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In this study, we have presented a numerical investigation of high subsonic compress-

ible turbulent flows using the pressure-based lattice Boltzmann method coupled with the

Spalart-Allmaras turbulent model. The major objective of the present study is to eval-

uate the mass leakage issue in compressible turbulent flows and assess the effectiveness

of a previously proposed averaged mass correction technique originally designed for in-

compressible flows. The compressible turbulent flows in inclined straight channels and a

NASA Glenn S-duct are examined for this purpose. The findings indicate that mass leak-

age can be a significant concern in compressible turbulent channel flows across all Mach

numbers considered in this study (Ma = 0.2,0.5, and 0.8). In the aligned channel cases,

symmetric distributions of cross-sectional velocity and skin frictions at the top and bottom

walls are observed, even when the mass leakage correction is absent. However, a linear de-

crease in the mass flux along the channel is observed without mass correction. In inclined

cases, the presence of mass leakage disrupts the symmetric distributions of cross-sectional

velocity and skin frictions. Significant improvements in the symmetry of skin friction and

sectional velocity profiles are observed when the mass correction is employed. In addition,

the capability of the compressible solver to study complex three-dimensional flows was

evaluated by investigating compressible turbulent flow in a NASA Glenn S-duct. The ob-

tained results demonstrate good agreement with previous experimental and numerical data

on the static pressure coefficient along three streamwise lines on the surface of the S-duct.

This proves the capability of the present method to capture complex three-dimensional

phenomena in compressible flows.

a)lincheng.xu@nwpu.edu.cn
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I. INTRODUCTION

The lattice Boltzmann method (LBM) has emerged as a prevailing simulation method in com-

putational fluid dynamics, offering numerous advantages over classic numerical methods based

on the Navier-Stokes equations. LBM is rooted in particle kinetics, and it is characterized by

the localized nature in the streaming-collision processes, as well as the inherent simplicity of the

LB equations. These features make LBM a powerful tool for analyzing various flow problems,

including but not limited to porous media1–3, fluid-structure interaction4,5, turbulent flow6–8, and

etc.

Compared with other numerical methods relying on macroscopic quantities, the treatment

of boundary conditions in LB frame holds particularly significant importance9. This is particu-

larly true when LBM is coupled with the immersed boundary method (IBM) for non-body-fitted

meshes. At a boundary, the presence of distribution functions streaming from non-fluid regions is

normally inevitable, and it means the some missing distribution functions at the boundary grid need

be determined before the collision step. To determine the missing distribution functions, the sim-

plest method is to use the bounce-back scheme10, in which distribution functions streaming from

the grid nodes are directly returned along the reversed directions. However, the accuracy of the

boundary-back scheme is merely first order11, which may ruin the overall second-order accuracy

of LBM. Therefore, some improvements on the boundary-back scheme were proposed, for exam-

ple, reconstruction distribution functions with interpolation or extrapolation method12,13. Except

for the bounce-back scheme, there are also some other second-order accurate boundary treatments

proposed, which are normally based on construction of distribution functions at boundary nodes

(e.g., the non-equilibrium extrapolation scheme14). However, the mass conservation is normally

compromised during the process of the interpolation (or extrapolation) and reconstruction, which

can cause mass leakage.

To eliminate the mass leakage involved in the boundary treatment in LBM, great efforts have

been made15–18. For example, a local second-order accurate boundary treatment scheme was

proposed by Ginzburg and d’Humières to give exact results without mass error in Couette and

Poiseuille flows15. Bao et al. enforced the mass conservation by directly modifying local density

values when studying the flow in a U-shape tube16. However, the origin of the mass leakage in

LBM have not been analyzed systematically until the recent paper by Xu et al.19, where the source

of the mass leakage was theoretically derived (e.g., the gradients of density, normal momentum,
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and normal momentum flux at the solid boundary), and two different mass correction schemes

were utilized to get rid of the mass leakage on boundary nodes. It has been found that the mass

leakage can be a big issue in flows at high Reynolds numbers (e.g., turbulent flows), and it can

ruin the symmetric distributions of the cross-sectional velocity19. However, this study have only

focused on incompressible flows, where the gradients of density and momentum are negligible

for a stationary boundary. In a compressible flow, the gradients of density and momentum at

boundaries nodes may no longer be negligible. Therefore, it is beneficial to examine the mass

leakage in compressible turbulent flows and to evaluate the effectiveness of the mass correction

schemes propose in Ref.19.

