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Nonlinear Model Predictive Control based on
K-step Control Invariant Sets

Zhixin Zhao1, Antoine Girard1, Sorin Olaru1

Abstract— One of the fundamental issues in Model Predictive
Control (MPC) is to be able to guarantee the recursive feasi-
bility of the underlying receding horizon optimization. In other
terms, the primary condition for a NMPC design is to ensure the
closed-loop solution remains indefinitely within a safe set. This
issue can be addressed by introducing a terminal constraint
described in terms of a control invariant set. However, the
control invariant sets of nonlinear systems are often impractical
to use due to their complexity. The K-step control invariant sets
are representing generalizations of the classical one-step control
invariant sets and prove to retain the useful properties for MPC
design, but often with simpler representations, and thus greater
applicability. In this paper, a novel NMPC scheme based on
K-step control invariant sets is proposed. We employ symbolic
control techniques to compute a K-step control invariant set
and build the NMPC framework by integrating this set as a
terminal constraint, thereby ensuring recursive feasibility.

I. INTRODUCTION

Model predictive control (MPC) is a widely used control
strategy [5] in which the current control action is obtained
by solving, at each sampling instant, a finite horizon open-
loop control problem, using the current state of the plant
as the initial state. The iterative procedure yields an optimal
control sequence [9], and the first component in this sequence
is applied to the plant before reiterating the procedure thus
obtaining a closed-loop control formulation [13].

One of the fundamental problems in MPC is the lack of
guarantee for recursive feasibility for the receding horizon
optimization [10]. This desideratum can be translated in
terms of a certificate that the closed-loop solutions remain
indefinitely within a safe set which in turn represents a classi-
cal notion of positive set-invariance [3]. Recursive feasibility
is classically obtained by introducing a control invariant set
as the terminal constraint at the end of the prediction horizon
[14]. However, the construction and practical use of such sets
is difficult, especially for the nonlinear case, leading either
to computationally involving procedures or to complex set
representations [4], [7], [12], [15].

In this context, the K-step control invariant sets were
recently proposed for the constrained control design [17].
The K-step control invariant sets represent a generalization
of the control invariant set by the fact that they employ
a finite sequence of sets for monitoring the inclusion of
trajectories or in a broad sens a inner-outer counterpart
for the classical 1−step forward invariance [6]. The K-
step control invariant sets ensure the existence of a control
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sequence such that the system trajectory cannot leave the
given set for more than K time steps and can be linked to
the K−step constructiveness studied in early research works
[1].

The first contribution of the present paper is to propose
an NMPC scheme based on K-step control invariant sets. A
theoretical comparison of NMPC with control invariant sets
and K-step control invariant sets is provided to determine the
equivalence of the two approaches in terms of closed-loop
behavior.

From the point of view of practical construction, a sym-
bolic control design procedure is employed. It leverages
on the recent advancements on the computation of the
maximum control invariant set in this framework proposed
in [16], [18]. As one of the main contributions of the
present paper, it is shown that K-step control invariant sets
can be computed using a similar principles. It is worth
to be mentioned that symbolic control is a computational
approach for synthesizing controllers for general nonlinear
systems with state and input constraints and thus is not
suffering from the structural constraints of the classical
invaraint set constructions. More precisely, the continuous
dynamics of the system are approximated using a finite-
state dynamical system called symbolic abstraction. The
key advantage of symbolic abstractions is the ability to use
algorithmic techniques to synthesize controllers that enforce
various specifications such as safety and reachability [8].

The newly proposed NMPC framework, which combines
symbolic control through the use of K-step invariant sets,
capitalizes on the control performance benefits offered by
NMPC while ensuring safety.

The paper is structured as follows. Section II provides
an introduction to the relevant preliminary theory. Section
III provides the novel NMPC scheme. Section IV outlines
the way in which the NMPC framework demonstrated in
Section III can be accomplished through offline and online
computation. Finally, Section V offers a numerical example
that demonstrates the computation of K-step control invari-
ant sets and a reference tracking problem.

II. PRELIMINARIES

In this section, we recall some classical results on non-
linear model predictive control, which will be useful for
subsequent discussions.

