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Abstract.  
We revisit in this article the Two-Fund Separation Theorem as a simple technique for 
the Mean-Variance optimization of large portfolios. The proposed approach is fast and 
scalable and provides equivalent results of commonly used ML techniques but, with 
computing time differences counted in hours (1 minute versus several hours). In the 
empirical application, we consider three geographic areas (China, US, and French stock 
markets) and show that the Two-Fund Separation Theorem holds exactly when no 
constraints are imposed and is approximately true with (realistic) positive constraints on 
weights. This technique is shown to be of interest to both scholars and practitioners 
involved in portfolio optimization tasks. 
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1. Introduction 

 Mutual fund separation is a key concept in portfolio selection 

and asset allocation. It implies that all rational investors’ optimal 

portfolio choices can be built as a linear combination of a set of 

mutual funds whatever the initial wealth level is, where a mutual 

fund can be any portfolio of tradable assets in the market. Thus, 

under mutual fund separation, any investor can achieve the same 

level of utility from the individual assets, as if they were only offered 

a set of mutual funds. As noted by Dybvig and Liu (2018), the term 

“separation” comes from the fact that any investor can separate her 

portfolio choice in two steps. First, she chooses a small set of funds 

that spans optimal portfolios of all wealth levels. Secondly, the 

investor determines the optimal mixture of the separating funds 

based on her current wealth level. 

The aim of this article is to revisit the classical fund separation 

theorem as a tool to simplify the computations of optimal Mean-

Variance portfolios (Markowitz, 1952), for a large number of assets. 

This long-time established theory (see Markowitz, 1999) has 

experienced in recent decades a resurgence of research activity and 

the topic of robust portfolio optimization has become quite 

substantial, as shown for instance by Markowitz (2014) and Kolm et 

al. (2014), who review the 60-year course of portfolio optimization. 

However, the existing practitioner applied finance literature mainly 

uses the so-called Generalized Reduced Gradient (GRC) algorithm 

(e.g., Abadie, 1969), available in the MS Excel Solver function for 

instance, to optimize more-than-two-asset portfolios (see also Laws, 

2003; Grover and Lavin, 2007; Bai et al., 2011). The brute force 
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results obtained using a solver are accurate, which possibly explains 

the lack of contemporary studies within the Mean-Variance 

framework. In this article, we propose a simple alternative to 

improve on the existing mainstream framework. The implemented 

methodology requires less computational power, is automatized and, 

shows the interrelation between assets’ returns and the logic of the 

portfolio optimization process. Furthermore, it can ultimately be run 

on a simple spreadsheet application.  

Differently from the existing approaches mentioned above, our 

proposal implies a different road and takes advantage of some well-

known results from the Two-Fund Separation Theorem5 (Cf. Tobin, 

1958). which is already largely mentioned in financial decision 

theory reference textbooks, such as in Ingersoll (1987) and in Huang 

and Litzenberger (1988)6. Specifically, we show that the findings for 

the two-asset case can be easily generalized to an N-asset portfolio, 

with additional unrevealed interesting properties that allow building 

optimal portfolios directly.  

Several studies show applications of regression-type 

approaches to obtain optimal Mean-Variance portfolios (e.g., 

Broadie, 1993; Stevens, 1998; Britten-Jones, 1999; Kempf and 

Memmel, 2006). Using penalized regressions, recent literature 

 
5 See also Markowitz (1959); Sharpe (1964); Mossin (1966); Lintner, (1965a) and (1965b); 
Black (1972), as well as Dybvig and Liu (2018), and further adaptations of the original 
Separation Theorem when agents do not exhibit Mean-Variance preferences or when the 
densities of return are not Gaussian, as in Pye (1967), Hakansson (1969), Cass and Stiglitz 
(1970), Harvey and Siddique (2000), Jurczenko and Maillet (2006), Dahlquist et al. (2017), 
or in a continuous-time stochastic setting, as in Samuelson (1967), Merton (1973), Ross 
(1978), and more recently in Cairns et al. (2006), Deguest et al. (2018) and Bernard et al. 
(2021).  
6 We will adopt hereafter the presentation and (very similar) notations used in both of these 
books. 
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provides benefits in terms of the sparsity of the portfolio (indirectly 

associated with diversification/concentration, positive weights and 

turnover) and elaborates on the properties of optimal portfolios in 

various market conditions (e.g., Brodie et al., 2009; DeMiguel et al., 

2009a; Fan et al., 2012; Yen and Yen, 2014; Fastrich et al., 2015; 

Bonaccolto et al., 2018; Bonaccolto and Paterlini, 2020; Bonaccolto 

et al., 2021). In this article, we show that the Two-Fund Separation 

Theorem approximately holds when supplementary realistic 

constraints are considered in the one-period Markowitz’ (1952) 

seminal setting. In this regard, we apply the proposed approach by 

considering three continents (Chinese, US, and French stock 

markets), large databases (with more than 100 assets), and sub-

samples of dates and stocks, trying to deal with uncertainties of the 

results in the presence of model risks. 

The contribution of our article can be summarized as follows: 

1) we provide a general structure of the weight of every optimal 

portfolio; 2) we provide a Mahalanobis-type transformation for 

every desirable (and applicable) weight to become optimal; 3) we 

show that the Two-Fund Separation Theorem holds under several 

realistic constraints and thus, it provides insightful results for 

financial practitioners. 

The rest of the article is organized as follows. Section 2 briefly 

presents the optimization in the N-asset case. Section 3 recalls Mean-

Variance portfolios in the regression-type framework. Section 4 

provides a discussion on the optimal portfolio weights resulting from 

applications in a penalized regression framework. Section 5 focuses 

on the results provided by our approach and includes robustness 

checks. Finally, Section 6 concludes. A companion Web Appendix 
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provides sketches of the demonstration of results presented within 

the corpus of the article, the descriptive statistics of the database we 

use in the empirical studies, as well as some complementary 

robustness tests and illustrations. 

 

2. The Traditional Portfolio Optimization in the N-asset Case 

Let us now consider N assets. Matrix notations show that the 

expected return on portfolio 𝑝, denoted 𝐸 𝑅 , writes: 

𝐸 𝑅 𝐰 𝐄, (1) 

where 𝐰  is the 𝑁 1  transposed vector of weights 𝐰 , in which, 

on each line, an invested share of wealth is allocated in each asset, 

and 𝐄 is the 𝑁 1  vector of the expected returns on the N assets. 

The variance of the portfolio returns, denoted 𝜎 𝑅 , will be: 

𝜎 𝑅 𝐰 𝛀𝐰 , (2) 

where the 𝑁 𝑁  Variance-CoVariance matrix of returns on the 

assets is denoted 𝛀.  

Finally, the budget constraint when saturated, reads: 

𝐰 𝟏 1, (3) 

with 𝟏 the 𝑁 1  unit vector7. 

As per definition, a portfolio is a Minimum-Variance Portfolio 

on the Efficient Frontier, if it has the smallest variance amongst all 

feasible portfolios that have the same targeted expected rate of 

 
7  For the sake of simplicity and clarification, each time we have a vector of 1 with 
dimensions 𝑁 1  with 𝑁  being the number of the assets, we use: 𝟏 ≔ 𝟏  as a 
notation, whilst for a vector of 1 with dimensions 𝑇 1 , with 𝑇 being the number of 
dates of the time-series of returns on an asset, we denote it as: 𝟏 . When we will need 
a 𝑁 𝑁  matrix of 1, we will further denote it: 𝟏 . 
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return. The weights of any Minimum-Variance Frontier Portfolio are 

thus the solution of the following program: 

𝐰∗ arg min
𝐰 ∈ℝ

𝐰 𝛀𝐰   

s.t. 
𝐰 𝐄 𝜇
𝐰 𝟏 1,

 

(4) 

where 𝜇  is the targeted expected return for portfolio 𝑝  such as: 

𝜇 𝐸 𝑅 , that can be approximated in the naive approach8 by the 

sample mean 𝜇 . 

