note that the types of the higher-order primitives setmap, setfilter, and setfold are not sound when
the functional is not guaranteed to converge. Some solutions to this problem are discussed in [23,
Section 3.5].

Recursive types and Recursive functions In this section, we will show that the introduction
of a denotational semantics for interpreting recursive definitions of both data types and functions for
the fragment of Fuzz that does not include probability distributions [3] can be generalised to our
setting. Note that the interpretation is parametrized by a finite set of type identifiers, that behave
as iso-recursive types, and by a definition environment. This approach slightly diverges from what
precedes.

Definition 4.4. A metric complete partial order is a complete partial order X endowed with a met-
ric d such that for all (xi)i∈N and (x′

i)i∈N two ω-chains in X, if dX(xi, x
′
i) ≤ r for all i ∈ N, then

dX
(⊔

i∈N xi,
⊔

i∈N x′
i

)
≤ r.

Equivalently, we may ask that d
(⊔

i∈N xi,
⊔

i∈N x′
i

)
≤ lim infi→∞ d(xi, x

′
i) [3, Lemma 4.5].

This framework allows to describe Plurimetric Fuzz recursive types as solutions to domain equations
of the form F (X) = X, and to describe divergence by the least element ⊥.

Theorem 4.8 ([3, Theorem 4.15]). MetCPO⊥ is an algebraically compact CPO-category, that is for
every CPO-endofunctor F , there exists an object µF and an isomorphism i : F (µF ) ≃ µF such that i
is an initial algebra and i−1 is a final coalgebra.

We have to show that MetCPO⊥ is closed under the tensor and arrow constructors.

Lemma 4.9. If X and Y are two metric complete partial orders, then so is X ⊸p Y .

Proof. Let (fi)i∈N and (gi)i∈N be two ω-chains in X ⊸p Y such that for all i ∈ N, we have
dX⊸pY (fi, gi) ≤ r. Let x1 and x2 in X, and i ∈ N.

dY
(
fi(x1), gi(x2)

)
≤ dX⊸1Y (fi, gi) + dX(x1, x2) by Equation (4)

≤ dX⊸pY (fi, gi) + dX(x1, x2) by [27, Theorem 5]

≤ r + dX(x1, x2)

Lemma 4.10. If X and Y are two metric complete partial orders, then so is X ⊗p Y .

Proof. Let (pi)i∈N and (p′i)i∈N be two ω chains in X × Y . For all i ∈ N we write pi = (xi, yi) and
p′i = (x′

i, y
′
i). Since X and Y are metric complete partial orders, we have

dX

(⊔
i∈N

xi,
⊔
i∈N

x′
i

)
≤ lim inf

i→∞
dX(xi, x

′
i) and dY

(⊔
i∈N

yi,
⊔
i∈N

y′i

)
≤ lim inf

i→∞
dY (yi, y

′
i) .

Therefore, as the function x 7→ xp is increasing, we have

dX

(⊔
i∈N

xi,
⊔
i∈N

x′
i

)p

+ dY

(⊔
i∈N

yi,
⊔
i∈N

y′i

)p

≤ lim inf
i→∞

dX(xi, x
′
i)

p + lim inf
i→∞

dY (yi, y
′
i)

p

≤ lim inf
i→∞

(
dX(xi, x

′
i)

p + dY (yi, y
′
i)

p
)

= lim inf
i→∞

dX(xi, x
′
i)

p + dY (yi, y
′
i)

p

11



and by taking the p-th root of both sides, we obtain dX⊗pY

(⊔
i∈N pi,

⊔
i∈N p′i

)
≤ lim infi→∞ dX⊗pY (pi, p

′
i).

From Theorem 4.2 and what precedes, we can deduce the soundness of the deterministic fragment
of Plurimetric Fuzz, which features recursive types and functions.

Theorem 4.11 (Soundness). If π is a derivation in the deterministic fragment of Plurimetric Fuzz of
(p) Γ ⊢ a : A, then JπK is a non-expansive map from J(p) ΓK to JAK.

