
HAL Id: hal-04514376
https://hal.science/hal-04514376v1

Submitted on 21 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Approximation algorithms for Job Scheduling with
reconfigurable resources

Pierre Bergé, Mari Chaikovskaia, Jean-Philippe Lucien Gayon, Alain Quilliot

To cite this version:
Pierre Bergé, Mari Chaikovskaia, Jean-Philippe Lucien Gayon, Alain Quilliot. Approximation algo-
rithms for Job Scheduling with reconfigurable resources. Université Clermont-Auvergne, CNRS, Mines
de Saint-Etienne, Clermont-Auvergne-INP, LIMOS, 63000 Clermont-Ferrand; IMT Atlantique, LS2N,
UMR CNRS 6004, F-44307 Nantes. 2024. �hal-04514376�

https://hal.science/hal-04514376v1
https://hal.archives-ouvertes.fr

Approximation Algorithms for Job Scheduling

with Reconfigurable Resources

Pierre Bergé1, Mari Chaikovskaia2, Jean-Philippe Gayon1, and
Alain Quilliot1

1Université Clermont-Auvergne, CNRS, Mines de Saint-Etienne,
Clermont-Auvergne-INP, LIMOS, 63000 Clermont-Ferrand, France

2IMT Atlantique, LS2N, UMR CNRS 6004, F-44307 Nantes,
France

Abstract

We consider a scheduling problem with reconfigurable resources. Sev-
eral types of jobs (e.g. transportation tasks, production operations) have
to be processed by a set of identical resources (e.g. robots, workers, pro-
cessors) over a discrete time horizon. In each time period, teams of re-
sources must be formed to process jobs. During a given time period, a
team handles one type of job and the number of jobs that can be pro-
cessed depends on the team size. A resource which is used to perform
some job type in a given period may be employed for another job type in
the next period. The objective is to determine the minimum number of
resources needed to meet a given demand for each job type. Although this
problem stems from a logistics application with reconfigurable robots, we
focus here on fundamental issues. We show that the resulting strongly
NP-hard Multi Bot problem may be handled in a greedy way with an
approximation ratio of 4/3.

Keywords : Scheduling, Approximation, Complexity

1 Introduction

In many industrial contexts, automatized production must adapt itself to a
fast evolving demand of a large variety of customized products. One achieves
such a flexibility requirement thanks to reconfiguration. Once an operation has
been performed, related either to the production of some good or to its trans-
portation, one may redesign the infrastructure that supported this operation
by adding, removing or replacing some atomic components, or by modifying
the links that connect those components together. Those components may be
hardware (robots, instruments), software or human resources. They behave as

1

renewable resources [2, 3, 11] and move inside the production area in order to fit,
during a given production cycle, with current production/transportation needs.
Depending on the way one assigns those resources to a given operation, one
may not only achieve this operation but also speed it, increase its throughput
or lessen its cost, as in the multi-modal Resource Constrained Project
Scheduling Problem [2].

We consider the following scheduling problem with reconfigurable resources.
Several types of jobs (e.g. production operations, transportation tasks) have to
be processed by a set of identical resources (e.g. workers, robots, processors)
over a discrete time horizon in order to achieve a certain demand. Assigning a
number p of resources to some job of type k gives a certain production cpk: all
production values, called capacities, are given as inputs. In each time period,
teams of resources must be formed to process jobs. A resource which is used
to perform some type of job k at period t may be employed for another type of
job k′ ̸= k in the next period t+1. The objective is to determine the minimum
number of resources needed to obtain a certain production for each type of job.
This problem is called Multi Bot and is strongly NP-hard [6].

It was first introduced in a warehouse logistics context [7] in collaboration
with the MecaBotiX company [15] which designs reconfigurable mobile robots.
In this application, resources are mobile robots and jobs consist in moving loads
of various types, such as pallets or boxes. Those robots are capable of aggre-
gating into a cluster to form poly-robots that can adapt to the type of product
(size/mass) and navigate independently in environments such as warehouses,
production sites or construction sites. Other applications can be found in the
automotive industry where the resources are workers and the processing time
for a task in the assembly line depends on the number of workers assigned to it
[1].

From a theoretical point of view, Multi Bot is strongly related to some clas-
sical scheduling problems of the literature. A very well-known one is Identical-
machines scheduling (IMS), where the objective is to pack items into a set
of identical boxes while minimizing the size of the most filled box [10]. The
standard scheduling notation of IMS is P ||Cmax. Its high multiplicity variant,
denoted by P |HM(n)|Cmax, encodes as binary inputs the number of items with
the same size [4]. These two scheduling problems have been widely studied in
terms of approximation and parameterized complexity [5, 8, 12, 13, 14, 16, 17].
Problem P |HM(n)|Cmax, when the item sizes are polynomially bounded, is a
special case of Multi Bot: consider that any type of job k correspond to some
item size and can be performed only by a specific number of resource pk, the
demands of jobs of type k correspond to the high-multiplicity coefficients of the
related items. In this article, we will use a heuristic of IMS as a sub-routine of
our algorithm.

The main result of this paper is the presentation of a polynomial-time 4
3 -

approximation algorithm for Multi Bot. The impact of this contribution is, in
our opinion, twofold. On one hand, we provide, for industrial applications such
as MecaBotiX robots, a fast and efficient heuristic with the strict guarantee
that it will not fail on pathological instances more than 33% over the optimum.

2

On the other hand, we extend the theoretical knowledge on approximability of
scheduling problems, showing that a generalization of P |HM(n)|Cmax admits a
constant approximation ratio.

The paper is organized as follows. In Section 2, we detail the Multi Bot
problem, remind its ILP formulation and introduce the notions of schedule and
packing. Next we provide in Section 3 the definition of Identical-machines
scheduling (IMS) problem as well as some preliminary observations on the
optimum solutions of Multi Bot. Section 4 is devoted to the description of our
approximation algorithm. This algorithm relies on a polynomial time dynamic
programming algorithm that solves Multi Bot when the periods are merged
into a single macro-period: this is described in Section 5.

2 Problem description and notations

We consider a set of identical resources (for instance robots, workers, etc) which
cooperate in order to process different types of jobs. A p-resource is a config-
uration which makes p resources cooperate on the same job. For example, in
robotics, it models the fact that p elementary robots can assemble together in
order to transport heavy loads. A maximum of P resources may cooperate.
The set of configurations is thus P = {1,. . . ,P}. There are K job types and let
K = {1, . . . ,K}. The demand for type k of jobs is denoted by dk for every type
k ∈ K, and dmax is the maximum demand. In robotics, it models the fact that
there exists K types of loads (pallets, boxes. . .) and that at least dk loads of
type k have to be transported.

All tasks must be executed within a discrete time horizon T = {1, . . . , T}.
At the beginning of each period t ∈ T , the resources may be reconfigured in
order to provide us with numerous configurations which perform jobs for period
t. During a given period t, a p-resource can deal with only a single type k ∈ K,
and its production is given by the capacity cpk. For each type k ∈ K, there is
at least one value p such that cpk is non-zero, i.e. at least one p-resource is able
to process a job of type k. Our purpose is to minimize the number of resources
used into the whole process. If Ht denotes the number of active resources during
period t, then the number of resources necessary to achieve the whole process
is H = max

t∈T
Ht. Let Multi Bot refer to this optimization problem.

2.1 ILP formulation for Multi Bot

More formally, we provide in Problem 1 the integer linear programming (ILP)
formulation of Multi Bot. We denote by xpkt the decision variable representing
the number of jobs of type k performed in configuration p at period t.

Constraint (2) means that we must have a sufficient total capacity to satisfy
demand dk. Quantity

∑
t∈T

∑
p∈P cpk ·xpkt represents the maximum number of

jobs of type k that can be processed over the horizon, given the xpkt. Constraint
(3) means that the number of required resources in period t can be written as

3

Ht =
∑

p,k p · xpkt. Constraint (4) recalls that all decision variables are non
negative integers.

