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Localized Inverse Design in

Conservation Laws and Hamilton-Jacobi Equations

Rinaldo M. Colombo1 Vincent Perrollaz2

February 13, 2024

Abstract

Consider the inverse design problem for a scalar conservation law, i.e., the problem of find-
ing initial data evolving into a given profile at a given time. The solution we present below
takes into account localizations both in the final interval where the profile is assigned and
in the initial interval where the datum is sought, as well as additional a priori constraints
on the datum’s range provided by the model. These results are motivated and can be
applied to data assimilation procedures in traffic modeling and accidents localization.

2000 Mathematics Subject Classification: 35L65, 90B20, 35R30.

Keywords: Traffic dynamics; Inverse problems in conservation laws; Hyperbolic partial
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1 Introduction

We deal with the – constrained and localized – inverse design related to the Cauchy problems
for the scalar one dimensional conservation law and for the Hamilton-Jacobi equation. These
equations read {

∂tu+ ∂xf(u) = 0
u(0, x) = uo(x)

and

{
∂tU + f(∂xU) = 0
U(0, x) = Uo(x)

(1.1)

where t ∈ R+ is time and x ∈ R is the space coordinate. In (1.1), on the left, u = u(t, x) is the
unknown density of a conserved variable and f is the flux, while on the right U = U(t, x) is
the unknown value function and f is the Hamiltonian. The Cauchy problems (1.1) generate
the semigroups

SCL : R+ × L∞(R;R) → L∞(R;R) and SHJ : R+ × Lip (R;R) → Lip (R;R) (1.2)

in the sense that the orbits t → SCL
t uo and t → SHJ

t Uo solve (1.1), respectively in the
entropy or viscosity sense. For a given real interval J – the constraint – we provide a full
characterization of the constrained inverse designs for the two equations in (1.1), namely

ICL
T (uT ; J) :=

{
uo ∈ L∞(R;R) : uo(R) ⊆ J and SCL

T uo = uT
}

IHJ
T (UT ; J) :=

{
Uo ∈ Lip (R;R) : U ′

o(R) ⊆ J and SHJ
T Uo = UT

} (1.3)

1INdAM Unit, University of Brescia, Italy. rinaldo.colombo@unibs.it
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for given functions uT ∈ L∞(R; J), UT ∈ Lip (R;R) with U ′
T (R) ⊆ J and for a fixed T > 0.

Then, we extend this characterization to comprehend cases where the profile uT is known
only on a given real interval, say KT :

ICL
T (uT ; J)Ko

:=

{
ũo ∈ L∞(Ko; J) : ∃uo ∈ L∞(R; J) with

uo
Ko

= ũo and

SCL
T uo

KT
= uT

}
.

and the meaningful interval Ko is singled out below by means of KT and uT .
Our motivation is a typical situation in traffic management: there, traffic flow measure-

ments are available at a given location, say x = L, during a given time interval. Out of these
data, one seeks to reconstruct the flow along road segments before and after the measuring
site. Thus, one is lead to solve an inverse design problem, with constraints on the unknown
function (traffic density varies in the fixed bounded interval J) and localized in space time,
say at {L} ×KT . Refer to Section 3 for the detailed discussion.

Data assimilation and flow reconstruction are a common problem in various disciplines:
the monograph [17] deals with the case of weather forecasts, a field classically related to these
problems. Applications to oil reservoirs are in [25] while the special issue [27] is devoted to
general fluid dynamics and [1, 16] provide a more analytical approach devoted to Navier–
Stokes equation. We refer to [20] for further examples. Deeply related to the present result
is [2], where kinetic techniques are employed.

The current literature provides several results about the inverse design for conservation
laws. The case of the (inviscid) Burgers’ equation is thoroughly considered in [15, 21, 22],
the general homogeneous case is solved in [6] while the x dependent case is tackled in [8], see
also [13] for an alternative approach and [12] for results on the Hamilton - Jacobi equation in
several space dimensions. A specific system is considered in [5].

The above applications and, in particular, our motivation are based on conservation laws.
However, we extensively make use of techniques typical of Hamilton-Jacobi equation and we
extensively exploit the deep connection between the two classes of equations, summarized
in (2.1) below. This allows, in particular, to obtain Theorem 2.1, which provides a new
independent — and simpler — proof of the characterization of the reachability of a profile
also in the case of data constrained to attain values in J . This result improves that in [8]
relaxing the regularity assumptions on the target profile.

As the statements and proofs below show, the roles of the constraint J and of the lo-
calization to KT are entirely different. The former one appears as somewhat marginal, see
Remark 2.5. This is due to our requiring that the flux f in (1.1) is convex and independent
of x. Indeed, the example in [8, 9] shows that, without these conditions, the range of the
solution to a conservation law may well significantly grow.

When dealing with real measurements, it is necessary to further localize the available
information since, in general, only discrete samples of data can be collected. Moreover,
measurement errors affect these values. A refinement of the analytical techniques below
might tackle these practical issues.

The next section presents our results, first only in the constrained case, then also under
a localization condition. Section 3 is devoted to the implications of the general results to our
original motivation rooted in vehicular traffic modeling. Finally, all proofs are deferred to
Section 4.
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2 Analytic Results

Throughout, concerning conservation laws, we refer to entropy solutions as classically defined
by Kružkov [19, Definition 1], see also [6, Definition 2.1]. In the case of the Hamilton-Jacobi
equation we refer to viscosity solutions [10, Definition I.1], see also [6, Definition 2.2]. The
connection between the Cauchy problems in (1.1) is summarized by the following commuting
diagrams:

[18, Theorem 1.1] [6, Proposition 2.3]
Uo −→ SHJ

t Uo

∂x

y y ∂x

uo −→ SCL
t uo

Uo −→ SHJ
t Uo∫ x

x x [6, Formula (2.2)]

uo −→ SCL
t uo

(2.1)

see also [7, 18].
On the flux/Hamiltonian f we require the following condition:

(f) f ∈ C2(R;R) is strongly convex, in the sense that f ′′(x) > 0 for all x ∈ R, limx→−∞ f ′(x) =
−∞ and limx→+∞ f ′(x) = +∞.