Remark 6. One may notice that if we use recursive types to define Nat as µα. Unit ⊕ α, then the
following implementation of (+) is non-expansive for all p rather than c(1, p)-sensitive:

Listing 1: Non-expansive implementation of the addition

let rec (+) n m = match n with injl () -> m | injr k -> injr (k + m)

However, in this setting, the sensitivity is calculated with respect to the following distance: dNat(m,n)
equals 0 ifm = n, and∞ otherwise, rather than the usual distance onN. This justifies the introduction
of Nat as a primitive data type and of (+) as a primitive operation.

5 Metatheoretical properties

Unless otherwise stated, J−K will refer to one of the two closely-related denotational semantics we have
defined. More specifically, JAK may be either a metric space or a metric complete partial order (CPO).
Furthermore, the terms will be drawn from the appropriate fragment.

In the same way as [3], we call a substitution a finite partial map from variables to values. We write
S(e) for the simultaneous substitution of x by S(x) in e for all x in dom(S)∩FV(e). A substitution S
is said to be well-typed by a precontext Γ and we write S : Γ when the following two assertions are
equivalent: ⊢ S(x) : A and [x : A]s ∈ Γ for some s ≥ 0. Finally, for all parameters p, we naturally
define JSK as an element of J(p) ΓK.

Lemma 5.1 (Substitution). For all derivations π of (p) Γ,∆ ⊢ a : A and for all well-typed substitu-
tions S : Γ, there exists a derivation π′ of (p) ∆ ⊢ S(a) : A. Moreover, Jπ′K = JπK(JSK,−).

Types and denotation are preserved by the operational semantics.

Theorem 5.2 (Preservation). For all derivations πa of ⊢ a : A, if a ⇓ v, then there exists a deriva-
tion πv of ⊢ v : A. Moreover, JπaK = JπvK.

Let us now state the main result of this section, that is the metric preservation theorem.

Theorem 5.3 (Metric preservation for Core Plurimetric Fuzz). For all derivations π of (p) Γ ⊢ a : A
and for all well-typed substitutions S, S′ : Γ, then there exists well-typed values v and v′ such that
S(a) ⇓ v and S′(a) ⇓ v′ and dJAK

(
JvK, Jv′K

)
≤ dJΓK

(
JSK, JS′K

)
,

Theorem 5.4 (Metric preservation for Plurimetric Fuzz). For all derivations π of (p) Γ ⊢ a : A and
for all well-typed substitutions S, S′ : Γ, we have dJAK⊥

(
JS(a)K, JS′(a)K

)
≤ dJΓK

(
JSK, JS′K

)
.

By itself, the second formulation of the metric preservation theorem does not constrain the termi-
nation behaviour of the two terms S(a) and S′(a). However, the following lemma connects termination
from both the operational and denotational perspectives. More details on the implications of this result
are given in [3, Section 5].

Lemma 5.5 (Adequacy for Plurimetric Fuzz). If ∅ ⊢ a : A and JaK ̸= ⊥, then there exists a value v
such that a ⇓ v.

The proofs are similar to the one given in [3], given our soundness results (Theorem 4.2 and
Theorem 4.11).
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6 Expressive power and Precision

Let us now illustrate the usage of our type system with three examples.

Example: Functions with Multiple Arguments. Let us consider the term λc.
(
let (x, y) = c

in f(!x, y) + g(x, !y)
)
where f : !2Real ⊗2 Real ⊸2 Real and g : Real ⊗2 !2Real ⊸2 Real, that is the

same example as in [27, Section 5].