Figure 1 illustrates an optimal solution (i.e. which minimizes H) for the
following instance of Multi Bot. There are two types of jobs (K = 2) and
three periods (T = 3). The maximum size of a performed job is P = 5. The
demands are d1 = 13 and d2 = 10. The capacities for jobs of type 1 are c11 = 1
and c21 = 4. The demand d1 = 13 is achieved as the schedule contains three
2-resources (total production 12) and one 1-resource (production 1) handling
jobs of type k = 1. The capacities for jobs of type 2 are linear in p: for any
1 ≤ p ≤ P , cp2 = p. One can check the demand for k = 2 is also reached.
Furthermore, it is not possible to find a solution which achieves H = 5.

Problem 1 (Multi Bot).

Input: K = {1, . . . ,K} ,P = {1, . . . , P}
T = {1, . . . , T}
Capacities (cpk)p∈P

k∈K

Demands (dk)k∈K

Objective: minimize H = max
t∈T

Ht (1)

subject to:
∑
t∈T

∑
p∈P

cpk · xpkt ≥ dk ∀k ∈ K (2)

Ht =
∑
k∈K

∑
p∈P

p · xpkt ∀t ∈ T (3)

xpkt, H ∈ N ∀k ∈ K, p ∈ P, t ∈ T (4)

2.2 Schedules and packings

A solution of the Multi Bot problem is thus a vector of size PKT :

x = (xpkt)p∈P
k∈K
t∈T

In the remainder, we abuse notation when the context is clear: the same vector
could be denoted implicitly by (xpkt)p,k,t to gain some space. Also, notations
xpkt and xp,k,t refer to the same value.

The input size of Multi Bot is O (T +KP (log cmax + log dmax)). Con-
cretely, values K,P, T can be seen as combinatorial inputs while demands and
capacities are numerical values. Hence, values cpk and dk might be exponential
in the input size, but also xpkt, Ht and H. However, observe that the size of a
solution x is polynomial in the input size. We call such a solution a schedule of
the Multi Bot instance.

Given an instance of Multi Bot,

4

H = 6

p = 4

k = 2

p = 2

k = 1

p = 2

k = 1

p = 3

k = 2
p = 2

k = 1

p = 1

k = 2

p = 1

k = 2

p = 1

k = 2

p = 1

k = 1

t = 1 t = 2 t = 3

Figure 1: An example of schedule x = (xpkt)p,k,t with H = maxt Ht = 6,
meaning that at most 6 resources are used per period.

• let H∗ denote the optimum value for the objective function H,

• let x∗ =
(
x∗
pkt

)
p,k,t

be a schedule reaching this optimum.

In comparison with a schedule x which is a vector with KPT values, a
packing π = (πpk)p∈P

k∈K
represents the schedule of jobs of type k by p-resources,

independently from any time consideration. For example, it can be used to
describe the production process during one specific period. This is a vector
with KP values. Given some schedule x = (xpkt)p,k,t, its associated packing is
simply given by all values πpk =

∑
t∈T xpkt, for all p ∈ P, k ∈ K. In particular,

the packing associated with the optimal schedule x∗ is denoted by π∗ :

π∗ =

(∑
t∈T

x∗
pkt

)
p∈P
k∈K

We pursue with the definition of measures for both schedules and packings.

Definition 1 (Volume). The volume of a packing is the total number of re-
sources involved in this packing. Formally, for π = (πpk)p,k,

vol(π) =
∑
k∈K

∑
p∈P

p · πpk

For the sake of simplicity, we also use this notion for schedules. The volume of
a schedule x is the volume of its associated packing, i.e.

∑
p,k,t p · xpkt.

5

Definition 2 (Maximum). The maximum of a packing π is the maximum p ∈ P
such that some πpk is non-zero. Formally,

max(π) = max {p ∈ P : πpk > 0 for some k}

.

Eventually, we define another measure on packings that we will use in our
approximation algorithm: the scale.

Definition 3 (Scale). Given some integer parameter λ, let us call the big con-
figurations the p-resources with p > 2λ

3 and the medium configurations the p-

resources with λ
3 < p ≤ 2λ

3 . Naturally, the small configurations refer to p ≤ λ
3 .

We define the λ-scale as the number of jobs performed with big configurations
in packing π plus half the number of jobs performed with medium configurations
in π. It is a half-integer:

λ-scale(π) =
∑
k∈K

∑
p> 2λ

3

πpk +
1

2

∑
k∈K

∑
λ
3 <p≤ 2λ

3

πpk (5)

Given a solution x of Multi Bot using H resources, its associated packing
π has a limited H-scale. Indeed, looking at how much medium or big configura-
tions a period can contain, we see that it has at most either one big configuration
or two medium configurations. For example, a period cannot contain both a big
and a medium configuration, by definition. Hence, λ-scale(π) ≤ T .

As an example, for the packing π associated to the schedule proposed in
Figure 1, we have vol(π) = 17, max(π) = 4 and 5-scale(π) = 1 + 4 · 1

2 = 3.

3 Preliminaries

3.1 Approximation algorithms

Unfortunately, Multi Bot is strongly NP-complete for the general case because
it can be reduced from Bin Packing [6]. Consequently, assuming P ̸=NP, there
is no polynomial-time exact algorithm for Multi Bot, even if the numerical
values are supposed to be polynomially-bounded by the input size. A very
natural question is thus the approximability of this problem.

An r-approximation algorithm, r ≥ 1, for Multi Bot is a polynomial-time
algorithm which outputs a solution x = (xpkt)p,k,t such that:

H = max
t∈T

∑
k∈K

∑
p∈P

p · xpkt

 ≤ r ·H∗

Approximation algorithms offer the guarantee that the number of resources
used by the solution returned is at most a linear function of the optimum.

6

3.2 Identical-machines scheduling

We recall the definition and some results related to a well-known problem in
operations research: Identical-machines scheduling [10]. This problem can
be seen as the optimization of Bin Packing by the capacities, where the number
of boxes is fixed. In the scheduling framework, IMS corresponds to P ||Cmax.
Its objective is to assign a set of n tasks given with their processing times to m
identical machines such that the makespan is minimized. To distinguish IMS
with Multi Bot, we will use a slightly different syntax. Formally, we are given
a set of items I = {1, . . . , n} and a set of boxes B = {1, . . . ,m}. An item i has
a certain size si. The objective is to pack all items into the boxes such that
the maximum size packed into a box is minimized. More precisely, we aim at
minimizing the size of the most filled box.

Problem 2 (Identical-machines scheduling (IMS)).

Input: Items I = {1, . . . , n} ,
Boxes B = {1, . . . ,m}
Sizes {si}i∈I

Objective: minimize H (6)

subject to:
∑
j∈B

xij = 1 ∀i ∈ I (7)

Hj =
∑
i∈B

pi · xij j ∈ B (8)

H ≥ Hj j ∈ B (9)

xij ∈ {0, 1} i ∈ I, j ∈ B (10)

Observe that the minimization function of Multi Bot and IMS are similar:
in both problems, we aim at minimizing a certain “volume” of the jobs/items
which have been put into the most filled box/period. Naturally, we will try in the
remainder to reduce - in some sense - instances of Multi Bot into instances
of the well-known problem IMS. There is a natural correspondence between
packings and instances of IMS, since each p-resource perfoming a job k in π
can be seen as an item of size p. Said differently, for any p ∈ P, the

∑
k πpk

resources present in packing π can be converted into
∑

k πpk items of size p.
Given an IMS instance J , we define:

• its volume vol(J) as the total size of its items, i.e. vol(J) =
∑

i∈I si,

• its maximum as the maximum item size: max(J) = maxi∈I si.

A heuristic of IMS will be used as a sub-routine for our approximation
algorithm dedicated to Multi Bot. It is called Longest-processing-time-
first (Lpt-first) [10]. Its description is relatively simple: first sort the items

7

H = 7

2

5

3

3

1

2

3

Figure 2: Output of Lpt-first with item sizes (5, 3, 3, 3, 2, 2, 1)

by decreasing order of their sizes (the largest size comes first), second put the
items into the boxes following this order. The filling must satisfy the following
rule: we always fill the box with the largest empty space, or said differently the
least filled box. Figure 2 shows the packing obtained with Lpt-first for item
sizes (5, 3, 3, 3, 2, 2, 1) with three boxes. Graham showed that Lpt-first is a
4
3 -approximation algorithm [10]. In addition to offering a small approximation
ratio, Lpt-first is a fast algorithm: it runs only in O(n(logm+ log n)).