Throughout, for the basic results about Hamilton-Jacobi equation we refer to [14, The-
orem 4 and Theorem 5, Section 3, Chapter 3]. In particular, the solution to (3.4) can be
written as

∀T ∈ R+ \ {0} ∀x ∈ R (SHJ
T Uo)(x) = inf

ξ∈R

[
Uo(ξ) + T f∗

(
x− ξ

T

)]
(2.2)

and the Legendre transform f∗ of f is recalled in Definition 4.2.
For fixed u ∈ L∞(R;R) and T > 0, from the theory of conservation laws we introduce

πu : R → R
x 7→ x− T f ′(u(x)) . (2.3)

As soon as u is the solution to the conservation law (1.1) at time T , πu(x) is the intersection
between the axis t = 0 and the minimal — for u left continuous at x— backward characteristic
from (T, x), see [11, § 10.3 and § 11.1].

Fix T > 0. We say that a map u ∈ L∞(R;R) satisfies Oleinik estimate [24] at T , whenever
the following condition hold:

(O) For a.e. x ∈ R and ∆x ∈ R+ \ {0},
f ′ (u(x+∆x)

)
− f ′ (u(x))

∆x
≤ 1

T
.

As is well known, u satisfies condition (O) at T if and only if the map πu is (a.e.) non

decreasing. Hence, since u(x) = (f ′)−1
(
x−πu(x)

T

)
, by (f) u admits a representative which

is left continuous and thus Condition (O) is satisfied for every x ∈ R \ {0} and ∆x ∈ R+.
Below, when (O) applies, by u or uT we understand their left continuous representatives.
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2.1 Constrained Inverse Design

For a non empty closed real interval J acting as constraint we now head towards detailed
descriptions of the sets (1.3) of profiles uT and UT that can be attained as solutions to (1.1)
for suitable initial data uo and Uo. The case J = R is not excluded. We stress that the results
below depend on and take care of the constraint J . By (2.1), the descriptions of the two sets
are one consequence of the other.

Proceeding towards a full characterization of IHJ
T (UT ; J), we start collecting information

on a particular element U ♭
o.

Proofs to statements in this paragraph are deferred to § 4.1.

Theorem 2.1. Let f satisfy (f), J be a non empty closed interval and T be positive. Fix
uT ∈ L∞(R; J) satisfying Condition (O) at T . Define, for a fixed qx ∈ R, for all x ∈ R

UT (x) :=

∫ x

qx
uT (ξ) dξ , U ♭

o(x) := sup
ξ∈R

[
UT (ξ)− T f∗

(
ξ − x

T

)]
, u♭o(x) :=

d

dx
U ♭
o(x) . (2.4)

Then, U ♭
o ∈ IHJ

T (UT ; J) and u♭o ∈ ICL
T (uT ; J).

Above, f∗ is, as usual, the Legendre transform of f , see Definition 4.2.

Corollary 2.2. Let f satisfy (f), J be a non empty closed interval and T be positive. Fix
uT ∈ L∞(R; J). Then, uT satisfies Condition (O) at T if and only if ICL

T (uT ; J) ̸= ∅.

The proof of Corollary 2.2 is as follows: on the one hand, Oleinik’s result [24] ensures that
Condition (O) holds for any reachable profile. On the other hand, Theorem 2.1 shows that
Condition (O) implies that ICL

T (uT ; J) is non empty.
Corollary 2.2 was originally stated as [6, Corollary 3.2] in the case J = R, and proved

relying on conservation laws techniques, while the proof of Theorem 2.1 is based on the
Hamilton-Jacobi equation (3.4).

An explicit construction of u♭o is provided in the following extension of [6, Theorem 3.1]
which, besides comprising the constraint J , does not require SBV regularity.

Proposition 2.3. Let f satisfy (f) and T be positive. Fix uT ∈ L∞(R;R). Define UT , U
♭
o

and u♭o as in (2.4). Call v and V the entropy and viscosity solutions to{
∂tv + ∂xf(−v) = 0
v(0, x) = −uT (x)

and

{
∂tV + f(−∂xV ) = 0
V (0, x) = −UT (x) .

(2.5)

Then, for a.e. t ∈ [0, T ] and x ∈ R,

v(T, x) = −v♭o(x) ;

V (T, x) = −U ♭
o(x) ;

v(t, x) = ∂xV (t, x) and TV (uT ) ≥ TV (u♭o) .

When f depends explicitly on x, the bending of characteristic lines significantly compli-
cates a result like Proposition 2.3, see [8].

The function u♭o defined in (2.4) has the minimal range among those profiles that evolve
into uT , as proved by the following result.
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Corollary 2.4. Let f satisfy (f) and T be positive. Fix uT ∈ L∞(R;R) satisfying Condi-
tion (O) at T . Let u♭o be as defined in (2.4). Then,

TV (uT ) = TV (u♭o) and co uT (R) = co u♭o(R) .

Above, for A ⊆ R, co A stands for the closed convex hull of A.

Remark 2.5. Corollary 2.4 underlines that the role of J in reachability is rather marginal,
as soon as it is sufficiently large, i.e., as soon as J ⊇ co uT (R).

Proposition 2.6 ([11, Theorem 11.4.3]). Let f satisfy (f) and T be positive. For all Uo ∈
Lip (R;R), define uo = U ′

o and set uT = SCL
T uo, according to (1.2). Using the notation (2.3),

for all x ∈ R

SHJ
T Uo(x) = Uo

(
πuT (x)

)
+ T f∗

(
x− πuT (x)

T

)
. (2.6)

Note that, when f also depends explicitly on x, [8, Theorem 3.1] reformulates Proposi-
tion 2.6 in terms of the connection between generalized characteristics and minima of the
integral functional connected to the Hamilton-Jacobi equation.