Recently, a pressure-based lattice Boltzmann method have been developed to investigate com-

pressible flows20, and it has been proved to be an powerful technique for high subsonic and su-

personic compressible flow20–22. In addition, the mass leakage in flows dominated by large tem-

perature difference was investigated in Wang et al.23, and the local mass correction scheme was

confirmed to be effective to mitigate mass leakage in low-Ma compressible flows. However, this

investigation did not address the issue of mass leakage in high-speed flows, where the local mass

correction scheme becomes ineffective19. Here, the pressure-based LBM is combined with the

RANS turbulent model (Spalart-Allmaras) to examine the capability of the pressure-based solver

for turbulent compressible flows, and the mass leakage issue in the high subsonic compressible

turbulent flows are studied. The organisation of the rest of this paper is as follows. The governing

equations of the fluid dynamics and the mathematical models utilized in the present work is intro-

duced in Section II. In Section III, the numerical methods used are presented. Section IV gives

the results and discussion. Final conclusions are provided in Section V.

II. MATHEMATICAL MODELS

A. Governing equations for fluid dynamics

The dynamics of a steady-state mean compressible flow are governed by the following RANS

equations,
∂ ρ̄

∂ t
+∇ · (ρ̄û) = 0, (1)

∂ ρ̄û

∂ t
+∇ · (ρ̄ûû) =−∇ p̄+∇ · τ̂ , (2)
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∂ ρ̄Ê
∂ t

+∇ · (ρ̄Ĥû) = ∇ · (λ∇T̂ )+∇ · (û ·τ ), (3)

where (̄) represents the conventional time-average mean, and (̂) Favre (density-weighted) average.

ρ̄ is the density, û is the velocity vector, t is time, p̄ is the pressure, τ̂ is the total shear stress

tensor, λ is the heat conductivity, Ê = ê+ ∥û∥2/2 is the total energy, and Ĥ = Ê + p̄/ρ̄ is the

total enthalpy. The internal energy ê is defined by ê = CvT̂ , with Cv being the mass specific heat

capacity at constant volume. The total stress tensor τ̂ consists of the viscous stress part and the

Reynolds stress part

τ̂ = τ̂ ν + τ̂R (4)

where the viscous stress tensor is determined as

τ̂ ν = µ

[
∇û+(∇û)T − 2

3
(∇ · û)I

]
, (5)

with µ being the dynamic and eddy viscosity, and following the Boussinesq approximation, the

Reynolds stress is given as

τ̂R = µt

[
∇û+(∇û)T − 2

3
(∇ · û)I

]
, (6)

where µt is the eddy viscosity determined via a turbulent model. To close the above system, the

equation of state for the perfect gas is considered,

p̄ = ρ̄rT̂ (7)

where r = R/W being the specific gas constant, with R and W respectively being the universal gas

constant and the molecular weight. According to dry air properties, r = 2.9×105 J kg−1 K−1 will

be utilized in this work.

It should be noted that the energy conservation can also be expressed in terms of entropy ŝ as
24,25

∂ ŝ
∂ t

+ û ·∇ŝ =
1

ρ̄T̂
∇ · (λ∇T̂ )+

1
ρ̄T̂

τ̂ : ∇û. (8)

where the entropy ŝ can be expressed as

ŝ =Cv ln
p̄

ρ̄γ
, (9)
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when the calorically perfect gas (constant specific heat Cp and Cv, for constant pressure and volume

process, respectively) is assumed, and γ = Cp/Cv is the adiabatic exponent. The practical use of

entropy ŝ instead of Ê to enforce the energy conservation has been widely validated20,23,24, and

the entropy ŝ on boundary nodes are normally determined using the temperature T̂ .

Here, the eddy viscosity µt is determined using the Spalart-Allmaras (SA) turbulence model,

and the SA model with a fv3 is utilized in this study6,7. Detailed description on the SA model can

be found in Appendix A.

III. NUMERICAL METHOD

A. The pressure-based lattice Boltzmann method for mass and momentum conservation

Here, a brief introduction about the pressure-based lattice Boltzmann method is given, and

readers are recommended to refer to Refs.20,21,23 to more details about this method.

The discrete equation with a single relaxation time for the pressure-based lattice Boltzmann

method is given as 20,23,

fi (x+ei∆t, t +∆t)− fi(x, t) =−1
τ

[
fi(x, t)− f eq

i (x, t)
]
+

∆t
2

Fi, (10)

where fi is the particle distribution function, t is time, x is the fluid parcel position, ei is the

discrete velocity along the ith direction, ∆t is the time step, f eq
i is the equilibrium distribution

function, τ is the non-dimensional relaxation time, and Fi represents the force term exerted on the

distribution function.