A. Nonlinear model predictive control

We consider a nonlinear discrete-time system of the form:

xt+1 = f(xt, ut), t ∈ N (1)



where xt ∈ Rn is the state of the system and ut ∈ Rm is
the control input.

The constrained control problem accounts for state and in-
put limitations given by compact sets X ⊆ Rn and U ⊆ Rm.
The goal is to design a nonlinear model predictive control
(NMPC) scheme enforcing the constraints while optimizing
some performance criteria. For that purpose, we consider at
each discrete-time instant t ∈ N the following optimization
problem parameterized by the current state vector assumed
to be measurable x ∈ X:

min
u

[0,N−1]
t

J(t, x0
t , u

0
t , . . . , u

N−1
t︸ ︷︷ ︸

u
[0,N−1]
t

, x1
t , . . . , x

N
t︸ ︷︷ ︸

x
[1,N]
t

)

s.t.

x0
t = x,

xi+1
t = f(xi

t, u
i
t), i = 0, . . . , N − 1

ui
t ∈ U, i = 0, . . . , N − 1

xi
t ∈ X, i = 0, . . . , N

xN
t ∈ X0.

(2)
In this classical NMPC formulation (2), N is a positive

integer defining the horizon for the evaluation of a (possibly
time-varying) performance cost function

J : R× Rn × RN×m × RN×n → R.

J(t, x0
t ,u

[0,N−1]
t ,x

[1,N ]
t ) is parameterized by the current

state x0
t while u

[0,N−1]
t and x

[1,N ]
t represent the optimization

arguments linked through the constriants. Finally, X0 ⊆ X is
a compact set defining terminal constraints.

The feasible set of (2), is the set of states x ∈ X such
that (2) has a feasible solution. Note that constraints in (2)
are time-invariant so the feasible set does not depend on
the time t. We denote the feasible set by FX0

to emphasize
its dependence on the set of terminal constraints X0. For
x ∈ FX0

, let ū
[0,N−1]
t =

{
ū0
t , . . . , ū

N−1
t

}
be a minimizer

of (2). We assume that a minimizer exists, even though it
may not be unique. This is the case e.g. if J(t, ., ., .) and
f are continuous, due to the compactness of sets involved
in (2). Then, we denote λX0

(t, x) the optimal value of (2)
and the control action to be effectively implemented as the
system input is selected as the first component of an optimal
argument, i.e. ut ∈ µX0

(t, xt), where:

µX0
(t, x) =

{
ū0
t ∈ U

∣∣∣∣∣ū[0,N−1]
t =

{
ū0
t , . . . , ū

N−1
t

}
is a minimizer of (2)

}
(3)

Clearly the following claim holds:
Proposition 1: Let us consider X0 ⊆ X′

0 ⊆ X, then
• FX0

⊆ FX′
0
;

• For all t ∈ N, for all x ∈ FX0
,

λX′
0
(t, x) ≤ λX0(t, x).

Proof: These claims follow from the fact that X0 ⊆
X′

0 ⊆ X enlarges the feasible set. All the optimal solutions
with terminal constriants X0 are feasible solutions with
terminal constraints X′

0.

Consider now the closed-loop system given by (1) and (2)
with

ut ∈ µX0
(t, xt). (4)

We denote by F̄X0
the recursive feasible set of (1)-(2)-(4),

that is the set of states x0 ∈ X such that xt ∈ FX0
for all

t ∈ N. Clearly, F̄X0 ⊆ FX0 . To show that the closed-loop
system is well-posed and satisfies the constraints at all time,
it is important to guarantee that F̄X0

̸= ∅.

B. Recursive feasibility using control invariant sets

Let us recall a classical result on the use of control
invariant sets as terminal constraints in (2), see e.g. [14].

Definition 1: X0 ⊆ X is a control invariant set of (1) if

∀x ∈ X0, ∃u ∈ U, f(x, u) ∈ X0.

A control invariant set X0 is said to be the maximal control
invariant set of (1) if any control invariant set is a subset of
X0.