Proposition 2.7. Let f satisfy (f), J be a non empty closed interval and T be positive. Fix
uT ∈ L∞(R; J) satisfying Condition (O) at T . Define UT and U ♭

o as in (2.4). Then, for all
uo ∈ L∞(R;R), using the notation (2.3) and setting, for any fixed qx ∈ R,

∀ t ∈ R Uo(x) :=

∫ x

πuT
(qx)

uo(ξ) dξ − T f∗
(
−πuT (qx)

T

)
(2.7)

we have the equivalences

uo ∈ ICL
T (uT ; J) ⇐⇒ Uo ∈ IHJ

T (UT ; J) ⇐⇒


(i) Uo ≥ U ♭

o ;

(ii) Uo = U ♭
o on πU ′

T
(R) ;

(iii) U ′
o(R) ⊆ J .

(2.8)

The above proposition is strictly related to [8, Theorem 3.3] and [12, Theorem 2.6]: both
these results do not consider the constraint J but the former one applies to general x depen-
dent Hamiltonian functions while the latter applies to several space dimensions.

When the constraint J is compact, the introduction of the maps U ♯
o and u♯o in the following

Proposition allows the precise description of the inverse design sets provided by Theorem 2.9.

Proposition 2.8. Let f satisfy (f), J be a non empty compact interval and T be positive.
Fix uT ∈ L∞(R; J) satisfying (O) at T . Define UT as in (2.4) and

∀x ∈ R U ♯
o(x) := sup

{
Uo(x) : Uo ∈ IHJ

T (UT ; J)
}
, u♯o(x) :=

d

dx
U ♯
o(x) . (2.9)

Then, U ♯
o ∈ IHJ

T (UT ; J) and u♯o ∈ ICL
T (uT ; J).

Note that while UT and U ♯
o depend on qx in (2.4), the map u♯o is actually independent of it.

We are now ready for a further characterization of the set IHJ
T (UT ; J).
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Theorem 2.9. Let f satisfy (f), J be a non empty compact interval and T be positive. Fix
uT ∈ L∞(R; J) satisfying (O) at T . Then, with the notation (2.4)–(2.9),

IHJ
T (UT ; J) =

{
Uo ∈ Lip (R;R) :

U ′
o(x) ∈ J

Uo(x) ∈ [U ♭
o(x), U

♯
o(x)]

for a.e. x ∈ R

}
. (2.10)

In particular, IHJ
T (UT ; J) is convex and compact with respect to the topology of uniform con-

vergence on compact subsets of R. Moreover, setting qy := πuT (qx), for any fixed qx ∈ R, we
have the characterization

ICL
T (uT ; J) =

{
uo ∈ L∞(R; J) :

∫ y
qy uo dx ∈

[∫ y
qy u♭o dx ,

∫ y
qy u♯o dx

]
for all y ∈ R

}
(2.11)

so that ICL
T (uT ) is convex and sequentially compact with respect to the weak-∗ L∞ topology.

Again, note that the arbitrariness of qx does affect U ♭
o and U ♯

o bus has no relevance on u♭o, u
♯
o.

2.2 Inverse Design Localized in Space

This section is devoted to the localization of the previous results on two space intervals: the
former one, KT , is to be considered at time t = T and the latter one, Ko at time t = 0.

Hereafter, we consider only the conservation law in (1.1), the case of the Hamilton-Jacobi
equation being entirely analogous.

The proofs related to statements in this section, where necessary, are deferred to § 4.2.

Definition 2.10. Let J be a non trivial closed real interval and T > 0. Fix a second non
trivial closed real interval KT . A profile uT ∈ L∞(KT ; J) is reachable at t = T on KT if
there exists a uo ∈ L∞(R; J) such that the corresponding solution u to the conservation law
in (1.1) satisfies SCL

T uo
KT

= uT .

If Ko is another non trivial closed real interval, denote

ICL
T (uT ; J)Ko

:=

{
ũo ∈ L∞(Ko; J) : ∃uo ∈ L∞(R; J) with

SCL
T uo

KT
=uT , and

uo
Ko

= ũo

}
. (2.12)

We regret that in the above notation ICL
T (uT ; J)Ko

, the set KT is omitted for simplicity, in

spite of its relevance.
We now provide a simple specific extension of any map ûT ∈ BV(KT ; J) to u

∗
T ∈ BV(R; J)

so that the inverse design restricted to Ko remains unaltered, provided Ko is the domain of
dependency of KT . More precisely:

Theorem 2.11. Let f satisfy (f). Let J be a non trivial closed real interval and T be positive.
Fix x1, x2 ∈ R with x2 > x1 and choose a map ûT ∈ BV([x1, x2]; J). Define

u∗T (x) =


ûT (x1+) x < x1
ûT (x) x ∈ [x1, x2]
ûT (x2−) x > x2

(2.13)

Then,
ICL
T (ûT ; J) [πûT

(x1+),πûT
(x2−)]

= ICL
T (u∗T ; J) [πûT

(x1+),πûT
(x2−)]

.
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In other words, setting in Theorem 2.11 KT = [x1, x2] and Ko = co πûT
(K̊T ), we have

u∗T KT
= ûT and ICL

T (ûT ; J)Ko
= ICL

T (u∗T ; J)Ko
.

In spite of its simplicity, the extension u∗T provided in (2.13) of Theorem 2.11 is sufficient
to recover the whole inverse design. The next result shows that any other extension either
gives the same result or gives the empty set.

Theorem 2.12. Let f satisfy (f). Let J be a non trivial closed real interval and T be positive.
Fix x1, x2 ∈ R with x2 > x1 and choose a map ûT ∈ L∞([x1, x2]; J) reachable at t = T on
[x1, x2]. Let uT ∈ L∞(R; J) be such that uT [x1,x2]

= ûT . Then,

either: ICL
T (uT ; J) = ∅,

or: ICL
T (uT ; J) [πûT

(x1+),πûT
(x2−)]

= ICL
T (ûT ; J) [πûT

(x1+),πûT
(x2−)]

.