The equilibrium distribution function is computed as 23

f eq
i =wi

[
ρθ +

eiα

c2
s

ρuα +
eiαeiβ − c2

s δαβ

2c4
s

: ρuαuβ

+
eiαeiβeiγ − c2

s [eiδ ]αβγ

6c6
s

: ρuαuβ uγ

] (11)

where wi is the weight factor associated with the discrete velocity ei, θ = T/Tref is the normalized

temperature with Tre f being the reference temperature, uα is the αth velocity component with

α,β , and γ being coordinate indices, and [eiδ ]αβγ
= eiαδβγ +eiβ δαγ +eiγδαβ . Please note that

the Einstein summation convention is applied in Eq. 11.
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In the pressure-based LB frame, the first three moments of the distribution function are ex-

pressed as 20,23

∑ fi = p/c2
s = ρθ , ∑ fiei = ρu,

∑ fieiei = ρuu+ pI,
(12)

where cs is the speed of sound and I is the identity matrix.

By solving Eq. 10, the compressible momentum equation (Eq. 2) can be fully restored, but

the mass conservation is not directly enforced. Alternatively, the mass conservation is achieved by

solving Eq. 1 with the traditional finite-difference method as 20,23

ρ(t +∆t,x)−ρ(t,x)
∆t

=−∇(ρu)+O(∆t)

= ∑
fi(t +∆t,x)− f col

i (t,x)
∆t

.

(13)

where f col
i is the post-collision distribution function. Then, the fluid density is updated as 20,23

ρ(t +∆t,x)≈−∂ρuα

∂xα

∆t +ρ(t,x)

= (ρθ)(t +∆t,x)− (ρθ)(t,x)+ρ(t,x)

= ∑
i

fi(t +∆t,x)−ρ(t,x)θ(t,x)+ρ(t,x).

(14)

It should be note that the hybrid recursive regularized collision model (HRR-BGK) is normally

utilized to improve the numerical stability in turbulent flows, and detailed description of HRR-

BGK can be found in Refs.24,26.

B. The finite difference method for the entropy equation and transportation equation for

the Spalart-Allmaras model

To couple the energy conservation with the LBM solver, an entropy equation under non-

conservative format is solved using the second-order finite difference method21,23,

∂ s
∂ t

+uβ

∂ s
∂xβ︸ ︷︷ ︸

MUSCL-Hancock

=
1

ρT

[
Παβ

∂uα

∂xβ

−
∂qβ

∂xβ

]
︸ ︷︷ ︸
Finite difference - second order

. (15)

The MUSCL-Hancock method is employed to discretize the temporal derivative and the con-

vective flux in Eq. 15. This particular scheme is characterized as non-local and necessitates a
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five-point stencil in each direction. However, when dealing with boundary conditions in close

proximity, this stencil may not always be available. In such cases, a combination of a second-

order centered flux (to properly incorporate the boundary condition) and upwinding (for numeri-

cal stability) is utilized. The calculation of thermal conduction and viscous heat employs a simple

second-order centered finite difference scheme, which incorporates a first-order decentered pro-

cedure for nodes near the boundaries. For more information about the method, please refer to

references by Wang et al.23 and Coratger et al.21.

In actual simulations, the transportation equation of the Spalart-Allmaras model (Equation A3)

is commonly reformulated using the non-dimensional variable χ = ṽ/v. To solve the equations

of the SA model, a second-order accurate finite difference scheme is employed 6,7. The temporal

derivative term is discretized using a first-order forward Euler scheme. For the advection term,

a hybrid upwind-centered scheme is utilized. Gradients and Laplacian operators are calculated

using a centered scheme. In the regularized BGK model, the eddy viscosity vt obtained from the

SA model is incorporated into the relaxation time as τ = 1
2 +

v+vt
c2

s
, allowing for the consideration

of turbulence effects in the collision operator 6.

C. Wall model

For the simulations of turbulent flows at high Reynolds numbers, a great challenge is the re-

quirement of large numbers of grid nodes in the near-wall region to capture the rapid change of the

flow quantities. To tackle this problem, a practical way is to adopt the modelled approach, which

has been widely employed by previous numerical investigations. In this section, the wall model

utilized in this work is introduced.

