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Abstract

One of the fundamental issues in Nonlinear Model Predictive Control (NMPC) is to be able to guarantee the recursive feasibility
of the underlying receding horizon optimization. In other terms, the primary condition for a safe NMPC design is to ensure that
the closed-loop solution remains indefinitely within the feasible set of the optimization problem. This issue can be addressed by
introducing a terminal constraint described in terms of a control invariant set. However, the control invariant sets of nonlinear
systems are often impractical to use or even to construct due to their complexity. The K-step control invariant sets are representing
generalizations of the classical one-step control invariant sets and prove to retain the useful properties for MPC design, but often
with simpler representations, and thus greater applicability. In this paper, a novel NMPC scheme based on K-step control invariant
sets is proposed. We employ symbolic control techniques to compute a K-step control invariant set and build the NMPC framework
by integrating this set as a terminal constraint, thereby ensuring recursive feasibility.

Keywords: Nonlinear Model Predictive Control, Symbolic control, Safety

1. Introduction

Model predictive control (MPC) is a widely used control
strategy [1] in which the current control action is obtained by
solving, at each sampling instant, a finite horizon open-loop
control problem, using the current state of the plant as the ini-
tial state. The iterative procedure yields an optimal control se-
quence [2], and the first component in this sequence is applied
to the plant before reiterating the procedure thus obtaining a
closed-loop control formulation [3].

One of the fundamental problems in MPC is that of providing
guarantees for recursive feasibility of the receding horizon op-
timization [4]. This desideratum can be translated in terms of
a certificate that the closed-loop solutions remain indefinitely
within a safe set which in turn represents a classical notion
of positive set-invariance [5]. Recursive feasibility is classi-
cally obtained by introducing a control invariant set as terminal
constraint at the end of the prediction horizon [6]. However,
for nonlinear systems, the construction of such sets is diffi-
cult. Some approaches involve solving partial differential equa-
tions [7], or recursing to interval arithmetics [8, 9] and result in
complex set representations that are unsuitable for inclusion in
an optimization problem. For polynomial systems, control in-
variant sets can be approximated using semi-algebraic sets [10].
Other approaches constrain the control invariant set to be con-
vex [11, 12, 13], which may be a conservative assumption.

To address this issue, several research works point to relax-
ations, extensions, or alternatives to the classical control invari-
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ant set. [14, 15] impose only periodic validation of the set-
membership conditions and thus provides a relaxation with re-
spect to the classical invariance condition. A similar approach
is followed in [16, 17], where the time-invariant terminal con-
straint is replaced by a sequence of constraints which are pe-
riodically enforced. In a broader sense, cyclic invariance has
been studied for time-delay systems in [18], while [19] uses an
invariant family of sets for decentralized control and generalize
the periodic sequences of sets by dropping the order relation-
ship. In a different perspective, the integration of a less rigid
set-membership constraint within MPC has been explored in
[20]. This study incorporate inner-outer pairs of sets [21] in-
stead of classical control invariant sets, thus ensuring stability
across various control and prediction horizons. In this con-
text, the K-step control invariant sets were recently proposed
for the constrained control design [22]. The K-step control in-
variant sets ensure the existence of a control sequence such that
the system trajectory cannot leave the given set for more than
K time steps and can be linked to the K−step constructiveness
studied in early research works [23].

The first contribution of the present paper is to propose Non-
linear Model Predictive Control (NMPC) scheme based on K-
step control invariant sets. A theoretical comparison of NMPC
with control invariant sets and K-step control invariant sets is
provided to determine the equivalence of the two approaches
in terms of closed-loop behavior. From the point of view of
practical construction, a symbolic control design procedure is
employed. It leverages on the recent advancements on the com-
putation of the maximum control invariant set in this frame-
work proposed in [24, 25]. As one of the main contributions
of the present paper, it is shown that K-step control invariant
sets can be computed using a similar principles. It is worth
to be mentioned that symbolic control is a computational ap-
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proach for synthesizing controllers for general nonlinear sys-
tems with state and input constraints and thus is not suffer-
ing from the structural constraints of the classical invariant set
constructions. More precisely, the continuous dynamics of the
system are approximated using a finite-state dynamical system
called symbolic abstraction. The key advantage of symbolic
abstractions is the ability to use algorithmic techniques to syn-
thesize controllers that enforce various specifications such as
safety, reachability, attractivity, etc. [26]. The newly proposed
NMPC framework, which combines symbolic control through
the use of K-step invariant sets, capitalizes on the control per-
formance benefits offered by NMPC while ensuring safety.