Note that by Corollary 2.2 the assumption that ûT be reachable ensures that ûT has
locally bounded variation by (O), hence its traces at x1 and x2 are well defined.

Corollary 2.13. Let f satisfy (f). Let T be positive, J be a non trivial closed real interval
and fix x1, x2 in R with x1 < x2. Let u1, u2 ∈ L∞(R; J) be such that u1

[x1,x2]
= u2

[x1,x2]
,

ICL
T (u1) ̸= ∅ and ICL

T (u2) ̸= ∅. Then, with the notation (2.4) and (2.9)

ICL
T (u1; J)

[πu1 (x1+),πu1 (x2−)]
= ICL

T (u2; J)
[πu2 (x1+),πu2 (x2−)]

, (2.14)

u♭1 [πu1 (x1+),πu1 (x2−)]
= u♭2 [πu2 (x1+),πu2 (x2−)]

, (2.15)

u♯1 [πu1 (x1+),πu1 (x2−)]
= u♯2 [πu2 (x1+),πu2 (x2−)]

. (2.16)

Equality (2.14) directly follows from Theorem 2.12. Then, (2.15) and (2.16) follow combin-
ing (2.14) with Theorem 2.9 setting for simplicity qx = x1.

3 Application to Traffic

A macroscopic description of the flow of traffic along a highway tract can be based on the well
known Lighthill–Whitham and Richards model [23, 26], leading to the evolution equation

∂tρ+ ∂x
(
ρ v(ρ)

)
= 0 (t, x) ∈ R× [0, L] , (3.1)

where t is time, x is the coordinate along the road, ρ = ρ(t, x) roughly measures the amount
of vehicles per unit length and v = v(ρ) is the (mean) traffic speed corresponding to the
density ρ. As usual, we call q = ρ v(ρ) the vehicular flow. The space coordinate varies along
the interval [0, L], with L > 0. Note that (3.1) is neither a Cauchy problem nor a standard
initial - boundary value problem: nevertheless it is a classical setup in traffic management.

At location x = L, the outflow qout = qout(t) is measured. The results in Section 2 allow to
exhibit conditions implying that traffic underwent some critical event (possibly an accident)
and estimate where it happened. Moreover, they also characterize vehicular traffic, providing
properties and constraints that any flow reconstruction in a data assimilation procedure must
enjoy or fulfill to be coherent with (3.1). The localization results in § 2.2 allow us to provide
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statements that are intrinsic to any (bounded) time interval and that hold on the natural
domain of dependency of the measured data.

The speed law v = v(ρ) plays in traffic modeling a role analogous to that played in
thermodynamics by the equation of state. However, while equation of states can be rigorously
justified on the basis of physical assumptions, speed laws are typically accepted or rejected
on the basis of qualitative considerations. A typical assumption on v is

(v) v ∈ C2([0, R];R+) is such that v(R) = 0 and d2

dρ2

(
ρ v(ρ)

)
< 0, for a fixed R > 0.

A common problem in traffic modeling is the following: given the traffic outflow measured
at the position x = L, namely qL(t) = ρ(t, L) v

(
ρ(t, L)

)
, reconstruct the function ρ = ρ(t, x)

for x ∈ [0, L] assuming that the outflow qL results from the – unknown – inflow at position
x = 0.

We are thus lead to exchange the roles of time t and space x in (3.1), using as dependent
variable the flow q(t, x) = ρ(t, x) v

(
ρ(t, x)

)
and refer to the (backward) Cauchy problem{

∂xq + ∂tf(q) = 0
q(t, L) = qL(t)

(t, x) ∈ R× [0, L] . (3.2)

With reference to (3.1), f is (related to) the inverse of the map ρ 7→ ρ v(ρ) on the interval
where this map is strictly increasing which, under assumption (v), is the interval [0, q̂] where
q̂ = maxρ∈[0,R] ρ v(ρ). Note that the choice of the congested interval where dq

dρ < 0 is not
consistent with (3.2).

Proposition 3.1. Let v satisfy (v) and let ρ̂ be such that ρ̂ v(ρ̂) = max[0,R] ρ v(ρ). Define,
for a fixed ρ̄ ∈ ]0, ρ̂[ and for all ρ ∈ [0, ρ̄],

f(q) := ρ ⇐⇒ q = ρ v(ρ) ,

Then:

(1) If, with reference to (3.1), E ∈ C2([0, ρ̄];R) is a convex entropy and F a corresponding
flux, then, F ◦ f is a convex entropy and E ◦ f is a corresponding flux for (3.2).

(2) If ρ ∈ L∞(R × [0, L]; [0, ρ̄]) is a weak solution to ∂tρ + ∂x
(
ρ v(ρ)

)
= 0, then, the map

(t, x) 7→ q(t, x) = ρ(t, x) v
(
ρ(t, x)

)
is a weak solution to ∂xq + ∂tf(q) = 0

(3) If in distributional sense
∂tE(ρ) + ∂xF (ρ) ≤ 0 , (3.3)

then, in distributional sense

∂x(F ◦ f)(q) + ∂t(E ◦ f)(q) ≤ 0 .

(4) If (3.3) holds for any convex entropy, then, the trace qL defined by

lim
δ→0+

∫ T

−T

∣∣qL(t)− q(t, L− δ)
∣∣dt = 0

for all T > 0, is well defined and q is a weak solution to (3.2).
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The proofs of (1), (2) and (3) are straightforward calculations, while (4) follows from the
regularity and convexity of f , thanks to [28].

Condition (O) can then be interpreted as a minimal, necessary but not sufficient, require-
ment for qL to be compatible with a regular flow of traffic.

Proposition 3.2. Under the assumptions of Proposition 3.1, call q̄ = ρ̄ v(ρ̄). Fix a non
trivial compact time interval [T1, T2] and a measured traffic flow qout ∈ L∞([T1, T2]; [0, q̄]).
Then, qout is reachable at x = L, for some L > 0, on [T1, T2] in the sense of Definition 2.10
if and only if

1

L
≥ ess sup

T1≤t1<t2≤T2

f ′ (qout(t2))− f ′ (qout(t1))
t2 − t1

. (3.4)

Moreover, for such an L, define

τ1 = T1 − L f ′ (qout(T1)
)

and τ2 = T2 − L f ′ (qout(T2)
)
.