The following proposition is reminiscent from classical
results (see e.g. [11, Theorem 5.4]). It is therefore stated
without proof:

Proposition 2: If X0 ⊆ X is a control invariant set of (1)
then X0 ⊆ FX0

and F̄X0
= FX0

. Moreover, if X0 is the
maximal control invariant set, then FX0

= X0.
Control invariant sets are thus a powerful tool to enforce

recursive feasibility in NMPC scheme. From Proposition 1,
it follows that considering larger control invariant sets leads
to larger feasible sets and better performances. Hence, it is
important to consider a control invariant set that is as close
as possible to the maximal one. Unfortunately, for nonlinear
systems with potentially nonconvex sets of constraints, the
maximal control invariant set maybe very complex. Accurate
approximations require complex representations (see e.g; [4],
[7], [12], [15]) and are therefore impractical to consider in
real-time optimization.

III. AN NMPC SCHEME BASED ON K-STEP
CONTROL INVARIANT SETS

In this section, we present an alternative NMPC scheme
based on K-step control invariant sets. We then compare the
feasibility and the performances with respect to the approach
presented in the previous section.

A. K-step control invariant sets

Let us consider system (1) with state and input constraints
given by X and U. Given a set T ⊆ X we define the set of
controllable predecessors of T as

CPre(T) = {x ∈ X| ∃u ∈ U, f(x, u) ∈ T} .

Then, for k ∈ N, we define CPrek(T) inductively as follows:

CPre0(T) = T, CPrek+1(T) = CPre (CPrek(T)) , k ∈ N.

Finally, for K ≥ 1, let

CPre[1:K](T) =
K⋃

k=1

CPrek(T).



Intuitively, CPre[1:K](T) denotes the set of states from
which (1) can reach the set T in K steps or less, while
respecting state and input constraints.

Definition 2: T ⊆ X is a K-step control invariant set
of (1) if T ⊆ CPre[1:K](T).

In words, T is K-step control invariant set if from any
state of T there exists a control sequence allowing to come
back to T in at most K time steps.

Proposition 3: Let T ⊆ X be a K-step control invariant
set of (1). Then, CPre[1:K](T) is a control invariant set of (1).

Proof: Let us consider x0 ∈ CPre[1:K](T). Then,
there exists an input sequence u0, . . . , uk−1 ∈ U with
k ∈ {1, . . . ,K} such that the associated trajectory of (1),
x0, x1, . . . , xk satisfies xi ∈ X, for all i ∈ {1, . . . , k}
and xk ∈ T. Then, it follows that x1 ∈ CPrek−1(T). If
k > 1, we get that x1 ∈ CPre[1:K](T). If k = 1, then
x1 ∈ T, which since T is K-step control invariant set yields
x1 ∈ CPre[1:K](T). It follows that CPre[1:K](T) is a control
invariant set of (1).

B. A novel NMPC scheme

We now present the NMPC scheme based on K-step
control invariant sets. We consider at all time t ∈ N the
following optimization problem parameterized by x ∈ X:

min
u

[0,N+K−1]
t

J(t, x0
t ,u

[0,N−1]
t ,x

[1,N ]
t )

s.t.

x0
t = x,

xi+1
t = f(xi

t, u
i
t), i = 0, . . . , N +K − 1

ui
t ∈ U, i = 0, . . . , N +K − 1

xi
t ∈ X, i = 0, . . . , N +K

∃k ∈ {1, . . . ,K}, xN+k
t ∈ T.

(5)

In (5), N and K are positive integers, J , X and U are the
same as in (2) and T ⊆ X is a compact set. Let us remark that
while the constraints in (5) involves the predicted behavior
of (1) on a time horizon of length N +K, the cost function
only involves the value of the input and state on the first N
time steps.

We denote by FK
T the feasible set of (5), that is the set of

states x ∈ X such that (5) has a feasible solution. Note that
constraints in (5) are time-invariant so the feasible set does
not depend on the time t. For x ∈ FK

T , let ū[0,N+K−1]
t be a

minimizer of (5). We assume that a minimizer exists, even
though it may not be unique. As for (2), this is the case e.g.
if J(t, ., ., .) and f are continuous, due to the compactness of
sets involved in (5). Then, we denote λK

T (t, x) the optimal
value of (5) and the non-empty set of optimizers:

µK
T (t, x) =

{
ū0
t ∈ U

∣∣∣∣∣ū[0,N+K−1]
t =

{
ū0
t , . . . , ū

N+K−1
t

}
is a minimizer of (5)

}
(6)

Consider now the closed-loop system given by (1) with

ut ∈ µK
T (t, xt). (7)

We denote by F̄K
T the recursive feasible set of (1)-(5)-(7), that

is the set of all states x0 ∈ X such that xt ∈ FK
T for all t ∈ N

subject to xt+1 = f(xt, ut) when ut ∈ µK
T (t, xt). Clearly,

F̄K
T ⊆ FK

T . The next result describes the main property of
the proposed NMPC scheme.