The paper is structured as follows. Section II provides an
introduction to the relevant preliminary theory. Section III pro-
vides the novel NMPC scheme. Section IV outlines the way in
which the NMPC framework demonstrated in Section III can
be accomplished through offline and online computation. Fi-
nally, Section V offers a numerical example that demonstrates
the computation of K-step control invariant sets and their use in
a reference tracking problem.

2. Preliminaries

In this section, we recall some classical results on NMPC,
which will be useful for subsequent discussions.

2.1. Nonlinear model predictive control
We consider a nonlinear discrete-time system of the form:

xt+1 = f (xt, ut), t ∈ N (1)

where xt ∈ Rn is the state of the system and ut ∈ Rm is the
control input.

The constrained control problem accounts for state and input
limitations given by compact sets X ⊆ Rn and U ⊆ Rm. The
goal is to design an NMPC scheme enforcing the constraints
while optimizing some performance criteria. For that purpose,
we consider at each discrete-time instant t ∈ N the following
optimization problem parameterized by the current state vector
assumed to be measurable x ∈ X:

minu[0,N−1]
t

J(t, x0
t , u

0
t , . . . , u

N−1
t︸        ︷︷        ︸

u[0,N−1]
t

, x1
t , . . . , x

N
t︸      ︷︷      ︸

x[1,N]
t

)

s.t.

x0
t = x,

xi+1
t = f (xi

t, u
i
t), i = 0, . . . ,N − 1

ui
t ∈ U, i = 0, . . . ,N − 1

xi
t ∈ X, i = 0, . . . ,N

xN
t ∈ X0.

(2)

In this classical NMPC formulation (2), N is a positive inte-
ger defining the horizon for the evaluation of a (possibly time-
varying) performance cost function

J : R × Rn × RN×m × RN×n → R.

J(t, x0
t ,u

[0,N−1]
t , x[1,N]

t ) is parameterized by the current state x0
t

while u[0,N−1]
t and x[1,N]

t represent the optimization arguments

linked through the constraints. Finally, X0 ⊆ X is a compact set
defining terminal constraints.

The feasible set of (2), is the set of states x ∈ X such that
(2) has a feasible solution. We assume that constraints in (2)
are time-invariant, i.e. that X, U and X0 do not depend on
time t, so the feasible set does not depend on the time ei-
ther. We denote the feasible set by FX0 to emphasize its de-
pendence on the set of terminal constraints X0. For x ∈ FX0 , let
ū[0,N−1]

t =
{
ū0

t , . . . , ū
N−1
t

}
be a minimizer of (2). We assume that

a minimizer exists, even though it may not be unique. This is
the case e.g. if J(t, ·, ·, ·) and f are continuous, due to the com-
pactness of sets involved in (2). Then, we denote λX0 (t, x) the
optimal value of (2) and the control action to be effectively im-
plemented as the system input is selected as the first component
of an optimal argument, i.e. ut ∈ µX0 (t, xt), where:

µX0 (t, x) =

ū0
t ∈ U

∣∣∣∣∣∣∣ū
[0,N−1]
t =

{
ū0

t , . . . , ū
N−1
t

}
is a minimizer of (2)

 . (3)

We can establish some monotonicity properties with respect to
the terminal constraint X0 as follows.

Proposition 1. Given a set X′0, such that X0 ⊆ X′0 ⊆ X, then

• FX0 ⊆ FX′0

• For all t ∈ N, for all x ∈ FX0

λX′0 (t, x) ≤ λX0 (t, x).

Proof. These claims follow from the fact that X0 ⊆ X′0 ⊆ X
enlarges the feasible set. All the optimal solutions with terminal
constraints X0 are feasible solutions with terminal constraints
X′0.

Consider now the closed-loop system given by (1) and (2)
with

ut ∈ µX0 (t, xt). (4)

We denote by F̄X0 the recursive feasible set of (1)-(2)-(4), that
is the set of states x0 ∈ X such that xt ∈ FX0 for all t ∈ N.
Clearly, F̄X0 ⊆ FX0 . To show that the closed-loop system is
well-posed and satisfies the constraints at all time, it is impor-
tant to guarantee that F̄X0 , ∅.

2.2. Recursive feasibility using control invariant sets

Let us recall a classical result on the use of control invariant
sets as terminal constraints in (2), see e.g. [6].