In the literature, IMS admits other approximation algorithms, such asMul-
tifit [8] which has a ratio 13

11 , proven by Yue [18]. Hochbaum and Schmoys
proposed a PTAS [12] and we know that IMS does not admit a FPTAS since it
is strongly NP-complete [9]. In the remainder, despite the existence of smaller
approximation ratios, we focus only on the Lpt-first algorithm since it allows
us to identify an approximation of Multi Bot with our framework.

3.3 Optimal configurations

We provide a crucial observation for Multi Bot which will help us designing
efficient algorithms in the remainder. This is based on the notion of optimal
configuration described below.

Definition 4 (Optimal configuration for k ∈ K). For any k ∈ K, let p0(k) be
the optimal configuration for jobs of type k, i.e. the configuration p ∈ P which
is the most efficient in terms of resources. In brief,

p0(k) = argmax
p∈P

cpk
p

For any optimum solution x∗ of Multi Bot, given some type k of job, the
number x∗

p0(k),k,t
of p0(k)-resources used at each period t is potentially very

large (exponential in the input size). However, we know that the number of
p-resources used, with p ̸= p0(k), is bounded polynomially by the input size.

8

Lemma 1. There is an optimum solution x∗ for which, for any k ∈ K, and
p ̸= p0(k), x

∗
pkt ≤ p0(k) ≤ P .

Proof. Consider an arbitrary optimum schedule x∗ and assume that some x∗
pkt,

with k ∈ K and p ̸= p0(k), is larger than p0(k). Then, we build a schedule x′

with H ′ = maxt
∑

p,k px
′
pkt at most H∗ and which satisfy all demands. We fix

q = ⌊ x∗
pkt

p0(k)
⌋ ≥ 1. Let x′ be the same schedule than x∗ but replace, at period

t, a number p0(k)q of p-resources processing jobs of type k by a number pq of
p0(k)-resources processing also jobs of type k. Observe that this transformation
does not modify the volume taken for period t. Moreover, the production is
only modified for jobs of type k and, as we used a more efficient configuration in
the new schedule, the production of jobs of type k at period t cannot decrease.
Formally,

P∑
p′=1

cp′kx
′
p′k =

P∑
p′=1

cp′kx
∗
p′k + q

(
pcp0(k),k − p0(k)cpk

)
=

P∑
p′=1

cp′kx
∗
p′k +R

By Definition 4, we know that cp0(k),k ≥ p0(k)
cpk
p , so R ≥ 0. In summary,

schedule x′ ensures at least the same production than x∗, uses the same volume
per period (same H∗). Therefore, it is also an optimum schedule and it satisfies
x′
pkt ≤ p0(k).

From now on, any optimum solution x∗ of Multi Bot will be supposed to
be such as the one described by Lemma 1.

4 Structure and analysis of the approximation
algorithm

In this section, we present the shape of our approximation algorithm. This will
consist in two steps: first solving a slightly different problem from Multi Bot
with only one period, second use its solution to propose a global schedule for
the T periods. We show how the approximation ratio 4

3 can be obtained for the
general Multi Bot when one-period problems are solved exactly.

4.1 Presentation of the algorithm

Our idea to design approximation algorithms for the generalMulti Bot follows.
We call this general framework Bot-approx:

• Step 1. Compute a polynomial-sized collection Π of packings with struc-
tural properties (see Theorem 1 for details),

• Step 2. For each π ∈ Π, create an IMS instance I(π) with T boxes and
items which are directly obtained from the packing π (transformation
π → I(π) is described in Section 4.2),

9

• Step 3. Find an approximate solution for all IMS instances I(π) with
lpt-first. Return the one which corresponds to the best schedule.

Step 1 is very fuzzy for now, and we will introduce in Section 5 our method for
computing this collection of packings. Our objective is to produce a collection
Π containing at least one packing π ∈ Π which is a good candidate for achieving
a satisfying schedule x when we put its p-resources into the periods. Indeed, at
least one packing π ∈ Π will allow us to return after Steps 2 and 3 a schedule x
with H ≤ 4

3H
∗. The properties of this collection Π are presented in Theorem 1.

In particular, all packings of Π will satisfy the demands dk for each type of job
k, i.e.

∑
p∈P cpkπpk ≥ dk.

Theorem 1. Given some Multi Bot instance, we can produce in polynomial
time O(KP 3T 3 +KP 7) a collection Π of at most 3P packings such that:

• each packing in Π satisfy all demands,

• it contains at least one packing π which satisfies vol(π) ≤ vol(π∗),

• if H∗ < 3P , it contains at least one packing π′ which satisfies vol(π′) ≤
vol(π∗), max(π′) ≤ H∗, and H∗-scale(π′) ≤ T .

Proof. Section 5 is entirely dedicated to the proof of this result. Its conclusion
is given in Section 5.4.

In the remainder of this algorithm, we apply Steps 2 and 3 for any packing
in Π. Eventually, as the size of the collection is at most 3P , we will obtain a
set of at most 3P schedules. We will simply keep the one which provides the
minimum H.

Step 2 will be detailed in Section 4.2. For some packing π ∈ Π, a natural
idea is, for each value πpk, p ∈ P, k ∈ K, to create πpk items of size p and solve
IMS with T boxes. Said differently, we can construct an instance, with exactly∑

k πpk items of size p for each p ∈ P, which will be equivalent to the packing
π. In this way, a solution of this IMS instance with T boxes correspond to a
schedule for the initial Multi Bot instance.

Unfortunately, this transformation might not be achieved in polynomial time
as values πpk, which depend on demands dk, can be exponential in the input size
of Multi Bot. In other words, we would create an IMS instance of exponential
size. Hence, we present a polynomial-time method which allows us to handle
this issue and produce a polynomial-sized IMS instance for π, denoted by I(π).

Eventually, Step 3 consists in applying lpt-first on each IMS instance
I(π) - created at Step 2 - with T boxes. The solutions obtained thus corre-
spond to schedules, as the T boxes of IMS represent the periods of Multi Bot
and each of these periods contains a set of performed jobs (represented by the
items), characterized by a configuration p ∈ P and some type of job k ∈ K.
Consequently, the output of the whole process is a collection of |Π| ≤ 3P sched-
ules x. Naturally, we keep the schedule with the minimum H. We will show
that it offers a 4

3 -approximation for Multi Bot (see Theorems 3 and 4).

10

Based on the Theorems 1, 3 and 4 cited above and proved in the remainder
of the article, we present the main result of this paper.

Theorem 2 (Approximation ratio of Bot-approx). Bot-approx is a 4
3 -

approximation algorithm for Multi Bot.

Proof. Consider some instance of Multi Bot. We distinguish two cases, de-
pending on the value of H∗.

If H∗ ≥ 3P , then we know that the collection Π computed at Step 1 con-
tains a packing π with a smaller volume than π∗ (Theorem 1). According to
Theorem 3, the schedule x produced with Lpt-first by considering this initial
packing π offers the guarantee that H ≤ 4

3H
∗.

If H∗ < 3P , then, again from Theorem 1, collection Π contains a packing π′

with a smaller volume than π∗ such that max(π′) ≤ H∗ and H∗-scale(π′) ≤ T .
By Theorem 4, the schedule x′ produced with Lpt-first by considering this
initial packing π′ gives also H ′ ≤ 4

3H
∗.

As Bot-approx returns the schedule minimizing H among all initial pack-
ings π ∈ Π, we are sure to obtain a final solution which uses at most 4

3H
∗

resources.

From now on, in the next sections, our objective is to prove Theorem 1
(Section 5), but also Theorems 3 and 4 (Section 4.3) which are the keystones
for the proof of Theorem 2.

4.2 Transformation of a packing into polynomial IMS

We assume now that we are working with some given packing π, which belongs
to the collection computed with Theorem 1 and is a good candidate to obtain an
approximate solution for the Multi Bot instance. The objective is to “sched-
ule” this packing into T periods. Packing π satisfies all demands dk of the
Multi Bot instance. In order to assign efficiently each performed job of π into
the periods, we model it as an IMS instance and then use Lpt-first to ensure
the approximation factor. We focus in this subsection on the transformation
from packing π to an IMS instance I(π).