Here, we introduce the following non-dimensionalization,

u+ =
u
uτ

, y+ =
uτd
ν

, (16)

where uτ and ν are respectively the friction velocity and the fluid kinematic viscosity, and the

classic logarithm wall law can be expressed as 6,7

u+ =

y+, in the viscous sublayer,

1
κ

log(y+)+B, in the inertial layer,
(17)
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where κ ≈ 0.41 and B ≈ 5.0. However, the logarithm law normally involves an iterative process to

calculate the friction velocity, and this process can slow down the whole simulation. Therefore, an

explicit power-law based wall model was used in Wilhelm et al.6 to avoid the iterative process. In

this model, the logarithmic behaviour of the velocity profile in the inertial layer is approximated by

the power law, and the linear law is retained for the viscous sublayer. This model can be expressed

as follows 7,

u+ =

 flam (y+) = y+, if y+ ≤ y+lam or Rey ≤ Rec

fpow (y+) = A(y+)B
, if y+ > y+lam or Rey > Rec

(18)

where B = 1/7, and A is determined by the the continuity of the velocity profile at y+lam = 11.81 as

A =
(
y+lam

)1−B ≈ 8.3. Please note that in the simulation, which profile to use is determined based

on the availability of uτ . If uτ is available, then y+ is used and compared with y+lam. Otherwise,

the local Reynolds number Rey = yu/ν = y+u+ is used and compared with the critical Reynolds

number Rec =
(
y+lam

)2.

The explicit power-law based wall model mentioned above relies on the equilibrium assumption

for the turbulent boundary layer under zero pressure gradient. Therefore, it is anticipated that

this model may not provide accurate results for flows experiencing substantial adverse pressure

gradients. To simulate a flow with strong adverse pressure gradients, the adverse pressure gradient

log-law model proposed in Ref.27 is employed in the present study. Please refer to Ref.27 for

detailed description on this model.

D. Mass leakage quantification and mass correction schemes

The local mass leakage in LBM defined as the net loss of distribution functions during the

streaming process at a boundary node takes the form as 19

E(x) =
∆x
∆t ∑

x+ei∆t∈Γ

[
f col
i (x)− f col

i (x+ei∆t)
]
, (19)

where x is the coordinate vector of a boundary node, Γ represents the non-fluid region, ∆x is the

grid spacing, ∆t is the time step, ei is the ith discrete velocity with its components taking values

among 0 and ±∆x/∆t, and i is the opposite direction of the ith direction (i.e., ei =−ei). Clearly,

it can be found that the mass leakage E actually represents the local mass flux across the boundary
19, i.e.,
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E(x) =
∆x
∆t ∑

x+ei∆t∈Γ

[
f col
i (x)− f col

i (x+ei∆t)
]

≈ ∑ fi,w Sign(ei ·n)≈ ∑ fi,wei ·n= ρuw ·n,
(20)

where w represents the solid boundary involved, uw is the local velocity of fluid across the solid

boundary w, and n is the local outward normal vector at the boundary.

Based on the definition of the local mass leakage, it is straightforward to apply the local mass

correction scheme (LMC) by compensate the local mass loss as19

∆ρ(x) =
∆t
∆x

E(x) = ∑
x+ei∆t∈Γ

[ fi(x)− fi (x+ei∆t)] . (21)

The local mass correction scheme aligns with the widely employed bounce-back (BB) method,

but it has been demonstrated this scheme can include a zeroth-order perturbation to the solution of

density (Please refer to Xu et al.19 for detailed analysis). Therefore, the averaged mass correction

scheme (AMC) was proposed, and it is formulated as

∆ρ(x) =
∆t
∆x

Ē(x) =
∆t
∆x

∑Ω E∆S
∑Ω ∆S

=
∑Ω

{
∑x+ei∆t∈Γ [ fi(x)− fi (x+ei∆t)]

}
∆S

∑Ω ∆S

(22)

where Ω represents the solid boundary and Ē = ∑Ω E∆S/∑Ω ∆S is the averaged mass leakage over

the boundary. It has bee reported that the averaged mass correction scheme can effectively mitigate

the mass leakage in incompressible turbulent flows. Therefore, this scheme is utilized to enforce

mass conservation in this study. However, as stated in Wang et al.23, the mass correction schemes

(Eqs. 21 and 22) can not be directly applied in the pressure-based lattice Boltzmann frame, due

to the complex relationship between the distribution function fi and the density ρ . Therefore, the

local mass leakage is expressed in the form of macroscopic quantities as,

E(x) =
∆x
∆t

[
ρ

BB(x)−ρ(x)
]
, (23)

where ρBB = ∑
x+ei∆t∈Ω

f col
i (x)+ ∑

x+ei∆t∈F
f col
ī (x+ei∆t) is the density obtained using the BB strat-

egy at a boundary node, with F representing the fluid region. Within the frame of pressure-based

LB, the ρBB can be calculated as23
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ρ
BB(t +∆t,x)

=ρ(t,x)+

[
∑

x+ei∆t∈Ω

f col
i (t,x)+ ∑

x+ei∆t∈F
f col
ī (t,x+ei∆t)

]
−ρ(t,x)θ(t,x).