Definition 1. X0 ⊆ X is a control invariant set of (1) if

∀x ∈ X0, ∃u ∈ U, f (x, u) ∈ X0.

A control invariant set X0 is said to be the maximal control
invariant set of (1) if any control invariant set is a subset of X0.

The following proposition is reminiscent from classical re-
sults (see e.g. [27, Theorem 5.4]). It is therefore stated without
proof.
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Proposition 2. If X0 ⊆ X is a control invariant set of (1) then
X0 ⊆ FX0 and F̄X0 = FX0 . Moreover, if X0 is the maximal
control invariant set, then FX0 = X0.

Control invariant sets are thus a powerful tool to enforce re-
cursive feasibility in NMPC scheme. From Proposition 1, it
follows that considering larger control invariant sets leads to
larger feasible sets and better performances. Hence, it is impor-
tant to consider a control invariant set that is as close as possible
to the maximal one. Unfortunately, for nonlinear systems with
potentially nonconvex sets of constraints, the maximal control
invariant set maybe very complex. Accurate approximations
require complex set representations (see e.g. [7, 8, 9]) and are
therefore impractical to consider in real-time optimization.

3. NMPC scheme based on K-step control invariant sets

In this section, we present an alternative NMPC scheme
based on K-step control invariant sets. We then compare the
feasibility and the performances with respect to the approach
presented in the previous section.

3.1. K-step control invariant sets
Let us consider system (1) with state and input constraints

given by X and U. Given a set T ⊆ X we define the set of
controllable predecessors of T as

CPre(T) = {x ∈ X| ∃u ∈ U, f (x, u) ∈ T} .

Then, for k ∈ N, we define CPrek(T) inductively as follows:

CPre0(T) = T, CPrek+1(T) = CPre (CPrek(T)) , k ∈ N.

Finally, for K ≥ 1, let

CPre[1:K](T) =
K⋃

k=1

CPrek(T).

Intuitively, CPre[1:K](T) denotes the set of states from which (1)
can reach the set T in K steps or less, while respecting state and
input constraints.

Definition 2. T ⊆ X is a K-step control invariant set of (1) if
T ⊆ CPre[1:K](T).

In words, T is K-step control invariant set if from any state
of T there exists a control sequence allowing to come back to T
in at most K time steps (see the weak invariance notion in [22]).

Proposition 3. Let T ⊆ X be a K-step control invariant set of
(1). Then, CPre[1:K](T) is a control invariant set of (1).

Proof. Let us consider x0 ∈ CPre[1:K](T). Then, there ex-
ists an input sequence u0, . . . , uk−1 ∈ U with k ∈ {1, . . . ,K}
such that the associated trajectory of (1), x0, x1, . . . , xk satisfies
xi ∈ X, for all i ∈ {1, . . . , k} and xk ∈ T. Then, it follows that
x1 ∈ CPrek−1(T). If k > 1, we get that x1 ∈ CPre[1:K](T). If
k = 1, then x1 ∈ T, which since T is K-step control invariant
set yields x1 ∈ CPre[1:K](T). It follows that CPre[1:K](T) is a
control invariant set of (1).

3.2. A novel NMPC scheme
We now present the NMPC scheme based on K-step control

invariant sets. We consider at all time t ∈ N the following opti-
mization problem parameterized by x ∈ X:

minu[0,N+K−1]
t

J(t, x0
t ,u

[0,N−1]
t , x[1,N]

t )

s.t.

x0
t = x,

xi+1
t = f (xi

t, u
i
t), i = 0, . . . ,N + K − 1

ui
t ∈ U, i = 0, . . . ,N + K − 1

xi
t ∈ X, i = 0, . . . ,N + K
∃k ∈ {1, . . . ,K}, xN+k

t ∈ T.

(5)

In (5), N and K are positive integers, J, X and U are the same
as in (2) and T ⊆ X is a compact set. Let us remark that while
the constraints in (5) involves the predicted behavior of (1) on
a time horizon of length N + K, the cost function only involves
the value of the input and state on the first N time steps.