A natural way to achieve such equivalent transformation is simply, for each
pair k ∈ K, p ∈ P, to create πpk items of size p. In this way, we obtain an IMS
instance with a volume (i.e. total size of the items) equal to vol(π). Each item
of I(π) thus represents a performed job and its size gives us the number p of re-
sources it involves. Furthermore, we keep in memory, for each item (equivalently
for each p-resource of packing π), which type of jobs this p-resource performs,
even if it has no impact on the instance I(π). Hence, assigning these items to
a period t ∈ T produces a solution of IMS which completely corresponds to a
schedule, since it is equivalent to assigning p-resources performing jobs of type
k to period t, i.e. proposing some vector (xpkt)p,k,t.

Unfortunately, this simple transformation π → I(π) can produce an exponential-
sized instance. As mentioned in the previous subsection, the values πpk might
be exponential in the input size of Multi Bot, as they depend on capacities

11

and demands which are numerical values. To avoid an IMS instance of ex-
ponential size, our idea consists in forming “large” items which will represent
a set of p-resources, instead of a single one. In fact, we will distinguish two
cases. When vol(π) is upper-bounded by some polynomial function of P and T
given below, we use the natural process of transforming each value πpk into πpk

items of size p. Otherwise, each item will correspond to a set of p-resources and
the polynomial size of the constructed IMS instance will be guaranteed. The
formal definition follows.

Definition 5. We define I as a polynomial-time algorithm which given some
packing π = (πpk)p,k, produces an IMS instance with the following rules:

• If vol(π) ≤ 3PT , for each pair p ∈ P, k ∈ K, add πpk items of size p into
instance I(π).

• Otherwise, if vol(π) > 3PT , items will represent a set of at most vol(π)
3T

performed jobs with the same configuration p and performing the same type

k of jobs. Analytically, for each p, let αp = ⌊vol(π)
3pT ⌋. For each pair p ∈

P, k ∈ K, add ⌊πpk

αp
⌋ items of size pαp, and 1 item of size p(πpk−⌊πpk

αp
⌋αp)

The first case, vol(π) ≤ 3PT , corresponds to the natural transformation
described above, so we do not give more details on it. However, the second one,
vol(π) > 3PT , needs extra explanations. Here, an item represents a “block”
of several p-resources performing jobs of types k, in order to ensure that I(π)
has a polynomial size in the encoding of the initial Multi Bot instance. Each
item is thus associated with a configuration p and a type of job k. Considering
some pair (p, k), almost all items associated with it (except one) represent a
number αp of p-resources, so their size is pαp. Their number is given by the
division of πpk (number of p-resources performing jobs of type k in packing π)
by the number αp of p-resources represented by each block. But, if πpk is not
a multiple of αp, an extra item should be added into I(π) to represent the
remaining p-resources.

Observe that, in both cases, the total volume of the IMS instance I(π) is
equal to the volume of packing π as we represented all the performed jobs into
I(π). But the crucial property ensured by transformation I is certainly that
the returned IMS instance has a size polynomial in P,K, T .

Lemma 2. Let π be some packing. The IMS instance I(π):

1. contains O(PKT) items,

2. satisfies vol(I(π)) = vol(π)

3. does not contain items of size greater than H∗

3 if vol(π) > 3PT and
vol(π) ≤ vol(π∗).

12

Proof. 1. If vol(π) ≤ 3PT , then the number of items is exactly
∑

p,k πpk which
is smaller than

∑
p,k p · πpk = vol(π) ≤ 3PT . Else, we know that for each

pair (p, k), there are at most
πpk

αp
+ 1 items. Let µp = vol(π)

3pT . As µp > 1,

αp = ⌊µp⌋ ≥ µp

2 . Hence,

πpk

αp
=

πpk

⌊µp⌋
≤ 2πpk

µp
= 6T

p · πpk

vol(π)
≤ 6T.

Consequently, the total number of items in I(π) is at most PK(6T + 1).
2. The volume of an IMS instance is the sum of the sizes over all its items.

If vol(π) ≤ 3PT , then vol(I(π)) =
∑

p,k p · πpk = vol(π). Otherwise,

vol(I(π)) =
∑
p,k

(
pαp⌊

πpk

αp
⌋+ p(πpk − ⌊πpk

αp
⌋αp)

)
=
∑
p,k

p · πpk = vol(π).

3. If vol(π) > 3PT , then pαp = p⌊vol(π)
3pT ⌋ ≤ vol(π)

3T : as the volume of π is

at most the one of π∗ and H∗ ≥ vol(π∗)
T , it gives pαp ≤ H∗

3 .

4.3 Approximation analysis

The objective of this subsection is to show that, given the IMS instances I(π)
we created with Steps 1 and 2, Lpt-first algorithm provides a 4

3 -approximation
for Multi Bot on at least one of these instances. Indeed, as each I(π) contains
T boxes, which can be seen as the periods of Multi Bot, any of its solution
can be directely converted into a schedule (xpkt)p,k,t.

We begin with the proof of Theorem 3. Given some packing π with a
smaller volume than π∗ and which satisfy all demands, Lpt-first achieves a
4
3 -approximation ratio under the condition: H∗ ≥ 3P .

Theorem 3. Consider some Multi Bot instance and a packing π which sat-
isfies all demands. Moreover, vol(π) ≤ vol(π∗). If H∗ ≥ 3P , then the schedule
x returned by solving I(π) with Lpt-first satisfies H ≤ 4

3H
∗.

Proof. Let N be the number of items in I(π). We know that N = O(PKT)
from Lemma 2. We proceed by induction on the number z of items packed by
Lpt-first. We prove that, for any 0 ≤ z ≤ N , the number of resources present
in each period (or box) after packing the z most large items is at most 4

3H
∗.

The base case is trivial: when z = 0, no item was packed, so the current
H is zero. Now, assume we already packed the z first items and we want
to pack item z + 1. According to Lemma 2, vol(I(π)) = vol(π) ≤ vol(π∗),
therefore there is necessarily a period which contains less than H∗ resources,
otherwise the total volume would overpass TH∗, a contradiction. So, the least
filled period contains at most H∗ resources. Refering to the transformation I,
see Definition 5, if vol(π) ≤ 3PT , each item represents a p-resource, so we pack
item z + 1 of size at most P ≤ H∗

3 into it. The volume of this period after
adding item z + 1 is at most 4

3H
∗. If vol(π) > 3PT , we also pack some item

13

of size at most pαp ≤ H∗

3 according to Lemma 2. Together with the induction
hypothesis, this observation shows us that all periods use at most 4

3H
∗ resources

after packing z + 1 items: H ≤ 4
3H

∗.

Now we fix the other side of the tradeoff, i.e. when H∗ < 3P .

Theorem 4. Consider some Multi Bot instance with λ = H∗ and a packing
π which satisfy all demands. Moreover, vol(π) ≤ vol(π∗), max(π) ≤ λ and
λ-scale(π) ≤ T . If H∗ < 3P , the schedule x returned by solving I(π) with
Lpt-first satisfies H ≤ 4

3H
∗.

Proof. AsH∗ < 3P , vol(π) ≤ vol(π∗) ≤ TH∗ < 3PT , hence the transformation
I simply consists, for each pair (p, k), in adding πpk items of size p. As a
consequence, each item represents exactly one p-resource of packing π.

Lpt-first packs first the items of sizes p > 2H∗

3 . We look at the packing
after adding only these big items. As λ = H∗ and λ-scale(π) ≤ T , then there
are at most T big items. Moreover, all big items (p > 2H∗

3) do not overpass a
size H∗, as max(π) ≤ λ. So, at this moment, at most 1 item is present in each
period, their size is at most H∗ resources, and the periods which are not filled
with one big item are empty.

Second, Lpt-first packs the medium items of sizes p > H∗

3 which are not
big. The empty boxes are filled and, when none of them is empty anymore, the
remaining medium items are packed upon another medium item, as their boxes
are less filled than the ones with big items. There cannot be three medium items
into one period t and only one medium item into another period t′ since the
volume of two medium items is at least 2H∗

3 and is necessarily larger than for
exactly one medium item. Consequently, if there is a period with at least three
medium items, then all other periods containing medium items are made up of
two of them at least. However, having such a period with three medium items
contradicts the scale criterion as we would have λ-scale(π) > T . Consequently,
there cannot be more than two medium items per period, and the number of
resources present in the periods filled with medium items is at most 4H∗

3 .