...
(2) [x : Real]2, [y : Real]1 ⊢ f(!x, y) : Real

...
(2) [x : Real]1, [y : Real]2 ⊢ g(x, !y) : Real

+
(2)

√
2 · ([x : Real]√5, [y : Real]√5) ⊢ f(!x, y) + g(x, !y) : Real

This typing derivation shows that, by using Plurimetric Fuzz, we manage to obtain the same
sensitivity as with Bunched Fuzz, that is to say

√
10 ≈ 3+ 1/6, while a näıve extension of Fuzz would

overestimate it to 4 [27, Section 5].

Example: Suboptimal sensitivity analysis. We can without difficulty find a term e and a type A
such that ⊢ e : A in Bunched Fuzz, but ̸⊢ e : A in Plurimetric Fuzz. For example, let e = λx.

(
(x, x), ∗

)
and A = !2B ⊸2 (B ⊗1 B) ⊗2 Unit for any type B. (Plurimetric Fuzz would require the exponential
constructor to be annotated with at least 2

√
2.) However, such cases do not seem to appear in practical

programs.

Example: Neighbour classification. Let us consider an example using the Euclidean distance L2.
Say that given a database of labelled points in the Euclidean plane, we want to predict the label of a new
point x by a majority vote weighted by the distance d to its neighbours (approximately 1 when d < r
for a given radius r, and 0 otherwise). Here, we choose the function weight : x 7→ 1− 1/(1+ e−4(x−r)).
This is the complement of a shifted and scaled function (widely used as an activation function in
machine learning), which can be soundly added to the language as a primitive of type Real ⊸1 Real
(see Theorem 2.2).

A row of the database is represented by the following type: Row = Point ⊗1 Label where Point =
Real⊗2 Real, and Label = Unit⊕· · ·⊕Unit. We assume that the coordinates are precise enough so that
no two different points have the same coordinates, and that x = (0, 0) (we lose nothing in generality
by doing this, since translation is a non-expansive operation on the Euclidean plane).

The algorithm is implemented as follows (where = is an ∞-sensitive primitive):

Listing 2: Implementation of the neighbour classification algorithm

let get_pos (r : row) : point = let (pos , _) = r in pos

let get_label (r : row) : label = let (_, label) = r in label

let score (l : label) (db : database) : real = db

|> setfilter (fun r -> get_label r = l)

|> setmap (fun r -> distance (0, 0) (get_pos r))

|> setfold (fun acc x -> acc + weight x) 0

let predict (db : database) : label = exp_noise labels score db

Informally, score computes the score of a label by: (1) filtering the database to keep only the
points with the given label; (2) computing the distance of each point to the origin (the Euclidean
distance distance is non-expansive on elements of type Point); (3) computing the sum of the weights
of the points. Moreover, exp noise is a specialised version of the exponential mechanism presented
in [16, Equation 1] for the case s = 1 and ϵ = 1, which has type Set(Label) →1 (Label →1 Database ⊸1

Real) →1 Set(Row) ⊸1 ⃝Label.
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We can derive the following types for the above functions: score : Label →1 Database ⊸1 Real, and
predict : Set(Row) ⊸1 ⃝Label. First, by applying the tensor-elimination and arrow-introduction rules,
we can show that the helper functions get pos and get label have type Row ⊸1 Point and Row ⊸1

Bool respectively. Then we type the three anonymous functions that appear in our implementation:

• fun r -> get label r = l has type Row →1 Bool in the context [l : Label]∞;

• fun r -> distance (0, 0) (get pos r) has type Row ⊸1 Real as the Euclidean distance
distance has type Point ⊸1 Point ⊸1 Real;

• fun acc x -> acc + weight x has type Real ⊸1 Real ⊸1 Real.

This way, we show that score has the following type Label →1 Database ⊸1 Real and we can apply
the exp noise function to conclude.

In particular, by Theorem 4.1, this classification algorithm is 1-differentially private.

7 Translation Mappings

In order to better understand the relationships between Fuzz and Plurimetric Fuzz we will now investi-
gate some translations between the two systems. We consider a presentation of Fuzz with a weakening
rule (W ), rather than axioms with an arbitrary context. Moreover, we extend Plurimetric Fuzz by
adding a & type constructor to simplify the presentation. Its introduction and elimination rules are
given in Appendix B.