There exist q♭, q♯ ∈ L∞([τ1, τ2]; [0, q̄] such that if qin ∈ L∞(R; [0, q̄]), the following statements
are equivalent:

(1) There exists an entropy solution q ∈ L∞(R× [0, L]; [0, q̄]) to

∂xq + ∂tf(q) = 0 such that
q(t, 0)= qin(t) for t∈ [τ1, τ2] ;
q(t, L)= qout(t) for t∈ [T1, T2] .

(3.5)

(2) For any τ ∈ [τ1, τ2] ∫ τ

τ1

qin(t) dt ∈

[∫ τ

τ1

q♭(t) dt ,

∫ τ

τ1

q♯(t) dt

]
. (3.6)

The characterization (3.4) is obtained applying Corollary 2.2. Then, Theorem 2.11, Corol-
lary 2.13 and Theorem 2.9 allow to prove the equivalence. Remark that Proposition 3.2 is
intrinsic to the time interval [T1, T2], thanks in particular to Corollary 2.13.

Remark 3.3. Localizing (2.4) in Theorem 2.1, the function q♭, through one of its primitives
Q♭, can be computed from the measured data qout for any τ ∈ [τ1, τ2]

Q♭(τ) := sup
t∈[T1,T2]

[∫ t

T1

qout(s) ds− Lf∗
(
t− τ

L

)]
.

From the traffic management point of view, as soon as condition (3.4) is violated, one can
infer that the standard flow of traffic was altered – possibly by an accident – at a distance
L from the measuring site. For such L, a time τ at which traffic resumes after the road was
blocked, is a time where Q♭ is not differentiable.

4 Technical Details

Recall first the following elementary definitions and properties.

Lemma 4.1. Let f : R → R be strongly convex. Then, for all A ∈ R, there exists α ∈ R such
that for all x ∈ R, f(x) ≥ α+A |x|.

9



Definition 4.2. Let f : R → R be convex. Its Legendre Transform is the map f∗ : R → R
defined by f∗(y) := supx∈R

(
y x− f(x)

)
. for all y ∈ R.

Note that for any compact interval K, the values of f∗ on f ′(K) depend exclusively on
the restriction of f to K.

Lemma 4.3 ([14, Theorem 3, § 3.3.2]). If f : R → R is strongly convex and f∗ is its Legendre
transform, then

(L1) for all y ∈ R, f∗(y) = y (f ′)−1(y)− f
(
(f ′)−1(y)

)
;

(L2) for all y ∈ R, (f∗)′(y) = (f ′)−1(y);

(L3) f∗ is strongly convex in the sense it satisfies (f).

4.1 Proofs Related to § 2.1

Proof of Theorem 2.1. The proof is divided into several short steps. Using the nota-
tion (2.4), define the set valued map

M : R → P(R)

x 7→
{
ξ ∈ R : UT (ξ) = U ♭

o(x) + T f∗
(
ξ−x
T

)} (4.1)

1. U ♭
o ∈ Lip (R;R) and for a.e. x ∈ R, d

dxU
♭
o(x) ∈ J . A direct consequence of the

assumptions on uT is that, for h positive, by (2.4)

UT (x)− h ess infR uT ≥ UT (x− h) ≥ UT (x)− h ess supR uT . (4.2)

Moreover, for any x1, x2 ∈ R with x1 < x2, setting ξ = x− (x2 − x1),

U ♭
o(x1) = sup

ξ∈R

[
UT (ξ)− T f∗

(
ξ − x

T

)]
= sup

x∈R

[
UT

(
x− (x2 − x1)

)
− T f∗

(
x− x2

T

)]

so that by (4.2) with h = x2 − x1, we have the two estimates

U ♭
o(x1) ≤ sup

x∈R

(
UT (x)− T f∗

(
x− x2

T

))
− (x2 − x1) ess infR uT

= U ♭
o(x2)− (x2 − x1) ess infR uT ;

U ♭
o(x1) ≥ sup

x∈R

(
UT (x)− T f∗

(
x− x2

T

))
− (x2 − x1) ess supR uT

= U ♭
o(x2)− (x2 − x1) ess supR uT ,

proving the Lipschitz continuity of U ♭
o and, since [ess infR uT , ess supR uT ] ⊆ J , completing

the proof of the claim, thanks to Rademacher’s Theorem [14, Theorem 6, § 5.8.3]. ✓
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2. For all x, the set M(x) is not empty. (In other words, the sup in (2.4) is a maximum).
By (f) and Lemma 4.3, the map f∗ is strongly convex, the map UT is globally Lipschitz

continuous, and so sublinear at ±∞, hence by Lemma 4.1 limξ→−∞

(
UT (ξ)− T f∗

(
ξ−x
T

))
=

−∞ and limξ→+∞

(
UT (ξ)− T f∗

(
ξ−x
T

))
= −∞ for all x ∈ R. An application of Weierstrass

Theorem completes the proof of the claim. ✓

3. There exists R > 0 such that if x ∈ R and ξ ∈ M(x), then |x− ξ| ≤ R. Let κ be
a Lipschitz constant for UT . By (f) and Lemma 4.3, f∗ is strongly convex, so that we can
apply Lemma 4.1 to f∗ with A = κ+ 1. Hence,

UT (ξ)− T f∗
(
ξ − x

T

)
≤ UT (x) + κ |ξ − x| − T α− (κ+ 1) |ξ − x|

≤ UT (x)− Tf∗(0) + T
(
f∗(0)− α

)
− |ξ − x|

and the choice of ξ as a maximizer for the left hand side above ensures that |x− ξ| ≤
T
(
f∗(0)− α

)
. ✓

4. M is monotone increasing. By this, we mean that if x1, x2 ∈ R and x1 < x2, then
for all ξ1 ∈ M(x1) and for all ξ2 ∈ M(x2), it holds that ξ1 ≤ ξ2.