λ = 7

7
6

4

4

3

4 4

2

1

1

λ
3

2λ
3

5

t = 1 t = T

Figure 3: The result of Lpt-first after filling periods with big and medium
items first. Items of sizes 1 and 2 (p ≤ λ

3) have still to be treated.

Figure 3 illustrates an example of item assignment with Lpt-first after
considering big (drawn in red) and medium (in green) items only. We fix λ = 7,

14

T = 6, and items sizes (7, 6, 5, 4, 4, 4, 4, 3, 2, 1, 1). The small items, in blue, are
not put inside the boxes yet.

The end of the proof consists in applying again the argument used in the
proof of Theorem 3. Now, all periods contain at most 4H∗

3 resources: the periods
with one big item do not exceed H∗ and the periods with at most two medium
items do not exceed 4H∗

3 . The remaining items have size at most H∗

3 , and
vol(π) ≤ vol(π∗). So, at any step, the least filled period will contain at most
H∗ resources in order to satisfy the volume condition: we can pack a small item
into it without exceeding the bound 4H∗

3 .

5 Generation of packings with small volume

The objective of this section is to generate suitable packings for approximat-
ing Multi Bot. More precisely, we aim at fixing the process of Step 1 of
our algorithm Bot-approx. As stated in Theorem 1, we want to produce in
polynomial-time a collection Π of packing with certain requirements. This sec-
tion is dedicated to the proof of Theorem 1. The conclusion of this proof is
given in Section 5.4.

We focus on the specific formulation of Multi Bot where T = 1. The
objective of this problem is to determine the minimum number of resources
needed to process all jobs - at least dk jobs of type k for all k ∈ K - in one
single period, without reconfiguration. We denote it by Multi Bot 1P. Its
mathematical formulation can be obtained by simply replacing T = 1 into the
one given in Problem 1. A solution is thus a packing (πpk)p,k as the parameter
t does not intervene anymore here. The goal is to minimize the total number of
resources, i.e.

∑
k∈K

∑
p∈P p·πpk, while all demands are satisfied, i.e.

∑
p∈P cpk·

πpk ≥ dk for any k ∈ K.
Concretely, solving Multi Bot 1P provides us with the optimal way to

process all jobs during only one session. From Section 2.1, we know that the
input size of Multi Bot 1P is O(KP (log cmax + log dmax)). We will see in
the remainder that an optimal packing for Multi Bot 1P can be found in
polynomial time.

5.1 Optimal packings with limited volume and scale

To deal with the requirements of Theorem 1, we define a problem which is more
general than Multi Bot 1P. We call it Multi Bot 1P[λ, τ]: it makes two
extra parameters λ, τ ∈ N intervene, see Problem 3.

We describe the non-trivial constraints presented in Problem 3. Constraint
(11) means that we must have a sufficient capacity to satisfy all demands dk.
Constraint (12) means that the volume of the packing must be at most λT .
Constraint (13) means that a performed job must contain no more than λ re-
sources. Finally, constraint (14) implies that the λ-scale of the resulting packing
must be less than τ . Without constraint (12), the problem would always admit

15

a solution, but its volume H could be as large as possible. Here, we are only
interested in solutions with a volume bounded by some polynomial function.

Observe that if λ → +∞, constraints (12), (13) and (14) disappear and the
problem “tends to” Multi Bot 1P, which always admit a solution. In the re-
mainder, we abuse notation and denote by λ = ∞ this case. Our idea consists in
solvingMulti Bot 1P[λ, τ] for τ = T and all values λ ∈ {1, 2, 3, . . . , 3P − 1,∞}:
if we find a solution, it will be put into collection Π.

Problem 3 (Multi Bot 1P[λ, τ]).

Input: K = {1, . . . ,K} ,P = {1, . . . , P}
Capacities (cpk)p∈P

k∈K

Demands (dk)k∈K

λ, τ ∈ N, 1 ≤ λ ≤ 3P

Objective: find a packing π = (πpk)p∈P
k∈K

which

minimizes H or state “no solution exists”

subject to:
∑
p∈P

cpk · πpk ≥ dk ∀k ∈ K (11)

∑
k∈K

∑
p∈P

p · πpk = H ≤ λτ (12)

πpk = 0 ∀k ∈ K, p > λ (13)∑
k∈K

∑
p> 2λ

3

πpk +
1

2

∑
k∈K

∑
λ
3 <p≤ 2λ

3

πpk ≤ τ (14)

πpk, H ∈ N, ∀k ∈ K, p ∈ P (15)

Concretely, let π(λ) denote an optimum packing for Multi Bot 1P[λ, T] if
it exists. We define:

Π = {π(λ) : 1 ≤ λ ≤ 3P − 1 or λ = ∞} (16)

Collection Π will contain at least 1 packing because π(∞) necessarily exists,
and at most 3P packings. We prove now that the optimum solutions for all
these problems produce the expected collection of packings.

Theorem 5. Packings π(λ) satisfy the following properties:

1. for any λ, π(λ), if it exists, satisfies all demands dk,

2. vol(π(∞)) ≤ vol(π∗),

3. if H∗ < 3P , then π(H∗) exists and we have: vol(π(H∗)) ≤ vol(π∗),
max(π(H∗)) ≤ H∗, H∗-scale(π(H∗)) ≤ T .

16

Proof. 1. The constraint (11) implies that any solution achieves all demands,
independently from value λ.

2. Observe that the solutions (not necessarily optimal) ofMulti Bot 1P[∞, T]
correspond exactly to the set of packings satisfying all demands - constraint (11).
Indeed, constraints (13) and (14) disappear when λ = ∞. In particular, π∗ is
one of these solutions and hence vol(π(∞)) ≤ vol(π∗).

3. The reasoning is similar: if H∗ < 3P , then π∗ is a solution of
Multi Bot 1P[H∗, T]. Obviously it satisfies all demands and its volume is at
most TH∗. Furthermore, as each period in schedule x∗ contains at most H∗ re-
sources, i.e. H∗

t =
∑

p,k x
∗
pkt ≤ H∗, then necessarily xpkt = 0 when p > H∗. So,

πpk = 0 for p > H∗ and any k ∈ K. Finally, each period of schedule x∗ cannot

contain both a big configuration (p > 2H∗

3) and a medium one (H
∗

3 < p ≤ 2H∗

3).
It cannot contain either three medium ones as it overpasses capacity H∗. As
a conclusion, each period contains at most either a big configuration or two
medium ones: the H∗-scale of π∗ is at most T . Hence, Multi Bot 1P[H∗, T]
admits at least one solution π∗, so π(H∗) exists. As π(H∗) is the solution min-
imizing the volume, we have vol(π(H∗)) ≤ vol(π∗). The two other inequalities
are the consequences of the definition of Multi Bot 1P[H∗, T].

The collection Π meets the requirements of Theorem 1. Now, we prove that
all these packings can be built in polynomial time.

5.2 Dynamic programming for the single-period problems

We begin with the generation of packings π(λ) for 1 ≤ λ ≤ 3P − 1. We will
deal with the case λ = ∞ in Section 5.3. We fix some positive integer λ with
λ ≤ 3P − 1. Our objective is to solve Multi Bot 1P[λ, T] and, hence, to
obtain either some packing π(λ) or a negative answer. We present a dynamic
programming (DP) procedure to achieve this task.

Structure of DP memory. From now on, variable τ represents a positive
half-integer upper-bounded by T and W a positive integer representing the
authorized volume, which is at most λT .

We construct a four-dimensional vector Table, whose elements are Table[p, k,W, τ]
with three integers 0 ≤ p ≤ λ, 1 ≤ k ≤ K, 0 ≤ W ≤ λT and a half-integer
0 ≤ τ ≤ T . Hence, the total size of the vector is λ2T 2K = O(P 2T 2K). The
role of this vector is to help us producing intermediary packings which allows
us to obtain potentially the solution of Multi Bot 1P[λ, T]. Intuitively, in-
dex k provides us with the types 1, . . . , k of jobs we have to consider. Index
p is the maximum configuration which can be used to perform jobs of type k.
Eventually, W is a volume limit for the packing and τ is the λ-scale limit.