Let Der(Fuzz) be the set of derivations in Fuzz endowed with the following partial order: for all
derivations π of Γ ⊢ a : A and π′ of ∆ ⊢ b : B, we have π ≤ π′ iff Γ ≤ ∆ (see Definition 3.2) and
(a,A) = (b, B). Similarly, we define Der(PFuzz) for Plurimetric Fuzz.

7.1 Translation from Fuzz to Plurimetric Fuzz

For all parameters p, we define a mapping P p
type from Fuzz types to Plurimetric Fuzz types by structural

induction as follows:

P p
type(Unit) = Unit

P p
type(A⊕B) = P p

type(A)⊕ P p
type(B)

P p
type(A&B) = P p

type(A) & P p
type(B)

P p
type(A⊗B) = P p

type(A)⊗p P
p
type(B)

P p
type(A ⊸ B) = P p

type(A) ⊸p P p
type(B)

P p
type(!sA) = !s1/pP

p
type(A)

P p
type(⃝A) = ⃝P p

type(A)

P p
type(µα. A) = µα. P p

type(A)

(7)

Note that Fuzz lists are mapped to p-lists in Plurimetric Fuzz, i.e., for all typeA, we have P p
type

(
List(A)

)
=

Listp
(
P p
type(A)

)
. The distance on the latter type is given by dListp(A)(l, l

′) = p
√∑n

i=1 dA(li, l
′
i)

p if
length(l) = length(l′) = n, and ∞ otherwise.

We also define a mapping P p
ctx from Fuzz contexts to Plurimetric Fuzz precontexts by P p

ctx(∅) = ∅,
and P p

ctx(Γ, [x : A]s) = P p
ctx(Γ), [x : P p

type(A)]s1/p , and a mapping P p
der on derivations. For unary and

binary rules, we have for instance:

P
p
der

( var
[x : A]1 ⊢ x : A

)
=

var
(p) [x : Pp

type(A)]1 ⊢ x : Pp
type(A)

P
p
der


.... πa

Γ ⊢ a : A

....
πb

∆ ⊢ b : B
⊗I

Γ + ∆ ⊢ (a, b) : A ⊗ B

 =

......
Pp

der(πa)

(p) Pp
ctx(Γ) ⊢ a : Pp

type(A)

......
Pp

der(πb)

(p) Pp
ctx(∆) ⊢ b : Pp

type(B)
⊗I

(p) Cp
(
Pp

ctx(Γ);P
p
ctx(∆)

)
⊢ (a, b) : Pp

type(A) ⊗p Pp
type(B)

= W
(p) Pp

ctx(Γ + ∆) ⊢ (a, b) : Pp
type(A ⊗ B)

14



Definition 7.1. A derivable judgement Γ ⊢ e : A is said to be minimal in a (Plurimetric) Fuzz if for
all contexts ∆ such that ∆ ⊢ e : A, we have Γ ≤ ∆.

We can now prove the main result of this section, that is to say that the translation of a valid
derivation is valid (see Appendix B for a proof).

Lemma 7.1. For all precontexts Γ and ∆, sensitivities s, and parameters p, we have the following

equality: Cp
(
P p
ctx(Γ); s

1/p · P p
ctx(∆)

)
= P p

ctx(Γ + s∆).

Corollary 7.2. For all parameters p, the image by P p
der of the derivation π of a (minimal) judgement

Γ ⊢ a : A in Fuzz is a valid derivation of a (minimal) judgement (p) P p
ctx(Γ) ⊢ a : P p

type(A) in
Plurimetric Fuzz.