Theorem 1: Let T ⊆ X be a K-step control invariant set
of (1). Then,

• F̄K
T = FK

T = FCPre[1:K](T);
• For all x0 ∈ FK

T ,

µK
T (t, xt) = µCPre[1:K](T)(t, xt)

and
λK
T (t, xt) = λCPre[1:K](T)(t, xt)

for all t ∈ N.
Proof: Let x ∈ FK

T , let ū
[0,N+K−1]
t be a minimizer

of (5). Then, considering the associated optimal sequence
x̄
[0,N+K]
t with x̄0

t = x, it is clear from the last constraint of
(5) that x̄N

t ∈ CPre[1:K](T). Hence, ū[0,N−1]
t is a feasible

solution of (2) with

X0 = CPre[1:K](T).

This implies that x ∈ FCPre[1:K](T) and that

λK
T (t, x) ≥ λCPre[1:K](T)(t, x).

Conversely, consider x ∈ FCPre[1:K](T) and let ū[0,N−1]
t be a

minimizer of (2) with X0 = CPre[1:K](T) and let x̄
[0,N ]
t

with x̄0
t = x be the associated trajectory of (1). Then,

x̄N
t ∈ CPre[1:K](T) which means that there exists an input

sequence ū
[N,N+k−1]
t ∈ U, with k ∈ {1, . . . ,K} such that

x̄
[N,N+k]
t ∈ X

and x̄N+k
t ∈ T. Since T is a K-step controlled invariant we

have that T ⊆ CPre[1:K](T). Moreover, from Proposition 3,
we have that CPre[1:K](T) is a control invariant set of (1).
If k < K, it follows that there exists an input sequence
ū
[N+k,N+K−1]
t ∈ U such that

x̄
[N+k+1,N+K]
t ∈ CPre[1:K](T) ⊆ X.

Hence, ū[0,N+K−1]
t is a feasible solution of (5). This implies

that x ∈ FK
T and that

λK
T (t, x) ≤ λCPre[1:K](T)(t, x).

Consequently, one can conclude that

FK
T = FCPre[1:K](T)

and that for all x ∈ FK
T , λK

T (t, x) = λCPre[1:K](T)(t, x).
Moreover, it follows from above that the first N elements
of the minimizers of (5) coincide with the minimizers of (2)
with X0 = CPre[1:K](T). This yields for all

µK
T (t, x) = µCPre[1:K](T)(t, x),∀x ∈ FK

T .

Then, the closed-loop behaviors of (1)-(2)-(4) coincide
with those of (1)-(5)-(7). This yields that

F̄K
T = F̄CPre[1:K](T).



Moreover, since CPre[1:K](T) is a control invariant set of
(1), we get from Proposition 2 that

F̄CPre[1:K](T) = FCPre[1:K](T)

which together with FK
T = FCPre[1:K](T) gives F̄K

T = FK
T .

The previous result shows the equivalence in term of
closed-loop behaviors, between NMPC scheme (1)-(5)-(7)
and (1)-(2)-(4) with X0 = CPre[1:K](T). It also implies the
following result:

Corollary 1: Let X0 ⊆ X be a control invariant set of (1),
let us consider T ⊆ X0 such that X0 ⊆ CPre[1:K](T). Then,

• F̄K
T = FK

T and FX0
⊆ FK

T ;
• For all x0 ∈ FX0 , λK,T(t, xt) ≤ λX0(t, xt),∀t ∈ N.

Proof: Since T ⊆ X0 ⊆ X and X0 ⊆ CPre[1:K](T),
it follows that T is a K-step control invariant set. Then, we
get from Theorem 1 that

F̄K
T = FK

T = FCPre[1:K](T)

and for all t ∈ N, for all x ∈ FK
T , λK

T (t, x) =
λCPre[1:K](T)(t, x). Then, X0 ⊆ CPre[1:K](T) gives from
Claim 1 that

FX0
⊆ FCPre[1:K](T)

and for all t ∈ N, for all x ∈ FX0 , λCPre[1:K](T)(t, x) ≤
λX0

(t, x). From above, it follows that

FX0 ⊆ FK
T

and for all t ∈ N and x ∈ FX0
, λK

T (t, x) ≤ λX0
(t, x).