Let us first define the Mahalanobis-type distance 9  rescaled 

transform of any vector: 𝐘 → 𝐘° → 𝐘, as such: 

𝐘° 𝛀 𝐘, (5) 

and: 

𝐘
𝐘°

𝟏 𝐘° 
𝛀 𝐘

𝟏 𝛀 𝐘
. 

(6) 

This transform thus uses a vector of asset weights denoted 𝐘, 

first multiplied by 𝛀 , the inverse of the Variance-CoVariance 

matrix, that becomes 𝐘°, which is the Mahalanobis-type norm of the 

original vector 𝐘  (i.e., 𝐘° ‖𝐘‖ ° , where ‖⋅‖ °  is the 

Mahalanobis-type norm operator). Then, secondly, this vector 𝐘° is 

rescaled in order to obtain a vector of weights denoted 𝐘, summing 

at unity (such as: 𝟏 𝐘 1). And so we have finally: 𝐘 ‖𝐘‖ , 

where the rescaled Mahalanobis-type transform operator ‖𝐘‖ , 

 
8 See, for instance, Black and Litterman (1992) for an alternative approach with deformed 
expectations according to views in a Bayesian context. 
9 See Mahalanobis (1927, 1936); see also Mardia et al. (1979), Meucci (2009), Breuer et 
al. (2009), Breuer and Csiszár (2013), Geyer et al. (2014), Flood and Korenko (2015), 
McNeil et al. (2015) and De Meo (2021) for other uses of the Mahalanobis norm in 
financial applications. 
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changes a non-linear relation into an equivalent linear one, as we will 

see below. The transformed vector 𝐘 will be thus a vector of asset 

weights, used as a “pivotal vector”, whose relative structure is 

defined by the original vector 𝐘 , whilst saturating the budget 

constraint.  

For simplifying the notations, define now the following 

classical scalars10: 

𝑎 𝟏 𝛀 𝐄
𝑏 𝐄 𝛀 𝐄
𝑐 𝟏 𝛀 𝟏
𝑑 𝑏𝑐 𝑎 ,

 

(7) 

where 𝟏 is the (𝑁 1) vector of 1 (with 𝑁 equals to the number of 

the assets) and 𝟏  is a 𝑁 𝑁  matrix with all elements equal to 1. 

We note that 𝑎, 𝑏 and 𝑐 can be expressed as inner products on 

ℝ , where per definition the inner product of two vectors 𝐗 and 𝐘 is 

defined here as: 𝐗, 𝐘 𝛀 𝐗 𝛀 𝐘 . Also note that, from the 

Cauchy-Schwarz inequality (leading to 𝑎 𝑏𝑐), the parameter 𝑑 is 

nonnegative11. 

Using next the quadratic relationship between risk and return 

entails the following propositions, that will lead themselves to the 

definition of the set of the Feasible Portfolios, in the so-called 

opportunity set, whose envelop will be denoted ℱ , when the 

 
10 Here we follow Huang and Litzenberger (1988) p.64 with 𝐴 𝑎, 𝐵 𝑏, 𝐶 𝑐, 𝐷 𝑑, 
whilst Ingersoll (1987) p.54 uses 𝐵 𝑎, 𝐶 𝑏, 𝐴 𝑐, and △ 𝑑. 
11 Furthermore, it is not equal to zero, and positive in our financial applications – see the 
Appendix, which allows us to use the term 𝑑 in some denominators below, with no risk of 
indetermination. 
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restricted set of Efficient Portfolios is denoted herein ℱ  (and the 

lower part of the set of dominated portfolios will be ℱ )12. 

Forming now the Lagrangian of the program in Eq. (4) and 

using notations of the scalars in Eq. (7), will lead after some 

straightforward calculations to the following property, which links, 

on the one hand, the weights of any Efficient Portfolios and, on the 

other hand, those of some special ones. 

 

Proposition 1. 

The weight of any Efficient Portfolio p , belonging to ℱ , can be 

expressed as: 

𝐰 ∗ ∆ ∗ | ∗𝐄 1 ∆ ∗ | ∗ 𝟏, (8) 

where ∆ ∗ | ∗ 𝑎∗𝐸 𝑅 𝑏∗,with 𝑎∗ 𝑎𝑐/𝑑  and 𝑏∗ 𝑎 /𝑑 , is 

a transform of the first Lagrangian coefficient of the global program 

in Eq. (4), which can be recognized as a Rescaled Fitted Performance 

Measure13, comparing the targeted expected return of the portfolio to 

𝑏∗, whilst 𝐄 and 𝟏 are the Mahalanobis-type norm defined in Eq. 

(7). 

Proof. See the Appendix. 

 

Thus, these general expressions of Frontier Portfolios weights 

(on ℱ) only depend upon some exogenous market variables denoted 

𝑎, 𝑏, 𝑐 and 𝑑, and on a subjective variable: the targeted portfolio 

 
12 We will use later on, similarly, the notations ℱ∗, ℱ

∗
 and ℱ∗ for the same defined sets in 

a constrained context. 
13 See also Gouriéroux and Jouneau (1999) for a discussion about fitted performance 
measures. 
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expected return, which depends on the investor’s preferences and 

needs.  

For better explanations in the rest of this article, we define some 

Pivotal Portfolios, before further utilizing with necessities. Here we 

start with the so-called Global Minimum-Variance Portfolio 

(GMVP, denoted (𝑉 ) for Vertex hereafter), which per definition 

produces the minimum variance by a combination of all feasible 

assets. 

Moreover, let us further introduce two other special portfolios, 

starting first with the so-called Tangent Portfolio (𝑇 ). It is the 

Efficient Portfolio with the highest possible Sharpe ratio14 , thus 

belonging to both the Efficient Frontier and the tangent line to the 

Efficient Frontier starting from the risk-free asset, called the Capital 

Market Line (CML). 

Then, let us consider some other generic portfolios denoted by 

𝑍 . In general, any arbitrary Frontier Portfolio 𝑝 (except the GMVP) 

has a unique uncorrelated Frontier Portfolio (or zero-correlation / 

zero-beta portfolio), denoted here 𝑍 . Indeed, from the Mean-

CoVariance relation between any couple of Frontier Portfolios 𝑝 and 

𝑞 belonging to ℱ, as such15: 

𝐶𝑜𝑣 𝑅 , 𝑅 𝐰 𝛀𝐰  

𝑐𝐸 𝑅 𝐸 𝑅 𝑎 𝐸 𝑅 𝐸 𝑅 𝑏 /𝑑,

(9) 

and since by definition for the two portfolios 𝑝 and 𝑍 , we have: 

𝐶𝑜𝑣 𝑅 , 𝑅 0, (10) 

so that the following equality holds: 

 
14 such as: 𝑆 𝐸 𝑅 𝑅 𝜎 𝑅 , with 𝑅  the risk-free rate. 
15 Cf. Ingersoll (1987), p.56 and Huang and Litzenberger (1988), p.66. 
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𝐸 𝑅
𝑎𝐸 𝑅 𝑏

𝑐𝐸 𝑅 𝑎
. 