In particular, all examples in [23] that only use structural and logical rules can be translated to
Plurimetric Fuzz for any parameter p. This includes elementary operations on lists such as binary
and iterated concatenation, length, but also higher-order combinators such as map, foldl, foldr (see
[23, Section 3.2]). More generally, this means that the L1 sensitivity properties obtained by typing in
Fuzz for these programs can be for free transposed into Lp sensitivity properties obtained by typing in
Plurimetric Fuzz. However, Theorem 7.2 does not extend to primitive operations (the ones presented in
Figure 2), which do not behave uniformly with respect to the metric chosen on the pairs and functions.

Claim 7.3 (No miracle). We cannot soundly extend Pder to the derivations involving primitive oper-
ations such as addition on numbers.

Proof. For instance, we cannot soundly translate the following (+) rule for p = 2:

Γ ⊢ a : Real ∆ ⊢ b : Real
+

Γ +∆ ⊢ a+ b : Real

P 2
der−−−→

(2) P 2
ctx(Γ) ⊢ a : Real (2) P 2

ctx(∆) ⊢ b : Real
+

(2) P 2
ctx(Γ + ∆) ⊢ a+ b : Real

as the following function is not non-expansive: (+): R⊗2 R → R (its sensitivity is
√
2).

7.2 Translation from Plurimetric Fuzz to Fuzz

Conversely, we can define partial mappings F p
type, F

p
ctx and F p from Plurimetric Fuzz to Fuzz. We

only give the most interesting cases:

F p
type(A⊗q B) = F p

type(A)⊗ F p
type(B) if q ≤ p

F p
type(A ⊸q B) = F p

type(A) ⊸ F p
type(B) if q ≤ p

F p
type(!sA) = !spF

p
type(A)

F p
ctx([x : A]s,Γ) = [x : F p

type(A)]sp , F
p
ctx(Γ)

F p
der

( var
(q) [x : A]1 ⊢ x : A

)
=

var
[x : F p

type(A)]1 ⊢ x : F p
type(A) if q ≤ p

Lemma 7.4. For all precontexts Γ and ∆, for all sensitivities s, we have the following inequality:
spF p

ctx(Γ) + F p
ctx(∆) ≤ F p

ctx

(
Cp (Γ; s∆)

)
.

It follows from the definition above that the image F p
der(π) of a Plurimetric Fuzz derivation π is

defined iff any parameter q occurring in a judgement of π is inferior or equal to p.

Corollary 7.5. For all parameters p, if the image by the mapping F p
der of a derivation π in Plurimetric

Fuzz is defined, then it is a valid derivation in Fuzz.

Finally, we obtain the following property relating the two translations:

15



Theorem 7.6. For all parameters p, we have F p
der ◦ P

p
der = IdDer(Fuzz). In other words, the following

diagram commutes:

Der(Fuzz) Der(PFuzz)Id

Pp
der

Fp
der

8 Conclusion and Future Work

We have shown that Plurimetric Fuzz extends the Fuzz language by handling Lp distance, using the
types of Bunched Fuzz but with classical typing judgements. This system can be seen as a subsystem
of Bunched Fuzz which satisfies type safety. Among its other benefits are the facts that it includes
subtyping which relates distances Lp and Lq, and it supports recursive types. We have also investigated
translations between Plurimetric Fuzz and Fuzz.

Type checking and type inference for systems based on linear logic have been the object of several
works, e.g., [4, 1, 13]. While type checking for Fuzz is straightforward (for DFuzz [16], which is a variant
of Fuzz that incorporates dependent types, see [2]), we anticipate that type checking for Plurimetric
Fuzz will be significant more challenging to the non-linear nature of the sensitivity constraints. If
solved, it would allow us to replace Fuzz by Plurimetric Fuzz in [26], and obtain a type system for
adaptive differential privacy with respect to vector metrics.

In addition, one may work on improving the sensitivity obtained by typing in Plurimetric Fuzz.
One the one hand, we do not know whether a generalisation of the monad elimination rule to any
parameter p, which would be finer than the one presented in this paper, is sound.