Proceed by contradiction and assume that x1 < x2 but ξ1 > ξ2. Define

A =
ξ1 − x1

T
, B =

ξ2 − x2
T

, C =
ξ2 − x1

T
and D =

ξ1 − x2
T

.

Clearly, A + B = C + D and A > C > B, A > D > B. By construction, there exists a
(unique) ϑ ∈ ]0, 1[ such that

C = ϑA+ (1− ϑ)B and D = (1− ϑ)A+ ϑB .

The strong convexity of f∗ then ensures that

f∗(C) + f∗(D) < f∗(A) + f∗(B) .

The above choices of x1, x2, ξ1, ξ2 imply that

U ♭
o(x1) = UT (ξ1)− T f∗(A) and U ♭

o(x2) = UT (ξ2)− T f∗(B) ,

so that

U ♭
o(x1) + U ♭

o(x2) < UT (ξ1) + UT (ξ2)− T f∗(C)− T f∗(D)

which in turn implies that at least one of the following inequalities hold:

U ♭
o(x1) < UT (ξ2)− T f∗(C) or U ♭

o(x2) < UT (ξ1)− T f∗(D) .

Both inequalities above contradict the definition (2.4) of U ♭
o. ✓
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5. For all x, the set M(x) is a compact interval. By Claim 3. above, for all x ∈ R, the
set M(x) is bounded since M(x) ⊆ [x−R, x+R]. The definition (4.1) of M shows that for
every fixed x, the set M(x) is closed, thanks to the regularity of U ♭

o proved in Claim 1 and
that of UT and f∗.

Fix x ∈ R. To prove that M(x) is an interval, choose ξ1, ξ2 ∈ M(x) with ξ1 < ξ2 and
introduce the Lipschitz continuous map φ : [ξ1, ξ2] → R by φ(ξ) := UT (ξ)− Tf∗ ((ξ − x)/T

)
.

Proceed by contradiction and. by (2.4) and (4.1), assume that there exists a ξ ∈ ]ξ1, ξ2[ such
that φ(ξ) < φ(ξ1) = φ(ξ2) = maxφ. Then, the Lipschitz continuity of φ ensures that φ is
differentiable a.e. and

0 > φ(ξ)− φ(ξ1) =
∫ ξ
ξ1
φ′(y) dy 0 > φ(ξ2)− φ(ξ) =

∫ ξ2
ξ φ′(y) dy

⇒ ∃ y1 ∈ ]ξ1, ξ[ :

{
φ is differentiable at y1
and φ′(y1) < 0

⇒ ∃ y2 ∈ ]ξ, ξ2[ :

{
φ is differentiable at y2
and φ′(y2) > 0

⇒ U ′
T (y1) < (f∗)′

(
(y1 − x)/T

)
⇒ U ′

T (y2) > (f∗)′
(
(y2 − x)/T

)
⇒ f ′ (U ′

T (y1)
)
< (y1 − x)/T ⇒ f ′ (U ′

T (y2)
)
> (y2 − x)/T

so that

f ′ (U ′
T (y2)

)
− f ′ (U ′

T (y1)
)
>

y2 − y1
T

which contradicts that uT satisfies Condition (O) at T since y1 < ξ < y2. ✓

6. M is surjective, in the sense that
⋃

x∈RM(x) = R. Fix ξ in R. We seek an x ∈ R
such that ξ = M(x). Thanks to Claim 5., it is sufficient to prove that minM(x) ≤ ξ ≤
maxM(x).

To this aim, define x∗ = sup
{
x ∈ R : minM(x) < ξ

}
and note that minM(x∗ − 1

n) < ξ.
The sequence ξn defined by ξn = minM(x∗ − 1

n) is increasing by Claim 4. above and it
is bounded by the above choices. Thus, there exits a real ξ∗ such that limn→+∞ ξn = ξ∗.
Definition (4.1) and Claim 1. then ensure that ξ∗ ∈ M(x∗) and ξ∗ ≤ ξ. As a consequence,
minM(x∗) ≤ ξ.

To prove the other bound maxM(x∗) ≥ ξ, proceed by contradiction. Assume that
maxM(x∗) < ξ and consider the sequence yn = maxM(x∗ +

1
n), which is decreasing and

bounded below, so that it admits a limit y∗, with y∗ ∈ M(x∗). Thus, y∗ < ξ and for at
least one index n, we have yn < ξ, so that minM(x∗ +

1
n) ≤ yn < ξ which contradicts the

inequality x∗ +
1
n > x∗. ✓

7. Conclusion. By (2.4), for all x, ξ ∈ R, we have that UT (ξ) ≤ U ♭
o(x) + T f∗

(
ξ−x
T

)
. By

Claim 6., for all ξ ∈ R, there exists x ∈ R such that UT (ξ) = U ♭
o(x) + T f∗

(
ξ−x
T

)
. Therefore,

UT (ξ) = inf
x∈R

U ♭
o(x) + T f∗

(
ξ − x

T

)
proving, by Hopf-Lax Formula[14, Theorem 4, Section 3, Chapter 3], that U ♭

o ∈ IHJ
T (UT ; J)

and, hence, that u♭o ∈ ICL
T (uT ; J) by (2.1). □
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Proof of Proposition 2.3. Call g(u) := f(−u). By Definition 4.2, g∗(p) = f∗(−p) for all
p ∈ R. Definition (2.4) of U ♭

o implies that for all x ∈ R

−U ♭
o(x) = inf

ξ∈R

(
−UT (ξ) + T f∗

(
−x− ξ

T

))
= inf

ξ∈R

(
−UT (ξ) + T g∗

(
x− ξ

T

))

By the Hopf-Lax Formula[14, Theorem 4, Section 3, Chapter 3], we have V (T, x) = −U ♭
o(x).