(24)

In this case, the local density correction can be applied as

∆ρ(t +∆t,x) =
∆t
∆x

E(t +∆t,x)

=ρ(t,x)+ ∑
x+ei∆t∈Ω

f col
i (t,x)+ ∑

x+ei∆t∈F
f col
ī (t,x+ei∆t)

−ρ(t,x)θ(t,x)−ρ(t +∆t,x).

(25)

The effectiveness of the local mass correction scheme (Eq. 25) in mitigating mass leakage

in low-Ma compressible flows has been confirmed23. However, the formulation of the averaged

mass correction scheme for high-Reynolds-number compressible turbulent flows is still pending.

In this study, we apply the averaged density correction for high subsonic compressible flows in the

pressure-based LB framework by averaging the total mass leakage over the entire solid boundary

as

∆ρ(t +∆t,x) =
∆t
∆x

Ē(t +∆t,x)=
∆t
∆x

∑Ω E∆S
∑Ω ∆S

=∑
Ω

[
ρ(t,x)+ ∑

x+ei∆t∈F
= f col

ī (t,x)(t,x+ei∆t)

+ ∑
x+ei∆t∈Ω

f col
i (t,x)−ρ(t,x)θ(t,x)−ρ(t +∆t,x)

]
∆S/∑

Ω

∆S.

(26)

IV. RESULTS AND DISCUSSION

A. The compressible turbulent flow in a straight channel with variously inclined

boundaries

In this section, the two-dimensional compressible turbulent flow in a straight channel with zero

pressure gradient is investigated. The schematic diagram for the this problem and configurations

of boundary conditions are shown in Figure 1. The straight channel is inclined with respect of

the horizontal line at different inclination angles θ . To achieve the fully developed turbulent flow,
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FIG. 1. The schematic diagram for the compressible turbulent flow in an inclined channel.

a long channel with the length of L = 200H (with H being the half height of the channel) is

utilized. The identical geometry has been used in the investigation on the incompressible turbulent

channel flow19. The uniform flow with the velocity of U0 is applied to the inlet of the channel,

and a constant pressure is imposed at the outlet. The top and bottom boundaries of the channel

are considered to be non-slip adiabatic walls. A small segment of a free-slip wall is inserted

ahead of the channel to mitigate the impact of the inlet boundary condition, and a sponge layer is

applied at the inlet to minimize the spurious reflections. To investigate the impact of the inclination

angle θ on the issue of mass leakage, we analyze the problem using three distinct inclination

angles (θ = 0◦,15◦ and 30◦). The Reynolds number based on the half-height of the channel

Re = ρ∞U0H/µ0 ranges from 4.8× 104 to 1.92× 105 depending on the inlet velocity, and the

Mach numbers used are Ma = U0/
√

γRT∞ = 0.2, 0.5 and 0.8. The acoustic Courant-Friedrichs-

Lewy (CFL) number with respect to infinite state is defined as CFL = |U0|+
√

γRT∞

∆x/∆t , and CFL = 0.5

is utilized in this section. The uniform grid ∆x/H = 0.05 is used in all simulations. Here, we

focus on the effects of the Mach number and inclination angle on the issue of mass leakage in this

problem.
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1. Effects of Ma

The effects of the Mach number on the issue of mass leakage in the compressible turbulent

channel flow are examined in this section. Here, only the aligned cases (θ = 0◦) are considered,

and discussion on the impact of the inclination angle on the mass leakage issue can be found in

Section IV A 2.

First, the mass leakage issue at a low Mach number (Ma = 0.2) is evaluated. Figure 2(a) and

(b) show the comparison of profiles of the sectional velocity and the skin friction along the channel

at Ma = 0.2 for cases with and without the implementation of the mass correction scheme. The

present results are compared with the previous benchmark DNS data28 as the validation of the

present method. It is found that the present results shown good agreemtn with the DNS data,

which conforms the accuracy of the present method in compressible flow at low Ma. In addition,

it is also observed that the sectional velocity show symmetric distributions about the centerline of

the channel (y/H = 1.0), regardless of the utilization of the mass correction scheme. In addition,

the skin frictions at top and bottom walls are identical. This is understandable since the mesh is

symmetric for the aligned cases. Furthermore, the sectional velocity with the mass correction is

slightly larger than that without mass correction. This is due to the elimination of mass leakage

and the addition of mass flux through the mass correction. However, there exists small mass

leakage in the case without mass correction (NMC). As shown in Figure 2(c), the sectional mass

flux decreases linearly along the channel without the mass correction, and the variants can be

over 1.2%. This is caused by the gradient of the density and momentum at the top and bottom

boundaries. With the mass correction, the variants of the mass flux is reduced significantly to

within 0.2%, which proves the effectiveness of the mass correction scheme on the compressible

turbulent flow at low Mach numbers.