We denote by π[p, k,W, τ] a packing which:

• produces only jobs of type 1, 2, . . . , k: πpk′ = 0 when k′ > k,

• uses only configurations 1, 2, . . . , p to process the jobs of type k: πp′k = 0
when p′ > p,

17

• satisfies the demands until dk−1:
λ∑

p′=1

cp′k′ · πp′k′ ≥ dk′ for all 1 ≤ k′ < k,

• has a volume at most W :
λ∑

p′=1

k∑
k′=1

p′ · πp′k′ ≤ W ,

• has a λ-scale at most τ : λ-scale(π) ≤ τ ,

• maximizes the number of jobs of type k processed, i.e.
λ∑

p′=1

cp′k · πp′k.

Packing π[p, k,W, τ] does not necessarily exist since reaching the demands
might be avoided by the volume and scale conditions. Observe that, by def-
inition, Multi Bot 1P[λ, T] admits a solution if and only if π[λ,K, λT, T]
exists and satisfies the demands for jobs of type K. Also, for the specific
value p = 0, the packing π[0, k,W, τ] cannot use any configuration for jobs
of type k, so in fact it does not process jobs of type k at all. We can fix:
π[0, k,W, τ] = π[λ, k − 1,W, τ]. The particular case p = 0 and k = 1 gives an
empty packing π[0, 1,W, τ]: it will be forgotten in the remainder.

The objective of vector Table is to contain either the production of jobs of
type k by π[p, k,W, τ] if it exists, or −∞. More formally,

Table[p, k,W, τ] =

p∑

p′=1

cp′kπp′k if π[p, k,W, τ] = (πp′k′)p′,k′ exists

−∞ otherwise

(17)

In addition, we also compute two vectors Bool and Pack with the same
dimension sizes than Table. Vector Bool simply indicates, with a boolean,
whether π[p, k,W, τ] satisfies the demand dk for jobs of type k (Bool[p, k,W, τ] =
True) or not (= False). Finally, vector Pack provides us with some information
which allows us to retrieve exactly the composition of π[p, k,W, τ]. More details
on vector Pack will follow.

Before stating our recursive formula to achieve the DP algorithm, we define
an extra function Sp,λ for any 1 ≤ p ≤ λ. Given some half-integer “budget”
τ and an integer j, it returns the updated λ-scale budget which remains after
adding a number j of p-resources to some packing. Formally,

Sp,λ(τ, j) =

τ if p ≤ λ

3

τ − j

2
if

λ

3
< p ≤ 2λ

3

τ − j if p >
2λ

3

Recursive formula. We state now a recursive formula for computing all
values of Table, Bool and Pack. We begin with the recursive scheme of Table
and Bool.

18

The base case is p = k = 1. Packing π[1, 1,W, τ] has no demand to satisfy,
therefore it necessarily exists. It corresponds to taking the maximum number
of 1-resources which satisfy both the volume and scale conditions:

∀W, ∀τ, Table[1, 1,W, τ] = max
0≤j≤W

S1,λ(τ,j)≥0

j · c11 (18)

Bool[1, 1,W, τ] = True ⇔ Table[1, 1,W, τ] ≥ d1 (19)

For the general statement, we distinguish two cases. First assume that p = 0
and k > 1. We have π[0, k,W, τ] = π[λ, k − 1,W, τ].

Table[0, k,W, τ] =

{
0 if Table[λ, k − 1,W, τ] ≥ dk−1

−∞ otherwise
(20)

Bool[0, k,W, τ] = False (21)

Second, assume that p ≥ 1, i.e. jobs of type k can be processed by p′-
resources, with p′ ≤ p. We write:

Table[p, k,W, τ] = max
0≤j≤⌊W

p ⌋
Sp,λ(τ,j)≥0

Bool[λ,k−1,W−jp,Sp,λ(τ,j)]

Table[p−1, k,W−jp, Sp,λ(τ, j)]+jcpk (22)

Bool[p, k,W, τ] = True ⇔ Table[p, k,W, τ] ≥ dk (23)

Index j represents the number of p-resources we might add to our packing.
Naturally, this addition should overpass neither the volume constraint (j ≤ W

p),

nor the scale one (Sp,λ(τ, j) ≥ 0). Furthermore, Bool[λ, k−1,W −jp, Sp,λ(τ, j)]
must be True as it guarantees that demands d1, . . . , dk−1 can be satisfied before
the add-on of j p-resources. It may happen that no index j (even j = 0) satisfies
these three conditions. In this case, we fix Table[p, k,W, τ] = −∞.

Observe that Table[p, k,W, τ] = −∞ if and only if Bool[λ, k − 1,W, τ] is
False. This makes sense since it means that with the volume W and the scale
τ we are considering, the demands for jobs of type 1, 2, . . . , k − 1 could not
be reached. Figure 4 provides us with a 2D-view of vector Table, highlighting
the area where values are base cases and giving examples of recursive calls,
following Equations (20) and (22). We prove that Table[p, k,W, τ] is equal to
the expectations expressed in Equation (17).

Lemma 3. If π[p, k,W, τ] = (πp′k′)p′,k′ exists, then:

• Table[p, k,W, τ] =
∑

p′ cp′k · πp′k.

• Bool[p, k,W, τ] = True if and only if π[p, k,W, τ] satisfies demand dk.

Otherwise, Table[p, k,W, τ] = −∞ and Bool[p, k,W, τ] = False.

19

0

p = 0 p = 1 p = λ

k = 1

k = K

W

τ

Table(p, k,W, τ)
Table(p− 1, k,W − p, τ − 1

2)

Table(0, k′,W ′, τ ′)

Table(λ, k′ − 1,W ′, τ ′)

Base cases

Figure 4: 2D-projection of the 4D-vector Table illustrating the different recur-
sive calls

Proof. First, we handle the base case. If p = k = 1, then π[1, 1,W, τ] ex-
ists and is the singleton packing (π11) which processes the maximum number
of jobs of type 1 with 1-resources while satisfying both the volume and scale
constraints. Then, Table[1, 1,W, τ] must be equal to π11c11, which perfectly
fits with the definition given in Equation (18). Moreover, according to Equa-
tion (19), Bool[1, 1,W, τ] is True if and only if π[1, 1,W, τ] reaches demand
dk = d1.

We proceed inductively. Assume that the statement is achieved not only for
all pairs (p′, k′) such that k′ < k but also when k′ = k′ and p′ < p.

If π[p, k,W, τ] does not exist, then it means that demands d1, . . . , dk−1 can-
not be satisfied with volume W and scale τ constraints. So, Table[λ, k −
1,W, τ] < dk−1 and Bool[λ, k − 1,W, τ] is False by induction. Consequently,
Equations (20) and (22) ensure us that Table[p, k,W, τ] = −∞ and Bool[p, k,W, τ] =
False, as expected. In the remainder of this proof, we assume π[p, k,W, τ] exists.

If p = 0, then π[0, k,W, τ] = π[λ, k − 1,W, τ]. As this packing does not
process any job of type k, we fixed Table[p, k,W, τ] = 0, see Equation (20).
Hence, as stated in Equation (21), π[0, k,W, τ] obviously does not satisfy de-
mand dk > 0.

If p > 0, then π[p, k,W, τ] is made up of a certain number j ≥ 0 of p-
resources which process jobs of type k, and all other components which can
be seen together as a slightly smaller packing. The latter packing must satisfy
the demands for jobs of type 1, . . . , k − 1 and also maximize the number of
processed jobs of type k with configurations 1, . . . , p − 1, while fulfilling the
volume and scale constraints, even if we know that already a number j of p-
resources have to be counted. Hence, π[p, k,W, τ] can be obtained from π[p −
1, k,W − jp, Sp,λ(τ, j)] by adding only πpk = j. This justifies Equation (22).
Finally, as stated in Equation (23), Bool[p, k,W, τ] is True if and only if demand
dk is satisfied by π[p, k,W, τ], i.e. Table[p, k,W, τ] ≥ dk.