(11) 

Among all of these portfolios 𝑍 , let us highlight the specific 

zero-mean Frontier Portfolio denoted 𝐺 (see below for more details 

on this portfolio), as being the zero-mean Frontier Portfolio of a 

particular Frontier Portfolio 𝑁, called the Null Index Portfolio (i.e., 

𝑁 is a special 𝑍 , or equivalently, in other words, 𝐺 is a specific 𝑍 ). 

From setting 𝐸 𝑅 𝐸 𝑅 0 in the Eq. (11), we have: 

𝐸 𝑅
𝑎𝐸 𝑅 𝑏

𝑐𝐸 𝑅 𝑎

𝑏
𝑎

, 
(12) 

and when we set the target expected return as in Eq. (12) in the 

expression of all optimal portfolios in Proposition 1, we then have: 

𝐰 ∆ ∗ | ∗𝐄 1 ∆ ∗ | ∗ 𝟏 

𝐄, 

(13) 

where ∆ ∗ | ∗ 𝑎∗𝐸 𝑅 𝑏∗ 1 with 𝑎∗ 𝑎𝑐/𝑑  and 𝑏∗ 𝑎 /

𝑑. 

Finally, the covariance between the returns on Portfolio 𝑁 and 

on Portfolio 𝐺  is (as per definition of portfolios 𝑁  and 𝐺 ): 

𝐶𝑜𝑣 𝑅 , 𝑅 0, where 𝐺  is a special (zero-correlation) Frontier 

Portfolio (generally on the below part ℱ of ℱ in normal circumstances 

with a positive return on the GMVP) having an expected return of 0, 

whilst the portfolio 𝑁 is an Efficient Portfolio (on the above part ℱ 

of ℱ) as illustrated in the next Figure 1 below. 

The following proposition basically tells us that the weights of 

any of the Efficient Portfolios denoted 𝐰 ∗(for instance 𝐰 , 𝐰  and 

𝐰 , respectively) share the same structure, which is composed by 
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the weight of a special vector 𝐘 (𝟏, 𝐄, 𝐄𝐗, respectively), expressed in 

a Mahalanobis-type norm (divided by 𝛀 ), becoming thus 𝐘° 

( 𝟏°, 𝐄°,  𝐄𝐗
° ,  respectively), then rescaled to respect the budget 

constraint (i.e. divided by the unscaled sum of weights of the special 

vector into consideration), becoming ultimately 𝐘  ( 𝟏,  𝐄,  𝐄𝐗, 

respectively). 

We will now make use of the Two-Fund Separation Theorem 

(e.g., Tobin, 1958; Markowitz, 1959; Sharpe, 1964; Mossin, 1966; 

Lintner, 1965a and 1965b; Black, 1972). Basically, this theorem says 

that any Mean-Variance Efficient Portfolio can be generated by any 

two distinct Mean-Variance Frontier Portfolios. 

In Proposition 2, we show hereafter that all Efficient Portfolios 

share the same structure of weights and are based on an affine 

transform of a linear combination of two special notorious portfolios 

(𝐄 and 𝟏).16 

 

Proposition 2. 

All Efficient Portfolios in ℱ  share the same structure of 

weights 𝐰 ∗ that reads: 

𝐰 ∗ 𝐘, (14) 

with: 

𝐘 𝑓 δ 𝐄 δ 𝟏 ,  

 
16 See also Corollary 2.1 in the appendix A-4, when inversing the problem and setting first 
the targeted expected return (for Asset-Liability Management reasons for instance), we 
deduce the optimal related Efficient Portfolio and its linked implicit risk and just vice-
versa in the Corollary 2.2 (see the appendix A-5). Corollary 2.3 (see in the appendix A-6) 
also interestingly illustrates the proper structure of some notorious Portfolios according to 
Proposition 2, with explicit parameters. 



  

 12 

where 𝑓 ⋅  is an affine transform of the underlying vector and the 

δ ⋅ , for 𝑖 0,1 , are functions if expected return, 𝐸 𝑅 𝐘 𝐄 

that ultimately goes with a risk that reads: 𝜎 𝑅 𝐘 𝛀𝐘. 

Proof. See the Appendix. 

 

With the help of Proposition 2 (and also with the related 

Corollary 2.1, 2.2 and 2.3 of Proposition 2 reported in the appendix 

A-4, A-5 and A-6), users can easily self-construct their satisfying 

portfolio considering the different expectations of return and the 

endurance of risk. 

Furthermore, if a risk-free asset exists, the Efficient Frontier ℱ 

is the Capital Market Line joining the risk-free rate and the Tangent 

Portfolio 𝑇 . In this case, the following Proposition 3 can be stated. 

 

Proposition 3. 

The weight of any Efficient Portfolio p , belonging to ℱ , can be 

formed on the basis of two pivotal Efficient Portfolio weights, i.e.: 

𝐰 ∗ ∆ ∗ | ∗𝐰 1 ∆ ∗ | ∗ 𝐰 , (15) 

where ∆ ∗ | ∗ 𝑎∗𝐸 𝑅 𝑏∗,with 𝑎∗ 𝑎𝑐/𝑑  and 𝑏∗ 𝑎 /𝑑 , is 

a transform of the first Lagrangian coefficient of the global program 

in Eq. (4), which can be recognized as a Rescaled Fitted 

Performance Measure, comparing the targeted expected return of 

the portfolio to 𝑏∗ , whilst V  is the Global Minimum-Variance 

Portfolio and N  the so-called Null Index Portfolio, their weights 

being respectively: 𝐰 𝐄°/𝑎 𝐄 and 𝐰 𝟏°/𝑐 𝟏. 

Proof. See the Appendix. 
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In other words, Propositions 2 and 3 show as announced that 

there is a linear relation between the weight of any Frontier Portfolio 

(any feasible portfolio belonging to ℱ or ℱ) and those of two pivotal 

vectors (here 𝑁 and 𝑉), where relative weights in the two pivotal 

portfolios are comparisons with transforms of the targeted expected 

return to some level defined per scalars as Rescaled Fitted 

Performance Measure. Thus, we here invest a sum (equals to 

∆ ∗ | ∗) in the first pivotal portfolio and the complementary sum 

(1 ∆ ∗ | ∗) in the second one (respecting the budget constraint), 

and this depends upon the target expected return of portfolio 𝑝: 𝜇 :

𝐸 𝑅 𝜇 , and some technical parameters (𝑎, 𝑏, 𝑐 , 𝑑  and their 

transforms 𝑎∗ and 𝑏∗  that define the market technology 

characteristics. The higher (the lower) the targeted return, the higher 

the sum to be put in the first portfolio (the higher the sum to be 

invested in the second portfolio, respectively) and vice-versa. 

In the following, we will characterize all Efficient Portfolios 

thanks to some special notorious portfolios, as represented in the 

following Figure 1, which illustrates the Unconstrained Efficient 

Frontier, the Capital Market Line, the asymptotes of the Frontier (on 

ℱ  and ℱ ,  respectively) and some notorious portfolios such as, 

namely: the Global Minimum-Variance Portfolio (𝑉), the Null Index 

Portfolio (𝑁), the Tangent Portfolio (𝑇), the Centre Portfolio17 (𝐶), 

 
17 with 𝐸 𝑅 𝑎/𝑐 and 𝜎 𝑅 0, and the two asymptotes follow a relation as such: 
𝐸 𝑅 𝑎/𝑐 𝑑/𝑐 𝜎 𝑅  - see A-9 for details in the Appendix. 
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and the two special Portfolios18: (𝐺), which is, generally19 on ℱ, as 

previously defined with a nil expected return, and (𝐺 ), which is a 

special Portfolio on the Efficient set ℱ with a 100% expected return. 