An application of [18, Theorem 1.1] as in (2.1) ensures that v(T, x) = −u♭o(x) and that
v(t, x) = ∂xV (t, x). Finally, the desired bound on the total variation follows from [3, Theo-
rem 6.1]. □

Proof of Corollary 2.4. The equality of the total variations follows from Proposition 2.3
and [3, Theorem 6.1]. Then, left continuous representatives can be exploited. Finally, the
equality SCL

T u♭o = uT implies that co uT (R) ⊆ co u♭o(R). The other inclusion follows from
Theorem 2.1 choosing J := co uT (R). □

Proof of Proposition 2.7. The leftmost equivalence in (2.8) follows directly from (2.1).
Assume now that Uo ∈ IHJ

T (UT ; J). Then, to prove (i), start from (2.2):

∀x ∈ R UT (x)= infξ∈R Uo(ξ) + T f∗
(
x−ξ
T

)
=⇒ ∀x, ξ ∈ R UT (x)≤Uo(ξ) + T f∗

(
x−ξ
T

)
=⇒ ∀x, ξ ∈ R Uo(ξ)≥UT (x)− T f∗

(
x−ξ
T

)
=⇒ ∀ ξ ∈ R Uo(ξ)≥ supx∈R UT (x)− T f∗

(
x−ξ
T

)
= U ♭

o(ξ)

by (2.4). Condition (ii) follows from Proposition 2.6 and (iii) is a consequence of (1.3).
Finally, assume that (i), (ii) and (iii) hold. Define

∀x ∈ R ÛT (x) := inf
ξ∈R

Uo(ξ) + T f∗
(
x− ξ

T

)
(4.3)

so that ÛT ≥ UT by (i) and since U ♭
o ∈ IHJ

T (UT ; J). On the other hand, for any x ∈ R,

UT (x) = U ♭
o

(
πuT (x)

)
+ T f∗

(
x− πuT (x)

T

)
[By Proposition 2.6]

= Uo

(
πuT (x)

)
+ T f∗

(
x− πuT (x)

T

)
[By (ii)]

≥ ÛT (x) [By (4.3)]

completing the proof, thanks to (2.2), (iii) and (1.3). □

Proof of Proposition 2.8. Note first that U ♯
o is well defined. Indeed, fix any x̄ ∈ πU ′

T
(R).

Then, for all Uo ∈ IHJ
T (UT ; J), we have Uo(x̄) = U ♭

o(x̄), by (i) in Proposition 2.7. Then,
calling M := max

{
|w| : w ∈ J

}
, for all x ∈ R, we have that for all Uo ∈ IHJ

T (UT ; J),
∣∣Uo(x)

∣∣ ≤∣∣∣U ♭
o(x̄)

∣∣∣+M |x− x̄|, showing that the sup in (2.9) is in R.

We now prove that U ♯
o satisfies (iii). Indeed, fix x1, x2 ∈ R with x1 < x2. Then, for any

Uo ∈ IHJ
T (UT ; J)

min J ≤ Uo(x2)− Uo(x1)

x2 − x1
≤ max J . (4.4)

13



So that

Uo(x2) ≤ Uo(x1) + (x2 − x1)maxJ Uo(x1) ≤ Uo(x2)− (x2 − x1)minJ

Uo(x2) ≤ U ♯
o(x1) + (x2 − x1)maxJ Uo(x1) ≤ U ♯

o(x2)− (x2 − x1)minJ

U ♯
o(x2) ≤ U ♯

o(x1) + (x2 − x1)maxJ U ♯
o(x1) ≤ U ♯

o(x2)− (x2 − x1)minJ

proving (iii).

To complete the proof, simply observe that U ♯
o satisfies (i) and (ii) by construction. □

Proof of Theorem 2.9. To prove the equality in (2.10), note that the inclusion ⊆ follows

from (i)–(iii) in (2.8) and from the definition of U ♯
o in (2.9). On the other hand, (i) and (iii) are

obvious, while Proposition 2.8 ensures (ii) in (2.8), which then implies the other inclusion ⊇.
Convexity is now straightforward. Compactness in the said topology follows from (2.10) and
Ascoli–Arzelà Theorem [14, § C.7], which can be applied thanks to the compactness of J .

The correspondences described in (2.1) now ensure the equality

ICL
T (uT ; J) =

{
uo ∈ L∞(R; J) : ∃Uo ∈ IHJ

T (UT ; J) such that uo = U ′
o

}
and therefore the convexity of ICL

T (uT ; J). To prove (2.11), use (2.10) and (2.7) and recall that
we set qy = πuT (qx). Sequential compactness follows from (2.11) and from the boundedness of
ICL
T (uT ; J) in the weak-∗ topology, see [4, (ii) in § 4.3.C]. □

4.2 Proofs Related to § 2.2

Lemma 4.4. Let f satisfy (f). Fix uo, vo ∈ L∞(R;R) and call u, respectively, v the weak
entropy solution to{

∂tu+ ∂xf(u) = 0
u(0, x) = uo(x) ,

respectively

{
∂tv + ∂xf(v) = 0
v(0, x) = vo(x) .

Assume there exist T > 0 and x̄ ∈ R such that

u(T, x̄−) = v(T, x̄−) . (4.5)

Then, the map

w(t, x) :=

{
u(t, x) x<π(t)
v(t, x) x≥π(t)

where π(t) := x̄+ (t− T ) f ′ (u(T, x̄−)
)

is a weak entropy solution to{
∂tw + ∂xf(w) = 0
w(0, x) = wo(x)

where wo(x) :=

{
uo(x) x<π(0)
vo(x) x≥π(0) .

An entirely similar statement holds replacing the left trace with the right trace in (4.5) and
in the definition of π.
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Remark that, since T > 0, the existence of the traces in (4.5) is ensured by the uniform
convexity of f by [11, Theorem 11.2.2]. Moreover, by (4.5), the line x = π(t) is a minimal
backward characteristics [11, Theorem 11.1.3] common to both u and v.