20

Values Table[p, k,W, τ] provide us with the number of jobs of type k pro-
cessed by optimum packings π[p, k,W, τ]. Nevertheless, our initial objective is to
obtain the composition of these packings. To achieve it, we create a third table
Pack with the same dimensions than Table and Bool. A first natural idea would
be to fill each element Pack[p, k,W, τ] with the packing π[p, k,W, τ]. However,
as the encoding size of π[p, k,W, τ] is at least PK, it will have some relatively
strong impact on the complexity of our algorithm. Hence, we fill Pack[p, k,W, τ]
only with the necessary information needed to retrieve the packings.

If Table[p, k,W, τ] = −∞ or p = 0, then Pack[p, k,W, τ] is kept empty. Else,
we define Pack[p, k,W, τ] as the integer j which is the number of p-resources
processing jobs of type k in π[p, k,W, τ].

Pack[p, k,W, τ] =

j if p = k = 1 and Table[1, 1,W, τ] = jc11

j if Table[p, k,W, τ] = Table[p− 1, k,W − jp, Sp,λ(τ, j)] + jcpk

empty otherwise
(24)

Observe that the encoding size of each value Pack[p, k,W, τ] is nowO(log(λT)).
Some packing π[p, k,W, τ] can now be recovered with the following process, we
call Recover:

• if Table[p, k,W, τ] = −∞, then π[p, k,W, τ] does not exist.

• if p = k = 1 and Pack[1, 1,W, τ] = j, then π[1, 1,W, τ] is the singleton
(π11) with π11 = j.

• if p = 0 and k > 1, then π[0, k,W, τ] = π[λ, k − 1,W, τ].

• if Pack[p, k,W, τ] = j, compute recursively packing π[p−1, k,W−jp, Sp,λ(τ, j)]
with Recover and add πpk = j to it.

We remind that if Table[λ,K, λT, T] ≥ 0, then π[λ,K, λT, T] exists and
it gives us some π(λ) if and only if the demand dK is achieved. Otherwise,
if Table[λ,K, λT, T] = −∞, then there is no packing π(λ) for sure. As a
consequence, the following algorithm solves Multi Bot 1P[λ, T]: first compute
simultaneously the three tables Table, Bool and Pack, second answer NO if
Table[λ,K, λT, T] = −∞, otherwise retrieve packing π[λ,K, λT, T] recursively
with sub-routineRecover. If π[λ,K, λT, T] satisfies demand dK , then return it
as π(λ), else answer NO. We call this algorithm Bot-ProgDyn (Algorithm 1).

Theorem 6. Bot-ProgDyn solves Multi Bot 1P[λ, T] with a running time
O(λ3T 3K).

Proof. From Lemma 3, we know that Table[λ,K, λT, T] ≥ dK if and only if
π(λ) exists. Therefore, as Bot-ProgDyn achieves the dynamic programming
to fills Table, it returns the solution of Multi Bot 1P[λ, T].

We focus now on the running time of Bot-ProgDyn. The dynamic pro-
gramming routine uses a memory space of sizeO(λ2T 2K), and each computation

21

Algorithm 1: Exact algorithm Bot-ProgDyn which solves
Multi Bot 1P[λ, T]

1: Input: Instance of Multi Bot 1P[λ, T]
2: Output: A packing π(λ) or answer NO
3: Initialize Table, Bool and Pack as empty vectors;
4: for all 1 ≤ W ≤ λT and 1 ≤ τ ≤ T do
5: fix Table[1, 1,W, τ], Bool[1, 1,W, τ], Pack[1, 1,W, τ] with

respectively Equations (18), (19), and (24);

6: endfor
7: p = 1;
8: for all 1 ≤ k ≤ K do
9: while p ≤ λ do
10: for all 1 ≤ W ≤ λT and 1 ≤ τ ≤ T do
11: fix Table[p, k,W, τ], Bool[p, k,W, τ], Pack[p, k,W, τ] with

Equations (20-24);

12: endfor
13: p = p+ 1

end
14: p = 0;

15: endfor
16: D = Table[λ,K, λT, T];
17: if D ≥ dK then return Recover(λ,K, λT, T)
18: return NO

uses at most λT recursive calls: the worst case occurs with Equation (22) and
the computation of Table[λ,K, λT, T]. Consequently, the number of compar-
isons/affectations/arithmetic operations is O(λ3T 3K).

Furthermore, the time needed to apply recover is negligible compared to
the latter. Indeed, the number of recursive calls needed to compute π(λ,K, λT, T)
is at most the size of vector Pack, which is O(λ2T 2K).

5.3 Optimum packing with unlimited scale

We focus on problemMulti Bot 1P, which is equivalent toMulti Bot 1P[∞, T]
(T has no influence here). In other words, we aim at producing the packing
π(∞) which will be denoted π in this subsection to simplify notations.

Our reasoning is based on the result stated in Lemma 1. We will assume that
the packing π = (πpk)p,k admits low values for non-optimum configurations,
i.e. πpk ≤ p0(k) for any k ∈ K and p ̸= p0(k) (consequence of Lemma 1). This
packing π can be decomposed into two parts: on one hand, the values πp0(k),k

for optimal configurations and, on the other hand, a packing π′ = (π′
pk)p,k

taking only values for non-optimum configurations. Formally,

22

π′
pk =

{
πpk if k ∈ K, p ∈ P, p ̸= p0(k)

0 if k ∈ K, p = p0(k)

This sub-packing, as expected, has a small volume. Let W (P) = P P (P−1)
2 .

We have vol(π′) =
∑

p,k p · π′
pk ≤

∑
k

∑
p ̸=p0(k)

p · p0(k) ≤ K · W (P). More

precisely, the volume of π′ dedicated to each type of job is at most W (P).
Our construction of packing π is inductive. For any 1 ≤ k ≤ K, we denote

by πj = (π
(j)
pk)p,k a packing satisfying the following properties:

• πj satisfies the demands for all types of jobs,

• for any 1 ≤ i ≤ j, πj uses the minimum number of resources to satisfy
demand di with all configurations allowed,

• for any j < i ≤ K, uses the minimum number of resources to satisfy
demand di with only configuration p0(j) allowed.

First, observe that πK is a solution of Multi Bot 1P since it satisfies all
demands while minimizing the total volume of the packing. Therefore, we can
state π = πK . Furthermore, π0 is a packing satisfying all demands which
minimizes the total volume by using only optimal configurations for each type
of jobs. It can be determined analytically and this will be the base case of our
induction. For any 1 ≤ k ≤ K,

πp0(k),k =

⌈
dk

cp0(k),k

⌉
By definition, all other components of packing π0 are zero. Below, we pro-

ceed the inductive step.

Lemma 4. Assume packing πj is known. One can build packing πj+1 in time
O(W (P)2P) using the algorithm Bot-ProgDyn.

Proof. We remind that we are working on some instance I of Multi Bot 1P =
Multi Bot 1P[∞, 0] (we remind that when λ = ∞, then the second parameter
has no influence on the definition of the problem, so we put 0 arbitrarily).
We define another instance J of Multi Bot 1P[∞, 0]. Instance J contains
only one job type, which corresponds to the jobs of type j + 1 in I. Then, the
capacities in J are exactly the capacities cp(j+1) of jobs of type j+1 in I, except
for the optimal configuration for which we fix cp0(j+1),j+1 = 0. Concretely,
p0(j + 1) will not be used in the solutions of J . We do not need to fix any
demand constraint because, with only one job type, it will not intervene in
algorithm Bot-ProgDyn.

Using Bot-ProgDyn on instance J , we build vectors Table and Pack (with
exactly one job type, Bool is not necessary) with limited volume W (P). In
brief, we stop the procedure when Table[P, 1,W (P), 0] and Pack[P, 1,W (P), 0]
are obtained. Thanks to these vectors, we are able to obtain, for any volume

23

0 ≤ W ≤ W (P), a packing which processes only jobs of type j+1, with volume
at most W , and which maximizes the production.