 

Proposition 4. 

The Mean-Variance Efficient Frontier is characterized by the set ℱ 

of the Minimum-Variance Efficient Portfolios p , whose weights 

satisfy the following relation: 

𝐰 ∗ ∆ ∗ | ∗𝐰 1 ∆ ∗ | ∗ 𝐰 , (16) 

and that have expected rates of return higher than of those of the 

Global Minimum-Variance Portfolio, denoted V , i.e.: 𝐸 𝑅

𝐸 𝑅  where 𝐸 𝑅 𝑎/𝑐. 

Proof. By definition of the Efficient Frontier. 

 

Indeed, the part of the Minimum-Variance Portfolio frontier 

that lies above the Global Minimum-Variance Portfolio is the 

Efficient Frontier (the upper limb of ℱ, denoted ℱ). Portfolios that 

are on the lower part of the Minimum-Variance Portfolio frontier 

(the lower limb of ℱ, denoted ℱ), or inside the bullet drawn by the 

Minimum-Variance frontier in the N-asset case, are called inefficient 

(or dominated) portfolios. For each inefficient portfolio, there are 

corresponding efficient ones, having the same variance (expected 

 
18 Similarly, Black (1972) proves that every efficient portfolio can be generated by two 
arbitrary portfolios 𝑢 and 𝑣, with 𝛽 1 and 𝛽 0, where 𝛽  and 𝛽  are measuring the 
volatility of an individual stock compared to the systematic risk 
19 Or, exceptionally, on ℱ, if the GMVP expected return is negative. 
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return, respectively), but a higher expected rate of return by 

expansion (or lower variance by contraction, respectively), 

positioned directly above it, in the north direction (or on its left, in 

the west direction, respectively). 

 

 

3. The Efficient Frontier within a Regression-type Approach  

Let us focus now on “regression-type approaches”, first by 

following the developments of Britten-Jones (1999)20, and then by 

 
20  See also Broadie (1993), Kempf and Memmel (2006) and the Appendix for their 
approach, and Stevens (1998) who proves that elements of 𝛀  are: 

𝛀  1 σ 1 𝑅 𝛽 ,  

where 𝛀  is the element on the ith row and jth column of 𝛀 , coefficient o is equal to 0 

if 𝑗 𝑖 and 1 otherwise, σ  the variance of returns on the ith asset, 𝛽  the sensitivities (i.e. 
regression coefficients) for the regression of the return of the ith asset on those of all other 

Figure 1: An Illustration of Mean-Variance Efficient 
Portfolios and Some Notorious Portfolios 

 
Source: Wind; daily quotes of the 40 largest companies that are part of the 
CSI300, from 08/18/2008 to 12/31/2019. Plotted are: the Unconstrained Efficient 
Frontier, the Capital Market Line (CML) and some notorious portfolios (𝑉, 𝑁, 
𝑇, 𝐶, 𝐺 and 𝐺 ). Computations by the authors.  
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recalling the principle of penalized regressions, before adapting them 

in the following section to the context of determining Efficient 

Portfolios with penalized regressions in Section 4. 

Britten-Jones (1999) indeed propose a regression approach to 

find the weights of the Tangent Portfolio 𝑇 .  He first defines a 

“highly desirable” portfolio - denoted (𝐴), with a return of 1 (100%) 

and a volatility of 0 (0%). This is an Arbitrage Portfolio since it has 

zero risk (which is, nevertheless, unattainable in reality). The 

regression approach for portfolio selection is built on targeting the 

Portfolio (𝐴), ultimately finding the closest Portfolio to this very 

advantageous Arbitrage Portfolio. It is therefore a question of 

minimizing the squared error terms between the expected excess 

returns over the risk-free rate of a constructed Efficient Portfolio and 

those of the Arbitrage Portfolio. 

This minimization problem may be solved by Ordinary Least 

Squares (OLS) under some classical assumptions. Thus, we can 

reformulate the Markowitz problem in Eq. (4) in the form of a 

classical regression as such: 

𝐰∗ arg min
𝐰 ∈ℝ

𝟏�̅� 𝐗𝐰 , (17) 

with ‖. ‖  the squared ℓ -norm21, 𝐗 the matrix of excess returns of 

assets: 𝐗 𝐑 𝑅 𝟏, with 𝐑 being the 𝑇 𝑁  asset returns matrix, 

 
N-1 assets and 𝑅  the multiple regression coefficient (i.e. coefficient of determination) for 
the same regression. As expected, we find in the hereafter empirical studies that direct 
estimates of the inverse Variance-CoVariance matrix, denoted 𝛀  (both in the 
unconstrained and constrained cases), correspond to the one defined according to the 
regression method by Stevens (1998) – See A-9 in the Appendix. 
21  where, following the notations by Hastie et al. (2015), the ℓ -norm is such as: 

𝟏�̅� 𝐗𝐰 ‖𝒖‖ ∑ |𝑢 |,…,
/

, where 𝑢  is the t-th element of the vector 



  

 17 

𝑅  the risk-free rate and �̅�  the portfolio target return (feasible or 

not), subject to that the sum of the standardized weights is equal to 

one (same structure as the original portfolio obtained by OLS but 

with standardized weights with a unitary sum). 

Such a previous regression in Eq. (17) gives the weights of an 

Efficient Portfolio based on a sample of returns. In the case of the 

Tangent Portfolio, for a target expected return corresponding to: 

�̅� ≔ 𝐸 𝑅 𝜇 , the sample mean, we can state the following 

proposition. 

 

Proposition 5. 

Defining the matrix 𝑇 𝑁  of the assets’ excess returns 𝐗, reading: 

𝐗 𝐑 𝑅 𝟏  𝐑 𝑅 𝟏  … 𝐑 𝑅 𝟏  … 𝐑 𝑅 𝟏 ,  

where the 𝐑 , with 𝑖 1, … , 𝑁 , are the 𝑇 1  vectors of return on each 

asset 𝑖, corresponding to i-th column of 𝐑, the 𝑇 𝑁  asset returns 

matrix, the theoretical OLS regression (without constant) of a unit vector 

𝟏  on the matrix 𝑇 𝑁  of the assets’ excess returns 𝐗, is: 

𝟏   𝐗𝜷      𝒖, 
                             𝑇 𝑁 𝑁 1   𝑇 1  

(18) 

which allows us to obtain a vector of theoretical coefficients such as: 

𝜷 𝐗 𝐗 𝐗 𝟏 , (19) 

which leads to the vector of weights of the Tangent Portfolio T : 

𝐰
𝜷

𝟏 𝜷
𝛀 𝐄𝐗

𝟏 𝛀 𝐄𝐗
𝐄𝐗, 

(20) 

 
of residuals denoted 𝒖 𝟏�̅� 𝐗𝐰 , and with ‖. ‖ ‖. ‖ ∑ |. |𝑡 1,…,𝑇  being 
the squared ℓ -norm. 
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where 𝐄𝐗 𝐗 𝟏 /𝑇  is the 𝑁 1  vector of means, 𝛀 𝐗

𝟏 𝐄𝐗 𝐗 𝟏 𝐄𝐗 /𝑇  the Variance-CoVariance matrix 

and 𝟏  is the 𝑇 1  vector22 with all elements equal to 1. 

Proof. See Britten-Jones (1999) and the Appendix. 