We denote by FK
T the feasible set of (5), that is the set of

states x ∈ X such that (5) has a feasible solution. Note that con-
straints defined by sets X, U and T in (5) are time-invariant so
the feasible set does not depend on the time t. For x ∈ FK

T , let
ū[0,N+K−1]

t be a minimizer of (5). We assume that a minimizer
exists, even though it may not be unique. As for (2), this is
the case e.g. if J(t, ., ., .) and f are continuous, due to the com-
pactness of sets involved in (5). Then, we denote λK

T (t, x) the
optimal value of (5) and the non-empty set of optimizers:

µK
T (t, x) =

ū0
t ∈ U

∣∣∣∣∣∣∣ū
[0,N+K−1]
t =

{
ū0

t , . . . , ū
N+K−1
t

}
is a minimizer of (5)

 (6)

Consider now the closed-loop system given by (1) with

ut ∈ µ
K
T (t, xt). (7)

We denote by F̄K
T the recursive feasible set of (1)-(5)-(7), that is

the set of all states x0 ∈ X such that xt ∈ FK
T for all t ∈ N subject

to xt+1 = f (xt, ut) when ut ∈ µ
K
T (t, xt). Clearly, F̄K

T ⊆ FK
T . The

next result describes the main property of the proposed NMPC
scheme.

Theorem 1. Let T ⊆ X be a K-step control invariant set of (1).
Then,

• F̄K
T = FK

T = FCPre[1:K](T);

• For all x0 ∈ FK
T ,

µK
T (t, xt) = µCPre[1:K](T)(t, xt)

and
λK
T (t, xt) = λCPre[1:K](T)(t, xt)

for all t ∈ N.

Proof. Let x ∈ FK
T , let ū[0,N+K−1]

t be a minimizer of (5).
Then, considering the associated optimal sequence x̄[0,N+K]

t with
x̄0

t = x, it is clear from the last constraint of (5) that x̄N
t ∈

CPre[1:K](T). Hence, ū[0,N−1]
t is a feasible solution of (2) with

X0 = CPre[1:K](T).
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This implies that x ∈ FCPre[1:K](T) and that

λK
T (t, x) ≥ λCPre[1:K](T)(t, x).

Conversely, consider x ∈ FCPre[1:K](T) and let ū[0,N−1]
t be a mini-

mizer of (2) with X0 = CPre[1:K](T) and let x̄[0,N]
t with x̄0

t = x
be the associated trajectory of (1). Then, x̄N

t ∈ CPre[1:K](T)
which means that there exists an input sequence ū[N,N+k−1]

t ∈ U,
with k ∈ {1, . . . ,K} such that x̄[N,N+k]

t ∈ X and x̄N+k
t ∈ T. Since T

is a K-step controlled invariant we have that T ⊆ CPre[1:K](T).
Moreover, from Proposition 3, we have that CPre[1:K](T) is a
control invariant set of (1). If k < K, it follows that there exists
an input sequence ū[N+k,N+K−1]

t ∈ U such that

x̄[N+k+1,N+K]
t ∈ CPre[1:K](T) ⊆ X.

Hence, ū[0,N+K−1]
t is a feasible solution of (5). This implies that

x ∈ FK
T and that

λK
T (t, x) ≤ λCPre[1:K](T)(t, x).

Consequently, one can conclude that

FK
T = FCPre[1:K](T)

and that for all x ∈ FK
T , λK

T (t, x) = λCPre[1:K](T)(t, x). More-
over, it follows from above that the first N elements of the
minimizers of (5) coincide with the minimizers of (2) with
X0 = CPre[1:K](T). This yields for all

µK
T (t, x) = µCPre[1:K](T)(t, x),∀x ∈ FK

T .

Then, the closed-loop behaviors of (1)-(2)-(4) coincide with
those of (1)-(5)-(7). This yields that

F̄K
T = F̄CPre[1:K](T).

Moreover, since CPre[1:K](T) is a control invariant set of (1),
we get from Proposition 2 that

F̄CPre[1:K](T) = FCPre[1:K](T)

which together with FK
T = FCPre[1:K](T) gives F̄K

T = FK
T .

The previous result shows the equivalence in term of closed-
loop behaviors, between NMPC scheme (1)-(5)-(7) and (1)-(2)-
(4) with X0 = CPre[1:K](T). It also implies the following result:

Corollary 1. Let X0 ⊆ X be a control invariant set of (1), let
us consider T ⊆ X0 such that X0 ⊆ CPre[1:K](T). Then,

• F̄K
T = FK

T and FX0 ⊆ FK
T ;

• For all x0 ∈ FX0 , λK,T(t, xt) ≤ λX0 (t, xt),∀t ∈ N.