In this section, we have compared NMPC schemes based
on control invariant sets and on K-step control invariant
sets. Corollary 1 that the approach based on K-step control
invariant sets can lead to larger recursive feasible sets and
to better performances than an approach based on classical
1−step control invariant sets. This discussion rejoins the
analysis [6] on the inner-outer approximation of robust
control invariant sets.

IV. ALGORITHMS FOR EFFECTIVE IMPLEMENTATION

In this section, we discuss the computational aspects of
the NMPC scheme based on K-step control invariant sets.
Firstly, we focus on offline computations and describe a
method to compute K-steps control invariant sets using
symbolic control techniques. Secondly, we discuss the online
computation aspects and we describe a method to initialize
the optimization problem (5) with a feasible solution.

A. Offline computation

This subsection describes the offline computational part
required to apply the framework introduced in the previous
section. This includes the use of symbolic control to compute
the K-step control invariant set and symbolic controllers that
will be used in online computations. First, we briefly recall
the symbolic control technique (see e.g. [16], [18] for more
details).

1) Symbolic control: Symbolic control involves discretiz-
ing the state space and the control input, representing the set
of states as a finite number of symbols that transition between
each other under the influence of control input. The first step
involved constructing the symbolic system dynamics of (1).
Let us consider:

• A finite partition (Xq)q∈Q of Rn such that
Q = QX ∪ {qout} and

⋃
q∈QX

Xq ⊆ X;

• A finite number of samples (up)p∈P providing a grid of
U.

The symbolic model is based on the transition:

qt+1 ∈ F (qt, pt), qt ∈ Q, pt ∈ P (8)

where Q and P are the finite sets of symbolic states and
inputs; F : Q × P → 2Q is the set-valued transition map
defined by

qt+1 ∈ F (qt, pt) ⇐⇒ Xqt+1
∩ f̂(Xqt , upt

) ̸= ∅

where f̂ is an over-approximation of f ensuring:

f(Xq, up) ⊆ f̂(Xq, up), ∀q ∈ Q, p ∈ P.

For each symbolic state q and input p, we compute the over-
approximation of the successor of Xq under the influence of
each input up using system dynamics. One can show that the
dynamics of (8) is an over-approximation of that of (1), so
control invariant sets and K-step control invariant sets of (1)
can be obtained from those of (8), see e.g. [8].

In order to compute K-step control invariant sets, we need
to first compute the control invariant set.

2) Computation of control invariant set: Let us remark
that (8) has finite sets of states and inputs. Then, its maximal
control invariant set can be easily computed using a fixed-
point algorithm [18], where starting from the set QX, we
iteratively remove the states from which we cannot keep
the system state in QX. Then, since the dynamics of (8)
is an over-approximation of that of (1), the maximal control
invariant set of (8) provides a control invariant set of (1).

3) Computation of K-step control invariant sets : Once
we obtain the maximum control invariant set, our next step
is to select a subset as large as possible as a candidate for
the K-step control invariant set. Choosing a K-step control
invariant set with a simple shape will facilitate its integration
into the NMPC framework. Therefore, one can choose a
hyperrectangle inside the control invariant set that is as large
as possible1 and denote it as T. Using symbolic control,
the set CPre[1:K](T) can be conveniently computed. Further,
a progressive increase of the value of K is considered up
to the validation of the relationship in Definition 2: T ⊆
CPre[1:K](T), which allows to certify that T is a K-step
control invariant set.

1A measure for the enlargement needs to be defined and the largest
candidate may not be unique thus providing degrees of freedom for the
design. We don’t dwell here on this aspect for space reasons and simply
assume the largest hyperrectagle has been selected by enlarging each
direction sequentially.