Finally, the question of whether one can combine recursive types and functions with probability
distributions is still open, both in the case of Fuzz and of its extensions like Plurimetric Fuzz.
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[5] Gilles Barthe, Marco Gaboardi, Benjamin Grégoire, Justin Hsu, and Pierre-Yves Strub. Proving
differential privacy via probabilistic couplings. In Martin Grohe, Eric Koskinen, and Natarajan
Shankar, editors, Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS ’16, New York, NY, USA, July 5-8, 2016, pages 749–758. ACM, 2016. doi:

10.1145/2933575.2934554.

16

https://doi.org/10.2168/LMCS-3(4:10)2007
https://doi.org/10.1145/2746325.2746335
https://doi.org/10.1145/3009837.3009890
https://doi.org/10.1145/1836089.1836118
https://doi.org/10.1145/2933575.2934554
https://doi.org/10.1145/2933575.2934554
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Appendix

A Semantics

A.1 Proof of the Soundness of the Typing Rules

Lemma A.1. For all metric spaces X1, X2, Y1, and Y2, and parameters p, if f : X1 → Y1 and
g : X2 → Y2 are non-expansive maps, then so is f × g : X1 ⊗p X2 → Y1 ⊗p Y2.

Proof. Let (x1, x2) and (x′
1, x

′
2) be two elements of X1 ⊗p X2.

dY1⊗pY2

(
(f × g)(x1, x2), (f × g)(x′

1, x
′
2)
)
= dY1⊗pY2

(
(f(x1), g(x2)), (f(x

′
1), g(x

′
2))
)

= p

√
dY1

(
f(x1), f(x′

1)
)p

+ dY2

(
g(x2), g(x′

2)
)p

≤ p

√
dX1(x1, x′

1)
p + dX2(x2, x′

2)
p

= dX1⊗pX2

(
(x1, x2), (x

′
1, x

′
2)
)

Let us show that bind is non-expansive. We first need the following lemmata.

Lemma A.2. For all finite sequences of positive reals (xi)1≤i≤n and (yi)1≤i≤n, we have∑n
i=1 xi∑n
i=1 yi

≤ max
1≤i≤n

xi

yi
and therefore

∣∣∣∣∣ln
∑n

i=1 xi∑n
i=1 yi

∣∣∣∣∣ ≤ max
1≤i≤n

∣∣∣∣ln xi

yi

∣∣∣∣ .
Proof. Let us show the first inequality by induction on n.

• If n = 1, then the inequality becomes x1/y1 ≤ max{x1/y1} which is true.

• If n = 2, then we have∑n
i=1 xi∑n
i=1 yi

=
x1

y1 + y2
+

x2

y1 + y2

=
1

1 + y2

y1

· x1

y1
+

1

1 + y1

y2

· x2

y2
=

1
y1

1
y1

+ 1
y2

· x1

y1
+

1
y2

1
y1

+ 1
y2

· x2

y2
.

Let u =
1
y1

1
y1

+ 1
y2

and v =
1
y2

1
y1

+ 1
y2

. We have

∑n
i=1 xi∑n
i=1 yi

≤ u ·max

{
x1

y1
,
x2

y2

}
+ v ·max

{
x1

y1
,
x2

y2

}
= (u+ v) ·max

{
x1

y1
,
x2

y2

}
which is the desired inequality since u+ v = 1.

• If n ≥ 3 and if the result has been proved up to n− 1, then we write∑n
i=1 xi∑n
i=1 yi

=
x1 +

∑n
i=2 xi

y1 +
∑n

i=2 yi
≤ max

{
x1

y1
,

∑n
i=2 xi∑n
i=2 yi

}

≤ max

{
x1

y1
, max
2≤i≤n

xi

yi

}
= max

1≤i≤n

xi

yi
.