Proof. Since T ⊆ X0 ⊆ X and X0 ⊆ CPre[1:K](T), it follows
that T is a K-step control invariant set. Then, we get from The-
orem 1 that

F̄K
T = FK

T = FCPre[1:K](T)

and for all t ∈ N, for all x ∈ FK
T , λK

T (t, x) = λCPre[1:K](T)(t, x).
Then, X0 ⊆ CPre[1:K](T) gives from Proposition 1 that

FX0 ⊆ FCPre[1:K](T)

and for all t ∈ N, for all x ∈ FX0 , λCPre[1:K](T)(t, x) ≤ λX0 (t, x).
From above, it follows that

FX0 ⊆ FK
T

and for all t ∈ N and x ∈ FX0 , λK
T (t, x) ≤ λX0 (t, x).

In this section, we have compared the properties of the es-
tablished NMPC schemes based on control invariant sets and
those of the novel MPC scheme based on K-step control in-
variant sets. Corollary 1 indicates that the approach based on
K-step control invariant sets can lead to larger recursive feasi-
ble sets and to better performances than an approach based on
classical 1−step control invariant sets. This discussion rejoins
the analysis in [21] on the inner-outer approximation of robust
control invariant sets.

4. Algorithms for effective implementation

In this section, we discuss the computational aspects of the
NMPC scheme based on K-step control invariant sets. Firstly,
we focus on offline computations and describe a method to
compute K-steps control invariant sets using symbolic control
techniques. Secondly, we discuss the online computation as-
pects and we describe a method to initialize the optimization
problem (5) with a feasible solution.

4.1. Offline computation

This subsection describes the offline computational part re-
quired to apply the framework introduced in the previous sec-
tion. This includes the use of symbolic control to compute the
K-step control invariant set and symbolic controllers that will
be used in online computations. First, we briefly recall the sym-
bolic control technique (see e.g. [24, 25] for more details).

4.1.1. Symbolic control
Symbolic control involves discretizing the state space and the

control input, representing the set of states as a finite number of
symbols that transition between each other under the influence
of control input. The first step involves constructing the sym-
bolic system dynamics of (1). Let us consider:

• A finite partition (Xq)q∈Q of Rn such that Q = QX ∪ {qout}

and ⋃
q∈QX

Xq ⊆ X

where {qout} is the complement set of QX which represents
the set of unsafe symbolic states.

• A finite number of samples (up)p∈P providing a finite sub-
set of U.

The symbolic model is described by the dynamics:

qt+1 ∈ F(qt, pt), qt ∈ Q, pt ∈ P (8)
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where Q and P are the finite sets of symbolic states and inputs;
F : Q × P→ 2Q is the set-valued transition map defined by

q+ ∈ F(q, p) ⇐⇒ Xq+ ∩ f̂ (Xq, up) , ∅

where f̂ is an over-approximation of f ensuring:

f (Xq, up) ⊆ f̂ (Xq, up), ∀q ∈ Q, p ∈ P.

Such over-approximations can be computed efficiently using
for instance interval reachability analysis (see [28]). For
each symbolic state q and input p, we compute the over-
approximation of the successor of Xq under the influence of
each input up using system dynamics. One can show that the
dynamics of (8) is an over-approximation of that of (1), so con-
trol invariant sets and K-step control invariant sets of (1) can be
obtained from those of (8), see e.g. [26].

In order to compute K-step control invariant sets of (8), we
need to first compute its control invariant set.

4.1.2. Computation of control invariant set
Let us remark that (8) has finite sets of states and inputs.

Then, its maximal control invariant set can be easily computed
using a fixed-point algorithm [24], where starting from the set
QX, we iteratively remove the states from which we cannot keep
the system state in QX. Then, since the dynamics of (8) is an
over-approximation of that of (1), the maximal control invariant
set of (8) provides a control invariant set of (1).

4.1.3. Computation of K-step control invariant sets
Once we obtain the maximum control invariant set, our next

step is to select a subset as large as possible as a candidate for
the K-step control invariant set. Choosing a K-step control in-
variant set with a simple shape will facilitate its integration into
the NMPC framework. Therefore, one can choose a hyperrect-
angle inside the control invariant set that is as large as possible1

and denote it as T. Using symbolic control, the set CPre[1:K](T)
can be effectively computed. Further, a progressive increase of
the value of K is considered up to the validation of the relation-
ship in Definition 2: T ⊆ CPre[1:K](T), which allows to certify
that T is a K-step control invariant set.