Proof of Lemma 4.4. Define

Uo(x) :=
∫ x
π(0) uo(ξ) dξ ; U(t, x) :=

∫ x
π(t) u(t, ξ) dξ ; pu(t, x) :=x− t f ′ (u(t, x−)

)
;

Vo(x) :=
∫ x
π(0) vo(ξ) dξ ; V (t, x) :=

∫ x
π(t) v(t, ξ) dξ ; pv(t, x) :=x− t f ′ (v(t, x−)

)
;

Wo(x) :=
∫ x
π(0)wo(ξ) dξ; W (t, x) :=

∫ x
π(t)w(t, ξ) dξ; pw(t, x) :=x− t f ′ (w(t, x−)

)
.

By (4.5), π is a genuine generalized characteristic of both u and v, and since genuine backward
characteristics do not cross [11, Corollary 11.1.2], we have

∀ (t, x) ∈ [0, T ]× R x<π(t) =⇒ pu(t, x)= pw(t, x)
x≥π(t) =⇒ pv(t, x)= pw(t, x)

so that, by [11, Theorem 11.4.3],

if x < π(t) : if x > π(t) :
W (t, x)=U(t, x) W (t, x)=V (t, x)

=Uo

(
pu(t, x)

)
+ t f∗

(
x−pu(t,x)

t

)
=Vo

(
pv(t, x)

)
+ t f∗

(
x−pv(t,x)

t

)
=Wo

(
pw(t, x)

)
+ t f∗

(
x−pw(t,x)

t

)
; =Wo

(
pw(t, x)

)
+ t f∗

(
x−pw(t,x)

t

)
.

Hence, by [14, Theorem 4, Section 3, Chapter 3] and [11, Theorem 11.4.3], W is the viscosity
solution to {

∂tW + f(∂xW ) = 0
W (0, x) = Wo(x)

which yields the proof by the correspondence in [18, Theorem 1.1], see also (2.1). □

Lemma 4.5. Let f satisfy (f). Let J be a non trivial closed real interval and T be positive.
Fix x1, x2 ∈ R with x2 > x1 and uo, uT ∈ L∞(R; J) such that

uT = SCL
T uo , (4.6)

Define, as shown in Figure 1,

u∗o(x) :=


uo
(
πuT (x1+)+

)
x < πuT (x1+)

uo(x) x ∈ [πuT (x1+), πuT (x2−)]
uo
(
πuT (x2−)−

)
x > πuT (x2−)

u∗T (x) :=


uT (x1+) x < x1
uT (x) x ∈ [x1, x2]
uT (x2−) x > x2 .

Then,
u∗T = SCL

T u∗o .

Proof of Lemma 4.5. Clearly, both constant maps (t, x) 7→ uT (t1+) and (t, x) 7→ uT (t2−)
are entropy solutions to ∂tu + ∂xf(u) = 0. Thus, the proof follows by an application of
Lemma 4.4. □
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t

x

T

0πuT (x1+)

x1

πuT (x2−)

x2

u∗o(x)=uo(x)

SCL
T u∗o(x)=uT (x)

SCL
t u∗o(x)=uT (x2−)SCL

t u∗o(x)=uT (x1+)

Figure 1: Notations used in Lemma 4.5.

Proof of Theorem 2.11. Definition (2.12), implies the inclusion

ICL
T (ûT ; J) [πûT

(x1+),πûT
(x2−)]︸ ︷︷ ︸

here KT=[x1,x2]

⊇ ICL
T (u∗T ; J) [πûT

(x1+),πûT
(x2−)]︸ ︷︷ ︸

here KT=R

.

If the set in the left hand side above, namely ICL
T (ûT ; J) [πûT

(x1+),πûT
(x2−)]

is empty, then

the proof trivially follows. Otherwise, if ICL
T (ûT ; J) [πûT

(x1+),πûT
(x2−)]

̸= ∅, choose any ũo ∈
ICL
T (ûT ; J) [πûT

(x1+),πûT
(x2−)]

. Then, with reference to (2.12), there exists a uo ∈ L∞(R; J)

such that uo
[πûT

(x1+),πûT
(x2−)]

= ũo and SCL
T uo

[x1,x2]
= ûT . An application of Lemma 4.5

completes the proof. □

Proof of Theorem 2.12. Assume that ICL
T (uT ; J) ̸= ∅. Definition (2.12), ensures the

inclusion
ICL
T (uT ; J) [πûT

(x1+),πûT
(x2−)]︸ ︷︷ ︸

here KT=R

⊆ ICL
T (ûT ; J) [πûT

(x1+),πûT
(x2−)]︸ ︷︷ ︸

here KT=[x1,x2]

.

Let uo ∈ L∞(R; J) be such that SCL
T uo = uT . Since also ICL

T (ûT ; J) [πûT
(x1+),πûT

(x2−)]
̸= ∅,

choose any ûo ∈ ICL
T (ûT ; J) [πûT

(x1+),πûT
(x2−)]

. With reference to (2.12), there exists a uo ∈
L∞(R; J) such that uo

[πûT
(x1+),πûT

(x2−)]
= ûo and SCL

T uo
[x1,x2]

= ûT . Define, see Figure 2,

wo(x) :=


uo(x) x<πûT (x1+)

ûo(x) x ∈ [πûT
(x1+), πûT

(x2−)]
uo(x) x>πûT (x2−)

(4.7)

and apply twice Lemma 4.4 using the equalities

SCL
T (uo)(x1+) = ûT (x1+) = SCL

T (uo)(x1+)
SCL
T (uo)(x2−) = ûT (x2−) = SCL

T (uo)(x2−)

16



t

x

T

0πûT
(x1+)

x1

πûT
(x2−)

x2

wo(x)=ûo(x)

SCL
T wo(x)=uT (x)

SCL
t wo(x)=SCL

t uo(x)

SCL
t wo(x)=SCL

t uo(x)

Figure 2: Notation used in (4.7).

in (4.5). One thus obtains SCL
T wo = uT , showing that ûo ∈ ICL

T (uT ; J) [πûT
(x1+),πûT

(x2−)]
. □
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