Now, let us show the second inequality. Let X = ln(
∑n

i=1 xi) and Y = ln(
∑n

i=1 yi) so that we have
X − Y = ln

(∑n
i=1 xi

)
− ln

(∑n
i=1 yi

)
= ln

(∑n
i=1 xi/

∑n
i=1 yi

)
.
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• If X ≥ Y , then |X − Y | = X − Y . Moreover, by the first inequality, we have

X − Y = ln

∑n
i=1 xi∑n
i=1 yi

≤ ln

(
max
1≤i≤n

xi

yi

)
= max

1≤i≤n

(
ln

xi

yi

)
≤ max

1≤i≤n

∣∣∣∣ln xi

yi

∣∣∣∣ .
• If X ≤ Y , then |X − Y | = Y −X, and we have

Y −X = ln

∑n
i=1 yi∑n
i=1 xi

≤ max
1≤i≤n

∣∣∣∣ln yi
xi

∣∣∣∣ = max
1≤i≤n

∣∣∣∣ln xi

yi

∣∣∣∣ .
In both cases, we get |X − Y | ≤ max1≤i≤n | ln(xi/yi)| as desired.

Lemma A.3. The following map is non-expansive:

bind : DistY ⊗1 (Y →1 DistX) −→ DistX
(µ, f) 7−→ t 7→

∑
s∈Y f(s)(t)µ(t) .

We present an elementary proof of this result (which also follows from the work of Barthe and
Olmedo [8]).

Proof. Let µ and µ′ be two distributions over Y and let f and f ′ be two maps from Y to DistX.
For all t ∈ X, we have∣∣∣∣∣ln

∑
s∈Y f(s)(t)µ(s)∑
s∈Y f ′(s)(t)µ′(s)

∣∣∣∣∣ ≤ max
s∈Y

∣∣∣∣ln f(s)(t)µ(s)

f ′(s)(t)µ′(s)

∣∣∣∣
≤ max

s∈Y

(∣∣∣∣ln µ(s)

µ′(s)

∣∣∣∣+ ∣∣∣∣ln f(s)(t)

f ′(s)(t)

∣∣∣∣
)

.

Therefore, we have

max
t∈X

∣∣∣∣∣ln
∑

s∈Y f(s)(t)µ(s)∑
s∈Y f ′(s)(t)µ′(s)

∣∣∣∣∣ ≤ max
s∈Y

∣∣∣∣ln µ(s)

µ′(s)

∣∣∣∣+max
s∈Y

max
t∈X

∣∣∣∣ln f(s)(t)

f ′(s)(t)

∣∣∣∣
which is equivalent to the desired inequality:

dDistX

(
f†(µ), f ′†(µ′)

)
≤ dDistY (µ, µ

′) + max
s∈Y

dDistX(f(s), f ′(s))

= dDistY (µ, µ
′) + dY→1DistX(f, f ′)

= dDistY⊗1(Y→1DistX)

(
(µ, f), (µ′, f ′)

)
.

A.2 Proof of the Soundness of the Rules for Primitive Operations

Lemma A.4. The following rules are sound with respect to the denotational semantics:

(p) Γ ⊢ x : A
Set

(p) ∞ · Γ ⊢ {x} : Set(A)

(p) Γ ⊢ n : Nat
SetNat

(p) 2Γ ⊢ {n} : Set(Nat)

Proof. For all set X, the sensitivity of the map x 7→ {x} is bounded by ∞. Therefore, on can soundy
introduce the following rule:

⊢ λx. {x} : !∞A ⊸1 Set(A)

which is equiderivable with the (Set) rule.
If X = N, then the map n 7→ {n} is 2-sensitive. Indeed for n and n′ in N,
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• if n = n′, then {n} = {n′} and therefore dSet(N)({n}, {n′}) = 0;

• otherwise, we have dSet(N)({n}, {n′}) = 2, and dN(n, n′) ≥ 1.

In both cases, we get the inequality dSet(N)({n}, {n′}) ≤ 2 · dN(n, n′), and for all parameters p, we can
soundly introduce the following rule:

⊢ λn. {n} : !2Nat ⊸p Set(Nat)

which is equiderivable with the (SetNat) rule.