4) Computation of symbolic controllers: As with most
complex optimization problems, initial values have a con-
siderable impact on the results in (5). Therefore we would
like to provide the optimization problem with an initial value
that satisfies the constraints at each moment, and allow the
iterative procedure to focus on its improvement. One needs
to compute the following controllers offline using a symbolic
approach:

Ci : Q→ U, such that
∀x ∈ CPrei(T), F (q, Ci(q(x))) ∈ CPrei−1(T)
i ∈ [1,K]

C∗ : Q→ U, such that
∀x ∈ CPre[1:K](T), F (q, C∗(q(x))) ∈ CPre[1:K](T)

(9)

where q(x) denote the symbolic state q ∈ Q such that
x ∈ Xq . Without entering into algorithmic details, is worth
metioning that both controllers can be obtained while com-
puting the K-step control invariant sets. Generally there
is freedom in the design of such symbolic controllers that
satisfy the above requirements (depending on the number
of control symbols and the structure of the dynamics). No
particular criterion is imposed here, a random choice or ad
hoc criteria can be employed.

B. Online computation

This section presents the online computational part of
NMPC based on the K-step control invariant sets.

1) Solving optimization problem (5): If we denote prob-
lem (5) as O(t, xt) we can define a collection of simpler2

optimization problems Ok(t, xt), k ∈ {1, . . . ,K}:

min
u

[0,N+K−1]
t

J(t, x0
t ,u

[0,N−1]
t ,x

[1,N ]
t )

s.t.

x0
t = x,

xi+1
t = f(xi

t, u
i
t), i = 0, . . . , N +K − 1

ui
t ∈ U, i = 0, . . . , N +K − 1

xi
t ∈ X, i = 0, . . . , N +K

xN+k
t ∈ T.

(10)

Figure 1 illustrates the fact that solving these K optimization
problems online can be done either sequentially or concur-
rently. Then, we select the index k that minimizes the costs
λk
T(t, xt) and we return the first component of the sequence

of inputs corresponding to the minimizer.
2) Initialization strategy for NMPC: For nonlinear op-

timization solvers to be successful, it is often required to
provide a feasible initial point on which the solver can
improve. The following proposition shows points to such a
selection using the symbolic controllers computed offline.

Proposition 4: Given an initial position x0 located within
the set CPre[1:K](T), an initial control sequence for the
optimization problem that ensures constraint satisfaction can
be computed at time 0 using Algorithm 1, and at time t using
the Algorithm 2.

2Simpler is understood here in terms of terminal constraints.

Fig. 1: Practical implementation of (5)

Algorithm 1: Initialization for t=0
Input : x0 s.t. q(x0) ∈ CPre[1:K](T) ⊆ X
Output: The computed initial control sequence at

time 0: û[0,N+K−1]
0

// Initialize û
[0,N−1]
0

1 x̂0
0 ← x0;

2 for j ← 1 to N do
3 ûj−1

0 ← C∗(q(x̂j−1
0 ));

4 x̂j
0 ← f(x̂j−1

0 , ûj−1
0 );

// Initialize û
[N,N+ī−1]
0

// We have x̂N+ī
0 ∈ T, ī is the minimal

step to reach T
5 ī← min{i|x̂N

0 ∈ CPrei(T)};
6 for i← 1 to ī do
7 ûN+i−1

0 ← Cī−i+1(x̂
N+i−1
0 );

8 x̂N+i
0 ← f(x̂N+i−1

0 , ûN+i−1
0 );

// Initialize û
[N+ī,N+K−1]
0

9 for j ← N + ī to N +K − 1 do
10 ûj

0 ← C∗(q(x̂j
0));

11 x̂j+1
0 ← f(x̂j

0, û
j
0);

Proof: For t = 0, q(x0) is the initial symbolic state,
and the associated control û0

0 = C∗(q(x0)). According to
the definition of the controller C∗, we have û0

0 ∈ U, and
x̂1
0 = f(x0, û

0
0) ∈ CPre[1:K](T). In the same way one can

calculate û
[1,N−1]
0 , and all states in x̂

[1:N ]
0 ∈ CPre[1:K](T).

Then the minimum number of steps to reach the set T :
ī = min{i|x̂N

0 ∈ CPrei(T)} ∈ [1,K] is available and ûN
0 =

Cī(q(x̂
N
0 ). According to the definition of controller Ci, we

have ûN
0 ∈ U and x̂N+1

0 = f(x̂N
0 , ûN

0 ) ∈ CPreī−1(T). By
iteratively employing these controllers, we can obtain the
control sequence û

[N,N+ī−1]
0 and we can ensure that the set

T can be reached at x̂N+ī
0 .