4.1.4. Computation of symbolic controllers
As with most complex optimization problems, initial values

have a considerable impact on the results in (5). Therefore we
would like to provide the optimization problem with an initial
value that satisfies the constraints at each moment, and allow
the iterative procedure to focus on its improvement. One needs

1A measure for the enlargement needs to be defined and the largest candi-
date may not be unique thus providing degrees of freedom for the design. We
don’t dwell here on this aspect and simply assume the largest hyperrectagle has
been selected by enlarging each direction sequentially.

to compute the following controllers offline using a symbolic
approach:

Ci : Q→ U, such that
∀x ∈ CPrei(T), F(q,Ci(q(x))) ∈ CPrei−1(T)
i ∈ [1,K]
C∗ : Q→ U, such that
∀x ∈ CPre[1:K](T), F(q,C∗(q(x))) ∈ CPre[1:K](T)

(9)

where q(x) denote the symbolic state q ∈ Q such that x ∈ Xq.
Without entering into algorithmic details, is worth metioning
that both controllers can be obtained while computing the K-
step control invariant sets. Generally there is freedom in the de-
sign of such symbolic controllers that satisfy the above require-
ments (depending on the number of control symbols and the
structure of the dynamics). No particular criterion is imposed
here, a random choice or ad hoc criteria can be employed.

4.2. Online computation

This section presents the online computational part of NMPC
based on the K-step control invariant sets.

4.2.1. Solving optimization problem (5)
If we denote problem (5) asO(t, xt) we can define a collection

of simpler2 optimization problems Ok(t, xt), k ∈ {1, . . . ,K}:

minu[0,N+K−1]
t

J(t, x0
t ,u

[0,N−1]
t , x[1,N]

t )

s.t.

x0
t = x,

xi+1
t = f (xi

t, u
i
t), i = 0, . . . ,N + K − 1

ui
t ∈ U, i = 0, . . . ,N + K − 1

xi
t ∈ X, i = 0, . . . ,N + K

xN+k
t ∈ T.

(10)

Figure 1 illustrates the fact that solving these K optimization
problems online can be done either sequentially or concur-
rently. Then, we select the index k that minimizes the costs
λk
T(t, xt) and we return the first component of the sequence of

inputs corresponding to the minimizer.

Figure 1: Practical implementation of (5)

2Simpler is understood here in terms of terminal constraints.
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Algorithm 1: Initialization for t=0
Input : x0 s.t. x0 ∈ CPre[1:K](T) ⊆ X
Output: Feasible control sequence at time 0: û[0,N+K−1]

0
// Initialize û[0,N−1]

0
1 x̂0

0 ← x0;
2 for j← 1 to N do
3 û j−1

0 ← C∗(q(x̂ j−1
0 ));

4 x̂ j
0 ← f (x̂ j−1

0 , û
j−1
0 );

// Initialize û[N,N+ī−1]
0

// We have x̂N+ī
0 ∈ T, ī is the minimal step to

reach T
5 ī← min{i|x̂N

0 ∈ CPrei(T)};
6 for i← 1 to ī do
7 ûN+i−1

0 ← Cī−i+1(x̂N+i−1
0 );

8 x̂N+i
0 ← f (x̂N+i−1

0 , ûN+i−1
0 );

// Initialize û[N+ī,N+K−1]
0

9 for j← N + ī to N + K − 1 do
10 û j

0 ← C∗(q(x̂ j
0));

11 x̂ j+1
0 ← f (x̂ j

0, û
j
0);

4.2.2. Initialization strategy for NMPC
For nonlinear optimization solvers to be successful, it is often

required to provide a feasible initial point on which the solver
can improve. The following proposition shows how this can be
done using the symbolic controllers computed offline.

Proposition 4. Given an initial position x0 located within the
set CPre[1:K](T), an initial control sequence for the optimiza-
tion problem that ensures constraint satisfaction can be com-
puted at time 0 using Algorithm 1, and at time t ≥ 1 using
Algorithm 2.