Remark. Given a metric spaceX containing at least one limit point (such asR with the usual distance),
the map x 7→ {x} is ∞-sensitive, and the factor ∞ above is optimal.

B Translation mappings

Below are the typing rules for the & connective that we use in the translation of Fuzz to Plurimetric
Fuzz.

(p) Γ ⊢ a : A (p) Γ ⊢ b : B
&I

(p) Γ ⊢ (a, b) : A&B

(p) Γ ⊢ c : A&B
&E◁

(p) Γ ⊢ π1(c) : A

(p) Γ ⊢ c : A&B
&E▷

(p) Γ ⊢ π2(c) : B

Lemma B.1. For all precontexts Γ, sensitivities s and parameters p, we have:

• s1/p · P p
ctx(∆) = P p

ctx(s∆);

• sp · F p
ctx(∆) = F p

ctx(s∆).

Proof. By induction on the structure of ∆.

Lemma B.2. For all precontexts Γ and ∆, for all sensitivities s and parameters p, we have the

following equality: Cp
(
P p
ctx(Γ); s

1/p · P p
ctx(∆)

)
= P p

ctx(Γ + s∆).

Proof. Let us prove this equality by induction on the structure of Γ.

• If Γ = ∅, then the equality becomes s1/p · P p
ctx(∆) = P p

ctx(s∆).

• If Γ = Γ0, [x : A]r, then we write ∆ = ∆0, [x : A]t (with t being possibly zero) and we have

Cp
(
P p
ctx(Γ); s

1/p · P p
ctx(∆)

)
= Cp

(
P p
ctx(Γ0, [x : A]r); s

1/p · P p
ctx(∆0, [x : A]t)

)
= Cp

(
P p
ctx(Γ0, [x : A]r);P

p
ctx(s∆0, [x : A]st)

)
= Cp

(
P p
ctx(Γ0), [x : P p

type(A)]r1/p ;P
p
ctx(s∆0), [x : P p

type(A)](st)1/p
)

= Cp
(
P p
ctx(Γ0); s

1/p · P p
ctx(∆0)

)
, [x : P p

type(A)] p√r+st

= P p
ctx(Γ0 + s∆0), [x : P p

type(A)] p√r+st

= P p
ctx(Γ0 + s∆0, [x : A]r+st)

= P p
ctx(Γ + s∆)

as desired.

Lemma B.3. For all precontexts Γ and ∆, for all sensitivities s, for all parameters p and q such that
p ≥ q, we have the following inequality: spF p

ctx(Γ) + F p
ctx(∆) ≤ F p

ctx

(
Cq (Γ; s∆)

)
.

Proof. Let us prove this inequality by induction on the structure of Γ.

• If Γ = ∅, then the inequality becomes spF p
ctx(∆) ≤ F p

ctx(s∆).
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• If Γ = Γ0, [x : A]r, then we write ∆ = ∆0, [x : A]t (with t being possibly zero) and we have

spF p
ctx(Γ) + F p

ctx(∆) = spF p
ctx(Γ0, [x : A]r) + F p

ctx(∆0, [x : A]t)

= sp
(
F p
ctx(Γ0), [x : F p

type(A)]rp
)
+ F p

ctx(∆0), [x : F p
type(A)]tp

= spF p
ctx(Γ0) + F p

ctx(∆0), [x : F p
type(A)](rs)p+tp

≤ F p
ctx

(
Cq (Γ0; s∆0)

)
, [x : F p

type(A)](rs)p+tp

≤ F p
ctx

(
Cq (Γ0; s∆0)

)
, [x : F p

type(A)](
(rs)q+tq

)p/q
≤ F p

ctx

(
Cq (Γ0; s∆0) , [x : F p

type(A)](
(rs)q+tq

)1/q)
≤ F p

ctx

(
Cq (Γ; s∆)

)
as desired.
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