Since T ⊆ CPre[1:K](T) the available control C∗ is used
to fill in the sequence û

[N+ī,N+K−1]
0 . Up to this point, we

have ensured that all constraints are satisfied at t = 0.
For any instant t, we have the solution of the optimization

problem at instant t − 1, which yields a control sequence
u
[0,N+K−1]
t−1 ∈ U, the corresponding states x

[0,N+K]
t−1 ∈ X



Algorithm 2: Initialization at any t

Input : u[0,N+K−1]
t−1 , x[0,N+K]

t−1 , state within the
K-step control invariant sets at previous
moment xN+k

t−1 ∈ T
Output: Initial control sequence û

[0,N+K−1]
t

1 û
[0,N+k−2]
t ← u

[1,N+k−1]
t−1 ;

// x̂N+k−1
t = xN+k

t−1

2 if k ̸= 1 then
3 for j ← N + k − 1 to N +K − 1 do
4 ûj

t ← C∗(q(x̂j
t ));

5 x̂j+1
t ← f(x̂j

t , û
j
t );

6 else
// if k = 1 it means that x̂N

t ∈ T
7 ī← min{i|x̂N

t ∈ CPrei(T)};
8 for i← 1 to ī do
9 ûN+i−1

t ← Cī−i+1(q(x̂
N+i−1
t ));

10 x̂N+i
t ← f(x̂N+i−1

t , ûN+i−1
t );

11 for j ← N + ī to N +K − 1 do
12 ûj

t ← C∗(q(x̂j
t ));

13 x̂j+1
t ← f(x̂j

t , û
j
t );

and the state xN+k
t−1 ∈ T.

We let û
[0,N+k−2]
t = u1,N+k−1

t−1 then we can get
x̂N+k−1
t ∈ T with k ∈ [1,K]. If k is equal to 1, one can find

ĩ = min{i|x̂N
t ∈ CPrei(T)} ∈ [1,K] then use the previous

method to calculate the control sequence û
[N,N+K−1]
t . If k

is not equal to 1, one can calculate û
[N+k−1,N+K−1]
t with

the controller C∗. Such initial control sequence obtained at
time t will satisfy all the constraints.

V. NUMERICAL EXAMPLE

Consider a mobile cart model as a numerical example,
similar to [2]. The state vector x ∈ R3 and the control input
vector u ∈ R2. The system dynamics are given as:

x1(t+ 1) = x1(t) + u1(t) cos(x3(t))

x2(t+ 1) = x2(t) + u1(t) sin(x3(t))

x3(t+ 1) = x3(t) + u2(t) (mod2π)
(11)

The model describes the behavior of a mobile cart with
(x1, x2) representing the 2D Cartesian coordinates in meters.
x3 represents the angular orientation of the velocity vector
around the x direction in radians, u1 is the linear velocity in
m/s, and u2 is the angular velocity in rad/s. Note that by
convention, we consider the angle x3 ∈ [−π, π).

The system is subjected to state and control input con-
straints:

X =

{
(x1, x2)

T ∈ R2

∣∣∣∣∣ x2
1 − x2

2 ≤ 4

4x2
2 − x2

1 ≤ 16

}
(12)

U = [0.2, 2]× [−1, 1]. (13)

(a) (b)

Fig. 2: On the left is the approximation of the maximal
control invariant set computed using symbolic control, on
the right is the stretching method, the direction of stretching
is in order 1-6.

Figure 2a illustrates the approximation of the maximal
control invariant set computed using symbolic techniques. Its
construction procedure used a symbolic model with 109,200
symbolic states and 40 symbolic inputs. The computation
time is about 2 minutes with a PC 1.4 GHz Intel Core i5.

This control invariant set has a relatively complex shape
and is obviously not suitable for direct use as terminal
constraint in nonlinear MPC design according to the frame-
work (2). Aside the fact that the control invariant set is
highly nonlinear and thus impacts the real-time optimization
performances, it should be noted that the symbolic procedure
represents it in terms of a large union of convex sets.