 

In other words, going from theoretical quantities to sample 

ones, we can estimate the normalized vector of standardized 

coefficients 𝜷 𝜷/𝟏 𝜷, as it sums at unity) following the above 

relationship in Proposition 2 and Corollary 2.3, which is thus 

recognized as the weight vector of the Tangent Portfolio 𝑇 , as 

such: 

𝐰
𝛀 𝐄𝐗

𝟏 𝛀 𝐄𝐗
𝐄𝐗 , 

(21) 

which is obtained as the solution of a quadratic optimization 

program, where the estimated sample mean 𝐄𝐗 and the estimated 

sample Variance-CoVariance matrix 𝛀 (by empirical counterparts, 

OLS or quasi-maximum likelihood) are used as parameters, and 

finally leads to the Mahalanobis-type transform of the estimated 

mean excess return denoted 𝐄𝐗 . 

Figure 2 illustrates some notorious portfolios and specifically 

the Arbitrage Portfolio ( 𝐴 ), the Tangent Portfolio ( 𝑇 ) and the 

 
22 For the sake of clarification, we use for vector of 1 with dimensions 𝑁 1  with 𝑁 the 
number of the assets: 𝟏 ≔ 𝟏  as a notation directly, whilst for a vector of 1 with 
dimensions 𝑇 1 , with 𝑇 the number of dates of the time-series of returns on an asset, 
we denote it as: 𝟏 . Furthermore, we use the notations: 𝟏  for a 𝑇 1  vector of 
1 when observations (dates) are at stake (instead of 𝟏 as used by Britten-Jones, 1999, page 
658). 
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Portfolio ( 𝐵𝐽 ) obtained by following the Britten-Jones (1999) 

method23. 

This kind of regression is quite “unusual”. There is no constant, 

the dependent variable is not stochastic and the residual vector 𝒖 is 

correlated with the regressors which are stochastic. However, the 

regression has a simple interpretation: the dependent variable 𝟏 is 

the counterpart to arbitrage profits on the sample returns - a positive 

excess return with zero risk; the coefficients 𝜷  therefore are the 

weights on the risky assets of the portfolio, whilst the term 

𝐗𝜷 represents the excess returns on this portfolio, and the residual 

vector 𝒖 shows deviations from 𝟏 of the returns on this portfolio. 

Nevertheless, the portfolio obtained by OLS does not respect 

the budget constraint. Only the standardized portfolio, denoted (𝐵𝐽) 

Portfolio exactly confused with the Tangent Portfolio, with weights 

𝜷, satisfies this constraint. 

In brief, the estimated weights 𝜷  are linked to a vector of 

returns on the related portfolio, whilst also satisfying the budget 

constraint, which is the closest (in terms of OLS distance) to the one 

of the Arbitrage Portfolio (𝐴).  

This least square distance can be illustrated using the familiar 

mean- standard deviation scheme. The feasible set, constructed from 

the sample mean and the sample covariance, has a limit represented 

by the line (0, BJ) from the origin through the tangent portfolio (𝑇  

(Cf. Figure 2). The Arbitrage Portfolio (𝐴) is at the coordinates (0, 

1). 

 
23 Or, alternatively, by Stevens (1998) or Kempf and Memmel (2006) methods with 
same results. 
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Figure 2: An Illustration of  
Mean-Variance Efficient Portfolios 

 and the Britten-Jones Portfolio (BJ) 

 

Source: Wind; daily quotes of the 40 largest companies that are part of the 
CSI300, from 08/18/2008 to 12/31/2019. Plotted are: the Unconstrained 
Efficient Frontier, the Capital Market Line (CML) and some notorious 
portfolios (𝐴, 𝑇, and 𝐵𝐽). Computations by the authors. 

 

Therefore, the OLS approach24, by minimizing the square root 

of the residuals, allows us to find a portfolio whose returns are 

located as close as possible to the point (0,1) in the plane (risk-

return). Such a portfolio is illustrated in Figure 2 by a grey star 

indicating the point ( 𝐵𝐽 ). Thus, by varying the return target 

(achievable or not as in the case of the Britten-Jones Arbitrage 

Portfolio), we can easily find all the Efficient Portfolios (with the 

notable exception of the Global Minimum-Variance Portfolio25). 

 
24 See Appendix for more details on the OLS approach. 
25 See Appendix on the Kempf and Memmel (2006) approach in the specific case of the 
GMVP. 
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Let us examine next the introduction of constraints into the 

global program in Eq. (4). 

 

4. From Normal Unconstrained Regressions to Penalized 

Regressions for Constraining the Efficient Frontier 

Weights  

Many constraints have been added to the original programs in 

the literature. Among the first constraints on weights, we can cite as 

previously the budget constraint, but also the constraint of positivity 

on each of the weights (only positive investments in the assets), the 

constraint of a maximum weights on each of the weights (limiting 

the maximum investment on one specific asset), as well as the 

cardinality of the weights (purchase of an exact number of assets). 

In general, penalized regressions have been proposed to solve 

several types of problems, the first being the “selection” of variables 

in a regression (Cf. Tibshirani, 1996; Hastie et al., 2015). In our 

context, the addition of a penalty on the coefficients of the 

regression, according to the technique used, makes it possible to 

impose constraints on weights of the Efficient Portfolios - see Brodie 

et al. (2009), DeMiguel et al. (2009a) and (2009b), Candelon et al. 

(2012).  

The global program can be rewritten as such (with previous 

notations): 

𝐰∗ arg min
𝐰 ∈ℝ

𝟏�̅� 𝐗𝐰 𝛾𝑃 𝐰  

s.t. 

⎩
⎪
⎨

⎪
⎧𝑨 𝐰 𝒃

𝑨 𝐰 𝒃  
𝑪 𝐰 𝒅
𝑪 𝐰 𝒅 ,

 

(22) 
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where 𝛾 a fine-tuning constant and: 

⎩
⎨

⎧
𝑨 𝐄  and 𝒃 𝜇
𝑨 𝟏  and 𝒃 1
𝑪 1 𝐈  
𝑪 𝐈 , 

 

with 𝐈  the 𝑁 𝑁  Identity matrix, 𝑪  a 𝑁 𝑁  matrix of 

coefficients for fixing some lower constraints on the weights of any 

single asset as expressed in the 𝑁 1  vector 𝒅 , 𝑪  an 𝑁 𝑁  

matrix of coefficients for fixing some upper limits on the weights as 

defined in the 𝑁 1  vector 𝒅 , and where the penalization is 

finally defined such as: 

𝑃 𝐰 ≡

⎩
⎪
⎨

⎪
⎧ 𝐰 𝟏 𝐰 |w | for LASSO

𝐰 |w | for RIDGE

1 𝛼 𝐰 𝛼 𝐰 for Elastic Net,

 

where the well-known penalized regressions mentioned in the 

literature are the Least Absolute Shrinkage and Selection Operator 

(LASSO) as expressed in Eq. (22), as well as the Regularization of 

Inverse Discrete Gradient Estimator (RIDGE) and the Elastic Net 

(see, respectively, Tibshribani, 1996, for LASSO, Hoerl and 

Kennard, 1970, for RIDGE and Zou and Hastie, 2005, for Elastic 

Net, and see also Hastie et al., 2015)26. 