To evaluate the mass leakage issue in high subsonic compressible turbulent channel flows,

simulations are also conducted at Ma = 0.5 and 0.8. Figure 3 shows the results at Ma = 0.5 and

0.8. It is observed that the sectional velocities and skin frictions at Ma = 0.5 and 0.8 also show

symmetric distributions as in Ma = 0.2, and there is small differences between the results with

and without mass correction. However, the variants of the mass flux is much larger in the results

without mass correction (over 3.8%) at Ma = 0.5, which means the mass leakage can be more

serious at higher speed flows. In addition, the variants of the mass flux is remarkably reduced to

within 0.2%, when the averaged mass correction scheme is utilized. Similar tendencey has also
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FIG. 2. The profiles of (a) the sectional velocity and (b) the skin friction at Ma = 0.2 and θ = 0◦. (c) The

sectional mass flux variation along the channel. "NMC" and "AMC" respectively represent results without

and with mass correction.

been observed at Ma = 0.8 (as shown in Figure 3).

2. Effects of θ

This section evaluates the effects of the inclination angle θ on the mass leakage issue in com-

pressible turbulent channel flow. Figure 4(a) illustrates the profiles of the sectional velocity at

Ma = 0.2 for θ = 15◦ and 30◦. It is observed that the sectional velocities at θ = 15◦ and 30◦ devi-

ate from the symmetric profiles observed in the aligned case (θ = 0◦), which is consistent with the

previous findings in incompressible turbulent flow within an inclined channel19. This deviation
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FIG. 3. The profiles of the sectional velocity, the skin friction and sectional mass flux variation at Ma = 0.5

and 0.8 for θ = 0◦.
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can be attributed to mass leakage in the problem, and it can be effectively mitigated by applying

mass correction (as demonstrated in Figure 4(a)).

The profiles of the skin friction along the channel at θ = 15◦ and 30◦ are depicted in Figure

4(b), which reveals the significant discrepancies between the skin frictions at the top and bottom

walls when mass correction is not applied. In addition, the difference increases with the increase

of the inclination angle θ . In contrast, with mass correction, the differences between the skin

frictions at top and bottom walls are notably diminished. To further illustrate the influence of the

inclination angle on the skin frictions, the relative difference between skin frictions at top and

bottom walls are computed as

∆C f =
∥∥C f ,top −C f ,bottom

∥∥/C f ,bottom, (27)

where C f ,top and C f ,bottom are respectively the skin frictions at the top and bottom walls. Figure

4(c) illustrates the relative differences in skin friction at θ = 15◦ and 30◦ for Ma = 0.2. As

depicted in the figure, the relative difference ∆C f can surpass 10% and 30% for θ = 15◦ and

30◦, respectively, in the absence of mass correction. However, by applying mass correction, this

difference can be reduced to below 5% in both inclination angles. Figure 4(d) illustrates the

relative variants of the mass flux at different cross sections along the channel. It is observed that

the mass flux experiences rising along the channel in both inclined cases different from the linear

reduction in the aligned case (θ = 0◦). In addition, the variant of the mass flux can respectively be

over 1.6% and 0.6% at θ = 15◦ and 30◦ with the correction on the mass leakage, compared with

the prominently reduced variant (within 0.4%) for cases with mass correction. Similar tendency is

also observed at Ma = 0.5 and 0.8 (Please find more details in Figure 5 and 6).

Overall, the mass leakage exists in the aligned cases at all Ma considered, but the mass leakage

does not show significant influence on the profiles the cross-sectional velocity and the skin friction.

In contrast, the mass leakage can be big issue when the inclination angle θ is not 0. The symmetric

distribution of the cross-sectional velocity and skin friction is ruined, and the mass correction

scheme can remarkably recover the symetric distribtions by mitigating the mass leakage.