Figure 2b shows that a large hyperrectangle can be found
inside the maximum control invariant set. Its practical con-
struction follow an intuitive procedure, starting with a small
rectangle and stretching it in different directions. We use
[xl, xu], the coordinates of the minimal and maximal vertices
to represent this hyperrectangle. In this 3 dimensional case
xl = [−1.3;−1.3;−π], xu = [1.3; 1.4;π].

Once we have identified this large hyperrectangle can-
didate for k-step control invariance, we can proceed to
find its corresponding index K. In Figure 3 we find that
T ⊆ CPre[1:K](T) is obtained when K=5, 6 and 7. When
K = 7, CPre[1:7](T) is identical to the control invariant set
shown in Figure 2a. This numerical certification of K-step
control invariance was obtained in 14s on the same PC, an
attractive off-line computation time given the complexity of
the maximal control invariant set. We will use the minimum
value of K by default in the following.

For the optimization problem (5), the prediction horizon
was chosen to be N = 20, the penalty terms for position and
control input were set to 100 and 1, respectively. Px

[0,N]
t is

the projection of x[0,N]
t on the first two coordinates (x1, x2),

xref ∈ R2 is the reference point. With the previously
computed hyperrectangle [xl, xu], we have the following
optimization problem :



Fig. 3: The evolution of the set CPre[1:K] (red parts) with K
is depicted in the figure, where K = 0, 1, 2, ...7. By the fifth
iteration step, the hyperrectangle is completely contained
in the computed states, and by the seventh iteration step,
the computed states are identical to the maximum control
invariant set.

min
u

[0,N+K−1]
t

100∥Px
[0,N ]
t − xref∥2 + ∥u[0,N−1]

t ∥2

s.t.

x0
t = x,

xi+1
t = f(xi

t, u
i
t), i = 0, . . . , N +K − 1

ui
t ∈ U, i = 0, . . . , N +K − 1

xi
t ∈ X, i = 0, . . . , N +K

∃k ∈ {1, . . . ,K}, xN+k
t ∈ [xl, xu].

(14)
Figure 5 presents a comparison between NMPC without

terminal constraints and NMPC based on K-step control
invariant sets. A reference point for the position xref =

Fig. 4: Evolution of system’s states and control inputs for
(d) in Figure 5

(0.5, 0.5) is considered in a first case, the third component
(orientation) not being penalized in the cost index. One can
observe that the two methods exhibit equivalent performance.

It should be noted that the optimal trajectory after transi-
tory should be circle around the reference point (due to speed
constraints u1 ≥ 0.2m/s). The closed loop may however
not reach such a behaviour when the receding optimization
problem is initialized by means of randomly generated con-
trol sequence (converge to local minima). Using the symbolic
control-based initialization method described in the previous
section, the trajectories in Figure 5(c) are obtained with
same performances of a costly NMPC formulation (2), see
trajectories in Figure 5(a).

For the reference xref = (
√

32/3,
√

32/3), the NMPC
without terminal constraints fails in the tracking process of
target points which is located at the corner point. The opti-
mization problem became infeasible at time instant t = 13. In
comparison, the NMPC strategy based on the K-step control
invariant set enables the cart to move continuously without
encountering safety issues, thus confirming the recursive
feasibility properties. The time evolution of the state and
inputs signals for the position trajectories depicted in Figure
5(d) are represented in Figure 4.

VI. CONCLUSIONS

Ensuring the recursive feasibility of MPC is a widely
discussed challenge and this paper offers a novel perspective
to address this issue. By further developing computational
methods based on symbolic control, we effectively com-
pute the K-step control invariant sets and utilize them as
constraints within the NMPC framework. This approach,
which is straightforward and easy to implement, was shown
to achive promising results. The approach can be extended
to solve path planning problems in complex environments.
From the theoretical point of view, the robust K−step
invariance and its used in MPC deservese further attention.



(a) xref = (0.5, 0.5) (b) xref = (
√

32/3,
√

20/3)

(c) xref = (0.5, 0.5) (d) xref = (
√

32/3,
√

20/3)

Fig. 5: Trajectory of moving carts. The upper two figures show the NMPC approach without terminal constraints and the
two figures below show the NMPC using a K-step control invariant set (K=5) as terminal constraint.
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