 
26 The ℓ -norm penalization term is used in the Regularization of Inverse Discrete Gradient 

Estimator (RIDGE), such as (see Hoerl and Kennard, 1970, page 56): 𝑃 𝐰 𝐰
∑ |w |  uses the squared ℓ -norm, and both the ℓ -norm and the squared ℓ -norm are 
used in Elastic Net regularization such as (see Zou and Hastie, 2005, page 304): 𝑃 𝐰

1 𝛼 𝐰 𝛼 𝐰  where 𝛼 ∈ 0,1 . See Hastie et al. (2015), p.22 and p.57 and 

also Kremer et al. (2020), p.8 for geometric illustrations of the effects of such norms on 
coefficients. 
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If we take the previous approach by now using the simplest 

penalized regression (Cf., e.g., Brodie et al., 2009), the program 

resumes to: 

𝐰∗ arg min
𝐰 ∈ℝ

𝟏�̅� 𝐗𝐰 𝛾𝑃 𝐰 , (23) 

with ‖. ‖  the squared ℓ -norm27, 𝐗 the matrix of excess returns of 

an asset: 𝐗 𝐑 𝑅 𝟏 and �̅�  the portfolio target return (feasible or 

not), 𝛾 a constant, 𝑃 ⋅  the penalization on the weights (which will 

take different forms according to the technique used), written as: 

𝑃 𝐰 ≡ 𝐰 𝟏 𝐰 , (24) 

with28 ‖⋅‖  the ℓ -norm. 

Using some variants of the same approach, the optimization 

program can again be rewritten under different kinds of constraints 

according to the relevant program. For example, if we follow 

Jagannathan and Ma (2003), we may be willing for various reasons 

to restrict the maximum weight of each asset that should not exceed 

some limits29 (let us say inferior to a limit 𝑙  hereafter for instance). 

If we further add the positivity constraint on the weights, we then 

can write the previous program with both constraints (for maximum 

and positive weight), fixed as such: 

 
27 with ‖⋅‖  denoting the power k of the ℓ -norm operator, such as: ‖𝑥 ‖ ‖𝑥 ‖

∑ |𝑥 |∈ℕ
/

. As mentioned before, we use in this equation the squared ℓ -norm as: 

𝟏�̅� 𝐗𝐰 ‖𝒖‖ ∑ |𝑢 |𝑡 1,…,𝑇 , where 𝑢  is the t-th element of the vector of 

residuals denoted 𝒖 𝟏�̅� 𝐗𝐰  – see Eq. (22) for instance. 
28 As mentioned previously, the ℓ -norm penalization term in LASSO regression writes in 
Eq. (22) as 𝑃 𝐰 𝐰 ∑ |𝑤 | as in Brodie et al. (2009), p.12,268. 
29  In order to avoid concentrated and time-varying portfolios, or to deal with 
liquidity problem as in Vieira and Filomena (2020 – see Section 2.2.2, page 1060), 
or limit transaction costs (e.g., Lobo et al., 2007) or impose cardinality constraints 
(e.g., Chang et al., 2000; Anagnostopoulos and Mamanis, 2011; Woodside-Oriakhi 
et al., 2011). 
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𝒅 𝟎
𝒅 𝑙  𝟏, 

 

with 𝟎  the 𝑁 1  null matrix (for a unique lower bound), 𝟏  a 

𝑁 1  vector of 1, and as scalar 𝑙  is the unique upper limit on 

weights of all single assets. 

Due to the addition of a penalty in the objective function of 

regressions in Eq. (22) and (23), the vector of coefficients of these 

regressions cannot be estimated by a conventional approach like 

OLS because of the resulting bias (on the estimators) inherent in the 

regression, due to the addition of this constraint. Since the objective 

function of a penalized regression is generally not differentiable (for 

example, the objective function of the LASSO is not differentiable 

at any point, because the ℓ -norm on the coefficients of the 

regression is not differentiable in 0, unlike the objective function 

using the ℓ -norm in the penalty of the RIDGE regression), different 

algorithms have been developed in order to find solutions.  

Among these algorithms, one notably finds the Least-Angle 

Regression algorithm (LARS) allowing for the computation of the 

LASSO (see Zou and Hastie, 2005) or its extension called Least-

Angle Regression Elastic Net (LARSEN), which also permits us to 

solve other penalties such as the RIDGE or Elastic Net type (see 

Hastie et al., 2015). Gaines et al. (2018) compare different 

algorithms and provide practical improvements to utilize 

Constrained LASSO regression on various sizes of databases, which 

also helps to improve our regression program. 

In our case, this will be mobilized to impose a positivity 

constraint on optimal portfolio weights. Thus, the use of the 

penalized regressions makes it possible, in our case, to be as close as 
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possible to the optimal portfolio without the constraint of positivity, 

by determining a portfolio composed only of long positions, and 

taking into account a positivity constraint on the weights.  

Figure 3 below shows the following five frontiers: 

1) The unconstrained one: i) without any other constraint than 

the budget constraint, obtained from the combination of the 

two optimal Efficient Portfolios (𝑁) and (𝑉); ii) an identical 

frontier as we have shown to be the one obtained by 

numerical application of the Markowitz quadratic program 

resolution (e.g. Turlach and Wright, 2015) from the use of 

the numerical resolution of the quadratic program; iii) 

identical also to the one obtained by applying the regression 

approach without penalization proposed by Britten-Jones 

(1999) and completed by Kempf and Memmel (2006);  

2) A constrained one: iv) obtained by the LASSO penalized 

regression under usual budget constraints by varying the 

targets of expected return, with a light penalization (i.e., 

corresponding to a low coefficient30 of penalization 𝛾 in Eq. 

(22)); 

3) Another constrained one: v) obtained also, as in previous 

case iv) by the LASSO penalized regression with a stronger 

penalization (i.e., corresponding to a higher coefficient31 of 

penalization 𝛾 in Eq. (22), to be compared to the previous 

efficient frontier in iv); 

4) A positively constrained one: vi) obtained by the LASSO 

penalized regression under budgetary constraint and the 

 
30 equals here to 4,000 in our restricted Chinese illustration sample. 
31 equals here to 7,800 in our illustrative sample. 
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constraint of positivity on weights, by varying the targets of 

expected return; 

5) Another positively constrained: vii) obtained by mixing 

different proportions of the Positively Constrained GMVP 

weights and the vector of weight having 100% on the 

maximum return security (0% in any other asset), utilizing 

the Two-Fund Separation Theorem; viii) obtained by 

mixing with different proportions of the constrained 

GMVP, the Null Index Portfolio, the Tangent Portfolio and 

the vector of weights having 100% on the maximum return 

security (and 0% in any other asset), utilizing a 

generalization to four fund of the Two-Fund Separation 

Theorem. 

 

As expected, although the general hyperbolic form is 

conserved, the effect of the positivity constraint on the weights has a 

significant “contracting” effect on the unconstrained frontier: it is no 

longer possible to obtain such high return levels, which is the price 

to pay for a more realistic representation of the efficient frontier. 

Furthermore, we again here show that Two-Fund Separation 

Theorem perfectly works when there is no other constraint but the 

usual budget one. In other words, any Efficient Portfolio can be 

expressed as a linear combination of two other Efficient Portfolios 

with no other constraint. 