Proof. For t = 0, q(x0) is the initial symbolic state, and the
associated control û0

0 = C∗(q(x0)). According to the definition
of the controller C∗, we have û0

0 ∈ U, and x̂1
0 = f (x0, û0

0) ∈
CPre[1:K](T). In the same way one can calculate û[1,N−1]

0 , and
all states in x̂[1:N]

0 ∈ CPre[1:K](T). Then the minimum number
of steps to reach the set T : ī = min{i|x̂N

0 ∈ CPrei(T)} ∈ [1,K]
is available and ûN

0 = Cī(q(x̂N
0 ). According to the definition

of controller Ci, we have ûN
0 ∈ U and x̂N+1

0 = f (x̂N
0 , û

N
0 ) ∈

CPreī−1(T). By iteratively employing these controllers, we can
obtain the control sequence û[N,N+ī−1]

0 and we can ensure that
the set T can be reached at x̂N+ī

0 . Since T ⊆ CPre[1:K](T) the
available control C∗ is used to fill in the sequence û[N+ī,N+K−1]

0 .
For any instant t ≥ 1, we have the solution of the optimiza-

tion problem at instant t − 1, which yields a control sequence
u[0,N+K−1]

t−1 ∈ U, the corresponding states x[0,N+K]
t−1 ∈ X and the

state xN+k
t−1 ∈ T. We let û[0,N+k−2]

t = u1,N+k−1
t−1 then we can get

x̂N+k−1
t ∈ T with k ∈ [1,K]. If k is equal to 1, one can find

ĩ = min{i|x̂N
t ∈ CPrei(T)} ∈ [1,K] then use the previous method

to calculate the control sequence û[N,N+K−1]
t . If k is not equal to

Algorithm 2: Initialization at any t ≥ 1

Input : u[0,N+K−1]
t−1 , x[0,N+K]

t−1 , with xN+k
t−1 ∈ T

Output: Feasible control sequence at time t: û[0,N+K−1]
t

1 û[0,N+k−2]
t ← u[1,N+k−1]

t−1 ;
// x̂N+k−1

t = xN+k
t−1

2 if k , 1 then
3 for j← N + k − 1 to N + K − 1 do
4 û j

t ← C∗(q(x̂ j
t ));

5 x̂ j+1
t ← f (x̂ j

t , û
j
t );

6 else
// if k = 1 it means that x̂N

t ∈ T
7 ī← min{i|x̂N

t ∈ CPrei(T)};
8 for i← 1 to ī do
9 ûN+i−1

t ← Cī−i+1(q(x̂N+i−1
t ));

10 x̂N+i
t ← f (x̂N+i−1

t , ûN+i−1
t );

11 for j← N + ī to N + K − 1 do
12 û j

t ← C∗(q(x̂ j
t ));

13 x̂ j+1
t ← f (x̂ j

t , û
j
t );

1, one can calculate û[N+k−1,N+K−1]
t with the controller C∗. Such

initial control sequence obtained at time t will satisfy all the
constraints.

5. Numerical example

Consider a mobile cart model as a numerical example, simi-
lar to [29]. The state vector x ∈ R3 and the control input vector
u ∈ R2. The system dynamics are given as:

x1(t + 1) = x1(t) + u1(t) cos(x3(t))
x2(t + 1) = x2(t) + u1(t) sin(x3(t))
x3(t + 1) = x3(t) + u2(t) (mod2π)

(11)

The model describes the behavior of a mobile cart with (x1, x2)
representing the 2D Cartesian coordinates in meters. x3 repre-
sents the angular orientation of the velocity vector with respect
to the x1 axis in radians, u1 is the linear velocity in m/s, and
u2 is the angular velocity in rad/s. Note that by convention, we
consider the angle x3 ∈ [−π, π). The system is subjected to state
and control input constraints:

X =
(x1, x2)T ∈ R2

∣∣∣∣∣∣∣ x2
1 − x2

2 ≤ 4

4x2
2 − x2

1 ≤ 16

 (12)

U = [0.2, 2] × [−1, 1]. (13)

Figure 2a illustrates the approximation of the maximal con-
trol invariant set computed using symbolic techniques. Its con-
struction procedure used a symbolic model with 109,200 sym-
bolic states and 40 symbolic inputs. The computation time is
about 2 minutes with a PC 1.4 GHz Intel Core i5. This control
invariant set has a relatively complex shape and is obviously not
suitable for direct use as terminal constraint in nonlinear MPC
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(a) (b)

Figure 2: On the left is the approximation of the maximal control invariant set
computed using symbolic control, on the right is the stretching method, the
direction of stretching is in order 1-6.

design according to the framework (2). Aside the fact that the
control invariant set is highly nonlinear and thus impacts the
real-time optimization performances, it should be noted that the
symbolic procedure represents it in terms of a large union of
convex sets.