B. The compressible turbulent flow in the NASA Glenn S-duct

In this section, the dynamics of compressible turbulent flow in a NASA Glenn S-duct are in-

vestigated. This case can serve as a benchmark validation case for complex three-dimensional
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FIG. 4. The profiles of (a) the sectional velocity, (b) the skin friction and (c) the relative difference of the

skin friction at Ma = 0.2 for θ = 15◦ and 30◦. (d) The sectional mass flux variation along the channel.

compressible flow phenomena such as boundary-layer separation and secondary flows29,30. In

addition, as demonstrated in Section IV A, changing the grid’s topology can result in significant

mass leakage problems. Hence, the objective of this case also involves the examination of the

mass leakage issue in three-dimensional compressible turbulent flow and evaluation on how the

mesh’s topology affects the symmetry of fluid properties. The centerline of the S-duct is created

by combining two identical circular arcs, both of which have the same radius (R = 1.02 m) and

are located in the same plane. Eqs. 28-30 are used to create the centerline of the duct (as show in

Figure 7), with θm/2 = 30 deg,
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FIG. 5. The profiles of (a) the sectional velocity, (b) the skin friction and (c) the relative difference of the

skin friction at Ma = 0.5 for θ = 15◦ and 30◦. (d) The sectional mass flux variation along the channel.

xcl =

 Rsinθ , for 0 ≤ θ ≤ θm
2 ,

2Rsin
(

θm
2

)
−Rsin(θm −θ) , for θm

2 ≤ θ ≤ θm,
(28)

ycl = 0, (29)

zcl =

 Rcosθ −R, for 0 ≤ θ ≤ θm
2 ,

2Rcos
(

θm
2

)
−R(1+ cos(θm −θ)) , for θm

2 ≤ θ ≤ θm,
(30)

where xcl , ycl , and zcl represent the coordinates of the centerline, with each variable corresponding

to a specific dimension. The cross-sectional area of duct expands gradually along the centerline,
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FIG. 6. The profiles of (a) the sectional velocity, (b) the skin friction and (c) the relative difference of the

skin friction at Ma = 0.8 for θ = 15◦ and 30◦. (d) The sectional mass flux variation along the channel.

and the cross-sectional radius r is given by

r
r1

= 1+3
(

r2

r1
−1

)(
θ

θm

)2

−2
(

r2

r1
−1

)(
θ

θm

)3

, (31)

where r1 = 0.1021 m and r2 = 0.1257 m are respectively radii of the inlet and outlet. Here, pipes

with constant diameter of length 0.762 m are added to the front and aft of the convoluted duct

to be consistent with the experiment configuration29,31, and the surface of the S-duct generated

and utilized in the simulations is illustrated in Figure 8. The uniform mesh is generated over the

whole computational domain, and two different grid spacings (fine: ∆x = ∆y = ∆z = 0.002 m and

coarse: ∆x = ∆y = ∆z = 0.004 m) are used, corresponding to 1.67 and 13.65 million grid nodes,

18



FIG. 7. The geometry of the NASA Glenn S-duct29.

FIG. 8. The surface of the NASA Glenn S-duct.

respectively. In the simulations, the grid used is slightly adjusted to introduce a minor asymmetry

in the mesh distribution.

The constant total mass flux is set at the inlet, and at the outlet, a constant pressure is applied.

The surface of the S-duct is assumed to be non-slip adiabatic wall. The mass flow rate at the inlet

is tuned to match the prescribed centerline Mach number Ma = 0.6 at the reference inlet, where

the non-dimensional arc length along the centerline of the S-duct is s/D1 =−0.5 (with D1 = 2r1

being the diameter of the inlet). Here, we examine the wall static pressure coefficient Cp along

three streamwise lines on the surface of the S-duct, and it is calculated as30,32
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Cp =
p− pcl

p0,cl − pcl
(32)

where p is the local static pressure, and po,cl and pcl are respectively the total and static pressure

at the center of reference inlet cross section s/D1 =−0.5.

First, the present results are validated against previous experimental29 and numerical30,32 re-

sults to confirm the accuracy of the present method. Figure 9 displays the profiles wall static

pressure Cp along three streamwise lines (Φ = 10◦,90◦ and 170◦) on the surface of the S-duct. It

is observed that the present results generally show good agreement with the previous experimen-

tal and numerical results, which proves the accuracy of the present method in three-dimensional

compressible flow in complex geometries.