 

Figure 3: An Illustration of Mean-Variance  
Efficient Portfolios with and without  
a Positive Constraint on the Weights 
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Source: Wind; daily quotes of the 40 largest companies that are part of the 
CSI300, from 08/18/2008 to 12/31/2019. Plotted are: the Unconstrained 
Efficient Frontier, the Efficient Frontier by Penalized Regression with low and 
high penalization, the Positively Constrained LASSO Efficient Frontier, the 
Positively Constrained Efficient Frontier by TFST, the Capital Market Line 
(CML) and some notorious portfolios (𝑇, 𝑀𝐴𝑋, 𝑁 and 𝑉), where a portfolio 
distinguished by a superscript “*” denotes the corresponding portfolio under 
positivity constraint. TFST corresponds to Two-Fund Separation Theorem, 
which is to build Efficient Frontiers by the combination of two pivotal 
portfolios: the Positively Constrained Global Minimum-Variance Portfolio (𝑉) 
and the Asset with the Highest Expected Return or four pivotal portfolios: the 
Positively Constrained Global Minimum-Variance Portfolio, the Positively 
Constrained Null Index Portfolio, the Positively Constrained Tangent Portfolio 
and the Asset with the Highest Expected Return. Computations by the authors. 

 

Now, if we compare the Positively Constrained Efficient 

Frontier and the set of linear combinations of the constrained GMVP 

weights and the asset with the maximum return as shown by efficient 
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frontier vi) and vii), it is clear in Figure 3 that the two frontiers are 

quite close and similar, whilst not identical. Compared with the 

traditional Two-Fund Separation Theorem, which works perfectly 

with no further constraint, such a theorem under positivity constraint 

holds only approximately, when using machine learning techniques 

to impose some realistic limitations on weights (e.g., sparsity and 

positivity). 

Let us now proceed in the next section to some robustness 

checks of previously highlighted results and resume them. 

 

5. Main Results and Robustness Checks 

To investigate the difference between the empirical Efficient 

Frontier we recover from the Positively Constrained LASSO 

regression and the Efficient Frontier by the Two-Fund Separation 

Theorem (TFST for short), we next produce some robustness checks. 

Previously displayed results were presented on a restricted 

database of Chinese stocks. Hereafter, we first check whether we can 

exhibit the same type of qualitative results with large databases (for 

large-scale portfolios), across three continents (the Chinese, US and 

French stock markets) to evaluate if our results still hold when these 

hypotheses differ from the previous simplified ones.  

Figure 4 illustrates the Unconstrained Efficient Frontier, the 

Positively Constrained Efficient Frontier by TFST with two Pivotal 

Portfolios mentioned above (𝑉 and 𝑀𝐴𝑋) and another one generated 

with four Pivotal Portfolios (𝑉, 𝑁, 𝑇 and 𝑀𝐴𝑋), as well as the whole 

gamut of notorious portfolios explored in this article.  

It appears that the same results are obtained: the approximation 

obtained with the TFST Efficient Frontier, compared to the 
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Constrained LASSO one, is rather accurate, in the Chinese market 

(Figure 4 - as well as in the Chinese, US market and the French 

market with restricted samples and large datasets – see Appendix). 

Furthermore, under the basic assumptions of the CAPM, the Tangent 

Portfolio should be the Market Portfolio (which is the Capitalization-

Weighted Index) according to theory (see, among others, Sharpe, 

1964). This model of course may not hold exactly for many various 

reasons (see, e.g., Roll, 1977). However, we precisely note that, 

across three continents (Chinese, US and French stock markets), 

estimations illustrate that CAPM theory does not meet the stylized 

facts, and that positivism differs from deductivism, since at 

equilibrium: 1) the Market Portfolio, as represented either by the 

Capitalization-Weighted Index (CWI: resp. CSI300, S&P500 and 

SBF120 Index) or by the Equally-Weighted Index (EWI), is not on 

the (LASSO) Efficient Frontier; 2) these indices are not close to the 

Tangent Portfolio (𝑇) on all the three markets. We can also note that 

the Britten-Jones Portfolio (𝐵𝐽) corresponds to the Tangent Portfolio 

(𝑇), both for the unconstrained programs of course, but also for 

positively constrained ones. The same for the GMVP: the Kempf and 

Memmel (2006) Portfolios and those of Stevens (1998) correspond 

to the LASSO-estimated GMVP, both for the unconstrained 

programs for sure, but also for positively constrained ones. 

We may also want to know if the various portfolios from the 

Constrained LASSO Efficient Frontiers and the TFST implied ones, 

for each level of volatility, exhibit different characteristics in terms 

of expected returns, estimated risks and reward-to-risk ratios, or not. 

One way of doing this is to compare their Sharpe ratios (see 

Jobson and Korkie, 1981; Memmel, 2003; Ledoit and Wolf, 2008; 
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Ledoit and Wolf, 2011). Following the methodology proposed by 

Ledoit and Wolf (2011), we compute Heteroskedasticity and 

Autocorrelation Consistent (HAC) robust standard error estimators 

for the difference of the estimated variances by the method of 

Andrews (1991) and Andrews and Monahan (1992), when 

computing the various Sharpe ratios (see also Israelsen, 2003 and 

2005; Lo, 2002; Oppdyke, 2007; Vinod and Morey, 1999a and 

1999b).  

 

Figure 4: An Illustration of Empirical Mean-Variance 
Efficient Portfolios in the Chinese Market 

 

 
Source: Wind; daily quotes of the 40 largest companies that are part of the 
CSI300, from 08/18/2008 to 12/31/2019. Plotted are: the Capital Market Line 
(CML), the Unconstrained Efficient Frontier, the Positively Constrained 
LASSO Efficient Frontier, the Positively Constrained Efficient Frontier by 
TFST with Two Pivotal Portfolios, the Positively Constrained Efficient Frontier 
with Four Pivotal Portfolios and some notorious portfolios (𝐴, 𝑀𝐴𝑋, 𝑉, 𝑇, 𝐺, 
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𝐺 , 𝑁, 𝐵𝐽, 𝐸𝑊𝐼, and 𝐶𝑊𝐼), where EWI is an Equally-Weighted Index Portfolio 
and CWI is a Capitalization-Weighted Index Portfolio. A portfolio distinguished 
by a superscript “*” denotes the corresponding portfolio under positivity 
constraint. TFST corresponds to Two-Fund Separation Theorem, which is to 
build Efficient Frontiers by the combination of two pivotal portfolios: the 
Positively Constrained Global Minimum-Variance Portfolio and the Asset with 
the Highest Expected Return (in the blue bold line) or four pivotal portfolios (in 
the blue dotted bold line): the Positively Constrained Global Minimum-
Variance Portfolio, the Positively Constrained Null Index Portfolio, the 
Positively Constrained Tangent Portfolio and the Asset with the Highest 
Expected Return. Computations by the authors. 

 
We reach the same main result: there are no significant 

differences in Sharpe ratios between portfolios induced by Positively 

Constrained LASSO and TFST, at all levels of volatility.  

Furthermore, when trying to consider model risk, using 

Michaud (1989) and a Michaud and Michaud (2008) type of method 

as well as the Ledoit and Wolf (2008, 2011) methodology, we 

confirm no significant difference in Sharpe ratios (see also the 

Appendix - Figure C-6, C-7 and C-8). 

 

Figure 5: An Illustration of Double-resampled  
(Dates and Stock Sub-samples) Constrained  

Mean-Variance Efficient Portfolios in the Chinese Market 
The 5%-, 50%- and 95%-Quantile of Double Block-bootstrapped 

Estimated LASSO Efficient Frontier  
and 50%-Quantile TFST Efficient Frontier 
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Source: Wind; daily quotes of the 40 largest companies that are part of the 
CSI300, from 08/18/2008 to 12/31/2019. Plotted are: the 5%-, 50%- and 95%-
quantile of the double block-bootstrapped resampled LASSO Efficient Frontier 
and the corresponding 50%-quantile of the Efficient Frontier by TFST. 
Resampled Efficient Frontiers are computed by using a double-block bootstrap 
method (see Michaud, 1989; Michaud and Michaud, 2008 and Ledoit and Wolf, 
2008 and 2011) both on dates and sub-samples of stocks. TFST corresponds to 
Two-Fund Separation Theorem, which is used to build the Efficient Frontier by 
combinations of two pivotal portfolios, namely the Global Minimum-Variance 
Portfolio and the Asset with the Highest Expected Return. Computations by the 
authors. 