By induction hypothesis, we know that packing πj already minimizes the
volume used to process the necessary demand for jobs of type 1, . . . , j. Thus, we
focus only on jobs of type j + 1. Moreover, the volume W used to process jobs
of type j + 1 in packing πj+1 with non-optimal configurations does not exceed
W (P) (consequence of Lemma 1). Hence, we compute for all possible volumes
0 ≤ W ≤ W (P), the packing which maximizes the production of jobs of type
j + 1 while maintaining at most volume W . The production of such packing
is given by Table[P, 1,W, 0]. It suffices to guess the volume W taken by non-
optimal configurations, to compute the packing maximizing the production of
jobs of type j+1 with this volume and, eventually, to add optimal configurations
p0(j+1) while the demand is not satisfied. At least one of these volumes W will
provide us with a packing πj+1 satisfying the properties stated above. Formally,
we define:

Wj+1 = min
0≤W≤W (P)

W +

⌈
dj+1 − Table[P, 1,W, 0]

cp0(j+1),(j+1)

⌉
. (25)

The right-hand side of Equation (25) is the total volume used for processing
jobs of type j + 1 when the demand has to be satisfied and also when exactly
W resources are assigned to non-optimum configurations.

Once the optimum volume Wj+1 for non-optimum configurations was deter-
mined, we fix, for the optimal configuration p0(j + 1):

π
(j+1)
p0(j+1),j+1 =

⌈
dj+1 − Table[P, 1,Wj+1, 0]

cp0(j+1),(j+1)

⌉
For p ̸= p0(j + 1), the number of p-resources assigned for the process of jobs
of type j + 1 is directly given by the packing which can be recovered from
Pack[P, 1,Wj+1, 0].

Theorem 7. Multi Bot 1P can be solved in time O(KP 7).

Proof. We state the full inductive process here. First, we compute packing
π0 with analytical formulas in time O(KP). Then, we construct inductively
all packings πj for 1 ≤ j ≤ K thanks to Lemma 4. Eventually, packing πK

provides us with a solution of Multi Bot 1P. As there are exactly K inductive
steps and each step runs in O(P 7) according to Theorem 6, the total running
time for computing π(∞) is O(KP 7).

5.4 Computation of collection Π

Combining the results obtained in both Sections 5.2 and 5.3, we are now ready
for the computation of the whole collection Π of packings which will allow us
to obtain a 4

3 -approximation for Multi Bot.

Proof of Theorem 1. According to Theorem 6, each packing π(λ), 1 ≤ λ ≤
3P − 1, can be produced in time O(λ3T 3K) (or the algorithm warns us that

24

such packing does not exist). Then, according to Theorem 7, packing π(∞) can
be computed in time O(KP 7). Consequently, we build the collection described
in Equation (16) with the time announced.

By definition, any packing π(λ), if it exists, satisfies all demands (Prob-
lem 3). Packing π(∞), which necessarily exists, is the packing which satis-
fies all demands while minimizing the volume. As π∗ is a (not necessarily
optimal) solution of Multi Bot 1P, then its volume is at least vol(π(∞)).
Finally, if H∗ < 3P , then packing π(H∗) exists since π∗ is a solution of
Multi Bot 1P[H∗, T]: it satisfies all demands, its volume is at most TH∗,
its maximum at most H∗ and its scale is at most T .

6 Conclusion and perspectives

In this article, we present a 4
3 -approximation for a combinatorial problem - gen-

eralizing high-multiplicity IMS - which consists in finding the optimum schedule
for a fleet of reconfigurable robots given some demands for all types of processed
jobs. We believe that this problem, we called Multi Bot, could describe many
situations involving reconfigurable systems, such as work plannings for teams
of employees for example. Therefore, our approximation algorithm is, in our
opinion, not only an important achievement for the industrial use of reconfig-
urable robots but also for other scheduling areas. Indeed, it offers the theoretical
guarantee to be close to the optimum schedule, and in practice the performance
should be in fact much smaller than this upper bound.

A drawback of our algorithm could be the exponent 7 over parameter P in
its running time. For the reconfigurable robots application, it is not since in
practice P is smaller than 15 (no more than 14 elementary robots of MecaBotiX
can be assembled together). Nevertheless, this time complexity has to be taken
into account and perhaps some improvements could be proposed.

A natural question is whether this approximation factor 4
3 can be improved.

The answer is yes, as we are currently writing a PTAS for Multi Bot. This is a
very interesting theoretical result, as it shows us that any approximation factor
can be achieved, but, at the same time, it does not offer a performing running
time for industrial application. This contribution will be presented soon.

A possibility would be to design the same algorithm by replacing Lpt-first
with another heuristic for IMS, for example Multifit. Indeed, the approxi-
mation ratio of Multifit is 13

11 . However, the analysis of Multifit is much
more involved [18] than the one for Lpt-first. As a consequence, it is more
difficult to see which are the properties our packings should satisfy in order to
obtain a lower approximation ratio for Multi Bot. Nevertheless, it will be the
next direction of research to look at on this subject.

25

References

[1] O. Battäıa, X. Delorme, A. Dolgui, J. Hagemann, A. Horlemann, S. Ko-
valev, and S. Malyutin. Workforce minimization for a mixed-model assem-
bly line in the automotive industry. International Journal of Production
Economics, 170:489–500, 2015.

[2] U. Beşikci, U. Bilge, and G. Ulusoy. Multi-mode resource constrained multi-
project scheduling and resource portfolio problem. European Journal of
Operational Research, 240(1):22–31, 2015.

[3] N. Boysen, P. Schulze, and A. Scholl. Assembly line balancing: What hap-
pened in the last fifteen years? European Journal of Operational Research,
301(3):797–814, 2022.

[4] N. Brauner, Y. Crama, A. Grigoriev, and J. van de Klundert. A frame-
work for the complexity of high-multiplicity scheduling problems. J. Comb.
Optim., 9(3):313–323, 2005.

[5] H. Brinkop and K. Jansen. High multiplicity scheduling on uniform ma-
chines in FPT-time. CoRR, abs/2203.01741, 2022.

[6] M. Chaikovskaia. Optimization of a fleet of reconfigurable robots for logistics
warehouses. PhD thesis, Université Clermont Auvergne, France, 2023.

[7] M. Chaikovskaia, J.-P. Gayon, and M. Marjollet. Sizing of a fleet of coop-
erative and reconfigurable robots for the transport of heterogeneous loads.
In 2022 IEEE 18th International Conference on Automation Science and
Engineering, pages 2253–2258, 2022.

[8] E. G. Coffman, Jr., M. R. Garey, and D. S. Johnson. An application of
bin-packing to multiprocessor scheduling. SIAM Journal on Computing,
7(1):1–17, 1978.

[9] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide
to the theory of NP-completeness. 1979.

[10] R. L. Graham. Bounds on multiprocessing timing anomalies. SIAM Journal
on Applied Mathematics, 17(2):416–429, 1969.

[11] S. Hartmann and D. Briskorn. An updated survey of variants and ex-
tensions of the resource-constrained project scheduling problem. European
Journal of operational research, 297(1):1–14, 2022.

[12] D. S. Hochbaum and D. B. Shmoys. Using dual approximation algorithms
for scheduling problems: Theoretical and practical results. In Procs. of
FOCS, pages 79–89. IEEE Computer Society, 1985.

[13] D. Knop, M. Koutecký, and M. Mnich. Combinatorial n-fold integer pro-
gramming and applications. Math. Program., 184(1):1–34, 2020.

26

[14] S. T. McCormick, S. R. Smallwood, and F. Spieksma. A polynomial algo-
rithm for multiprocessor scheduling with two job lengths. Mathematics of
Operations Research, 26(1):31–49, 2001.

[15] MecaBotiX. https://www.mecabotix.com/, 2023.

[16] M. Mnich and R. van Bevern. Parameterized complexity of machine
scheduling: 15 open problems. Comput. Oper. Res., 100:254–261, 2018.

[17] M. Mnich and A. Wiese. Scheduling and fixed-parameter tractability. Math.
Program., 154(1-2):533–562, 2015.

[18] M. Yue. On the exact upper bound for the multifit processor scheduling
algorithm. Annals of Operations Research, 24(1):233–259, 1990.

27

	Introduction
	Problem description and notations
	ILP formulation for Multi_Bot
	Schedules and packings

	Preliminaries
	Approximation algorithms
	Identical-machines scheduling
	Optimal configurations

	Structure and analysis of the approximation algorithm
	Presentation of the algorithm
	Transformation of a packing into polynomial IMS
	Approximation analysis

	Generation of packings with small volume
	Optimal packings with limited volume and scale
	Dynamic programming for the single-period problems
	Optimum packing with unlimited scale
	Computation of collection

	Conclusion and perspectives