Figure 2b shows that a large hyperrectangle can be found
inside the maximum control invariant set. Its practical con-
struction follow an intuitive procedure, starting with a small
rectangle and stretching it in different directions. We use
[xl, xu], the coordinates of the minimal and maximal vertices
to represent this hyperrectangle. In this 3 dimensional case
xl = [−1.3;−1.3;−π], xu = [1.3; 1.4; π].

Once we have identified this large hyperrectangle candidate
for K-step control invariance, we can proceed to find its corre-
sponding index K. In Figure 3, we show that T ⊆ CPre[1:K](T)
is obtained when K = 5, 6 and 7. When K = 7, CPre[1:7](T)
is identical to the control invariant set shown in Figure 2a.
This numerical certification of K-step control invariance was
obtained in 14s on the same PC, an attractive off-line computa-
tion time given the complexity of the maximal control invariant
set. We will use the minimum value of K by default in the fol-
lowing.

For the optimization problem (5), the prediction horizon was
chosen to be N = 20, the penalty terms for position and control
input were set to 100 and 1, respectively. Px[0,N]

t is the projec-
tion of x[0,N]

t on the first two coordinates (x1, x2), xre f ∈ R2 is
the reference point. With the previously computed hyperrect-
angle [xl, xu], we have the following optimization problem :

minu[0,N+K−1]
t

100∥Px[0,N]
t − xre f ∥

2 + ∥u[0,N−1]
t ∥2

s.t.

x0
t = x,

xi+1
t = f (xi

t, u
i
t), i = 0, . . . ,N + K − 1

ui
t ∈ U, i = 0, . . . ,N + K − 1

xi
t ∈ X, i = 0, . . . ,N + K
∃k ∈ {1, . . . ,K}, xN+k

t ∈ [xl, xu].

(14)

Figure 4 presents a comparison between NMPC without ter-
minal constraints and NMPC based on K-step control invariant
sets.

Figure 3: The evolution of the set CPre[1:K] (red parts) with K is depicted in the
figure, where K = 0, 1, 2, ...7. By the fifth iteration step, the hyperrectangle is
completely contained in the computed states, and by the seventh iteration step,
the computed states are identical to the maximum control invariant set.

A reference point for the position xre f = (0.5, 0.5) is consid-
ered in a first case, the third component (orientation) not being
penalized in the cost index. One can observe that the two meth-
ods exhibit equivalent performance. It should be noted that the
optimal trajectory after transitory should be a circle around the
reference point (due to speed constraints u1 ≥ 0.2m/s). The
closed loop may however not reach such a behaviour when the
receding optimization problem is initialized with an arbitrary
control sequence, due to convergence to a local minimum.
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(a) xre f = (0.5, 0.5) (b) xre f = (
√

32/3,
√

20/3)

(c) xre f = (0.5, 0.5) (d) xre f = (
√

32/3,
√

20/3)

Figure 4: Trajectory of moving carts. The upper two figures show the NMPC approach without terminal constraints and the two figures below show the NMPC
using a K-step control invariant set (K=5) as terminal constraint.

Using the symbolic control-based initialization method de-
scribed in the previous section, the trajectories in Figure 4(c)
are obtained with same performances of a costly NMPC formu-
lation (2), see trajectories in Figure 4(a).

For the reference xre f = (
√

32/3,
√

32/3), the NMPC with-
out terminal constraints fails in the tracking process of target
point which is located at the corner point, see Figure 4(b). In-
deed, the optimization problem became infeasible at time in-
stant t = 13. In comparison, the NMPC strategy based on the
K-step control invariant set enables the cart to move continu-
ously without encountering safety issues, thus confirming the
recursive feasibility properties.

The time evolution of the state and inputs signals for the po-
sition trajectories depicted in Figure 4(d) are represented in Fig-
ure 5.

6. Conclusion

Ensuring the recursive feasibility of MPC is a widely dis-
cussed challenge and this paper offers a novel perspective to
address this issue. By further developing computational meth-
ods based on symbolic control, we effectively compute the K-
step control invariant sets and utilize them as constraints within

the NMPC framework. This approach, which is straightforward
and easy to implement, was shown to achieve promising results.
The approach can be extended to solve path planning problems

Figure 5: Evolution of system’s states and control inputs for (d) in Figure 4
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in complex environments. From the theoretical point of view,
the robust K−step invariance and its used in MPC deserves fur-
ther attention.
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