 

And so it happens that the TFST Efficient Portfolios all lie in 

between the 5%- and 95%-confidence bounds for all volatilities and 

there are no significant differences in Sharpe ratios between 

Portfolios in competition (Constrained LASSO versus TFST ones 

with the same level of volatility) for almost all levels of volatility, in 

the three markets (Chinese: see Figure 5 above, as well as in the 

Chinese, US, and French markets with limited samples of 40 stocks 

and with the big datasets of the total sample of available asset series 

over the entire period – see Appendix). 

Finally, we hereafter resume with the main results obtained 

from the three sets of databases, trying to distinguish the main 

stylized facts.  

First, when we compare outputs using the full datasets to those 

with the corresponding datasets but only including the assets with 

positive excess expected returns, we find that the Efficient Frontiers 

and Pivotal Portfolios are just only slightly different in terms of 

performance and risk (and, obviously, there is no difference when 

the positivity constraint is considered, since assets with negative 

excess returns are just discarded). Thus, this might offer us an 

opportunity to further reduce the computation-time of our approach, 

when only pre-selecting the “good assets”. 
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Secondly, when we focus on results obtained when there is no 

positivity constraint, it is clear that the pivotal Portfolio (𝑉), Portfolio 

(𝑁) and Portfolio (𝑇) are always on the Efficient part of the envelope 

ℱ. Moreover, Portfolio (𝑇) can always be targeted by the Britten-

Jones (1999) regression approach, i.e., Portfolio (𝐵𝐽 ) is always 

equivalent to Portfolio (𝑇), whilst Stevens (1998) always helps to 

obtain the Efficient Frontiers, and Portfolio ( 𝑉 ) can always be 

targeted by the regression approach by Kempf and Memmel (2006). 

Furthermore, Portfolio (𝑁) is always close32 to Portfolio (𝑇) and both 

Portfolios are always positioned above the risk-free asset (i.e., with 

a higher expected return). The expected return on Portfolio (𝑉) is in 

most cases positive (but not always), and sometimes rather high (e.g., 

with high-dimensional datasets on the Chinese market, see Figure C-

9 in the Appendix). Finally, we note that the volatility of Portfolio 

(𝐺 ) is always higher than the one of Portfolio (𝐺) as intuited. 

Thirdly, when we now impose a positivity constraint, we find 

that the pivotal Portfolio (𝑉), Portfolio (𝑁) and Portfolio (𝑇) are on 

the constrained version of efficient frontier ℱ
∗
, as when there is no 

constraint. Portfolio (𝑇) and (𝑉) can also be, once again, computed 

through Stevens (1998), Britten-Jones (1999) and Kempf and 

Memmel (2006) approaches as in the previous non-constrained case. 

Portfolio (𝑁) and (𝑇) are still close and the expected returns on both 

portfolios are higher than 𝑅 . The expected return of the constrained 

Portfolio (𝑉) is as well always positive in every subset of all our tests. 

 
32 This relies on the expected return of the risk-free asset, where we find that the distance 
between Portfolio (𝑁) and (𝑇) in the Chinese and US market (with a higher return on the 
risk-free asset) is significantly higher than that in the French market (with a very low 
expected return of the risk-free asset). 
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In the Chinese and US markets, the Capitalized-Weighted Index 

(CWI) is on ℱ
∗
, that is, in other words, the CWI is optimal in the 

Chinese and US market33. Furthermore, in our static framework, it 

appears unfortunately that the Equally-Weighted Index (EWI) is not 

optimal in every one of our tests (market and periods). 

Finally, we note that the TFST, with or without constraint, gives 

very similar Efficient Frontiers as we intuited at the beginning of this 

work. 

 

Conclusion 

In this article, we revisit a simple technique for the Markowitz 

Mean-Variance portfolio optimization that promotes a higher level 

of computational efficiency and flexibility in comparison with 

predominantly used methods.  

More precisely, we demonstrate that the weights of any 

Efficient Portfolio are a linear combination of the weights of two 

special pivotal Efficient Portfolios, which are non-linear transforms 

(i.e., using rescaled Mahalanobis-type norms) of simple weight 

vectors. 

Knowing that the Two-Fund Separation Theorem holds exactly 

when no constraints are considered, we show, using some recent 

machine learning techniques, that the Two-Fund Separation 

Theorem is only approximative but accurate, under specific realistic 

constraints. In this context, we show the Positive Constrained 

(LASSO) Efficient Frontier can be generated thanks to combinations 

of two pivotal portfolios. Furthermore, we show that the Positively 

 
33 whilst the same result does not hold in all markets: the Capitalized-Weighted Index in 
the French market is not optimal for instance. 
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Constrained (LASSO) Efficient Frontier can be fairly and better 

approximated (with almost no noticeable differences from a rough 

eye-ball analysis) by the combination of four pivotal portfolios, 

namely, the Positively Constrained Global Minimum-Variance 

Portfolio, the weight of the Positively Constrained Null Index, the 

weight of the Positively Constrained Tangent Portfolio, and a vector 

of scalars whose sum respects the non-negative budget constraint. 

 The proposed approach shows several advantages, which 

include: i) computational simplicity; ii) time-efficiency; and iii) 

explanatory power. Moreover, the implemented methodology does 

not require providing the initial weights in the portfolio optimization 

process. We believe that the presented approach can be of interest to 

researchers, academics and students involved in practically oriented 

portfolio optimization tasks since it represents a significant 

computing-time advantage.34 Finally, it allows to include several 

realistic constraints for large-scale portfolios. 

Several extensions of this article could be considered. One 

natural direction would be, following the works by Yang (2000, 

2001, 2004), Duchin and Levy (2009), Tu and Zhou (2011), 

Schanbacher (2015), Bonaccolto et al. (2018) and Joo and Park 

(2021), to study furthermore the validity of the Two-Fund Separation 

Theorem (TFST) in a (conditional) dynamic portfolio management 

out-of-sample exercise, that might lead to a Generalized K-Fund 

Separation Theorem (as in Dybvig and Liu, 2018 and Deguest et al., 

 
34 For instance, the computation of the whole Efficient Frontier on the high-dimensional 
data in the Chinese stock market with the Positively Constrained LASSO technique takes 
approximately 35 hours on a 64 cores machine, whilst it takes less than a minute with a 
one core-computer when using the extended 4-fund TFST (with a related efficiency ratio 
of approximately 130,000). 
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2018), relying as in Bonaccolto and Paterlini (2020) on an empirical 

multi-strategy that optimally combines various pivotal portfolios 

related to sophisticated strategies, i.e.: Markowitz (1952), Jorion 

(1986), MacKinlay and Pástor (2000); Kan and Zhou (2007) and Tu 

and Zhou (2011) dealing with the Equally-Weighted Portfolio (see 

also DeMiguel et al., 2009b), ultimately targeting a risk reduction 

and an efficiency increase as in Zhao et al. (2020), in a large portfolio 

context following Belloni and Chernozhukov (2011). These main 

complementary studies are now put into our future research agenda. 
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