Next, the issue of mass leakage in this problem and the effects of mesh topology on the results

are examined. Figure 10(a) compares the profiles of static pressure (Cp) with and without mass

correction for cases with a coarse mesh (∆x = ∆y = ∆z = 0.004 m). It can be observed that there is

no significant difference in the results when the mass correction scheme is utilized. The sectional

mass flux variation along the S-duct is illustrated in Figure 10(b), revealing minimal mass leakage

in this problem. Additionally, Figure 11 displays the profiles of static pressure (Cp) on different

halves of the S-duct. It is evident that there is no notable difference in wall static pressure between

the two halves, indicating that the topology of the mesh does not significantly influence the results

in this problem.

V. CONCLUSIONS

We have conducted a comprehensive numerical investigation of high subsonic compressible

turbulent flows using the pressure-based lattice Boltzmann method in conjunction with the Spalart-

Allmaras turbulent model. Our study focuses on evaluating the mass leakage issue in compressible

turbulent flows and examining the effectiveness of the previously proposed averaged mass correc-

tion, initially intended for incompressible flows, by Xu et al.19. To this end, we have examined

inclined straight channels and a NASA Glenn S-duct.

Our findings indicate that mass leakage can be a significant concern in compressible turbulent

channel flows across all Mach numbers considered in this study (Ma = 0.2,0.5, and 0.8), even in

aligned channel cases where the mass leakage is negligible in incompressible turbulent flows. In

aligned channel cases, where the mass leakage correction is absent, cross-sectional velocity and
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FIG. 9. The profiles of the wall static pressure Cp along three streamwise lines (Φ = 10◦,90◦ and 170◦) on

the surface of the S-duct. Inset: the positions of surface nodes at three streamwise lines on a cross section

of the S-duct.

skin frictions at the top and bottom walls exhibit symmetric distributions. However, the mass flux

experiences a linear decrease along the channel. In inclined cases, the presence of mass leakage

disrupts the symmetric distributions of cross-sectional velocity and skin frictions. By employing

the mass correction, significant improvements are observed in the symmetry of skin friction and

sectional velocity profiles.

Furthermore, we have investigated compressible turbulent flow in a NASA Glenn S-duct to

evaluate the capability of our compressible solver in studying complex three-dimensional flows.

The obtained results demonstrate good agreement with previous experimental and numerical data

21



(a) (b)

Nondimetional arc length s/D
1

C
p

­2 0 2 4 6

­0.4

­0.2

0

0.2

0.4

0.6

0.8

1

Φ= 10° present (coarse, NMC)

Φ= 10° present (coarse, AMC)

Φ= 90° present (coarse, NMC)

Φ= 90° present  (coarse, AMC)

Φ= 170° present (coarse, NMC) 

Φ= 170° present (coarse, NMC) 

Non­dimentional arc length s/D
1

(Q
­Q

0
)/

Q
0
(%

)

0 1 2 3 4 5 6 7

­0.4

0

0.4

0.8

1.2

coarse (NMC)

coarse (AMC)

fine (NMC)
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FIG. 11. The comparison of the wall static pressure Cp on two halves of the S-duct.

on the static pressure coefficient along three streamwise lines on the S-duct surface. This sub-

stantiates the effectiveness of our approach in capturing complex three-dimensional phenomena in

compressible flows.

Overall, our study provides valuable insights into the behavior of compressible turbulent flows

and highlights the significance of addressing the mass leakage issue. The proposed averaged mass
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correction offers a promising solution for improving the accuracy and reliability of simulations in

various practical scenarios.
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Appendix A: Appendixes

To describe the turbulent flow, the Spalart-Allmaras turbulence model is employed in this work.

The Spalart-Allmaras model possesses considerable appeal because of its simplicity, reliability,

and computational efficiency. Unlike the two-equation models that require calculations for turbu-

lence time and length scales, the SA model directly computes the eddy viscosity. Additionally, it

surpasses algebraic models in versatility by considering transport and historical effects.

In the Spalart-Allmaras model, a working viscosity ν̃ is defined to preserve the linear relation-

ship ν̃ = κuτd (uτ and d are respectively the friction velocity and the distance to the wall) all the

way down to the wall, and the eddy viscosity is computed as

νt = ν̃ fv1, (A1)

where fv1 is the damping function, defined as

fv1 =
χ3

χ3 + c3
v1
, (A2)

with χ = ν̃/ν (ν is the fluid kinematic viscosity) and cv1 = 7.1 being a constant in SA model.

To prevent the negative values of the source term, the SA model with a fv3 is utilized in this

work6,7, and the transportation equation for ν̃ is given as

Dν̃

Dt
≡ ∂ ν̃

∂ t
+u j

∂ ν̃

∂x j
= cb1S̃ν̃ +

1
σ

[
∂

∂x j

(
(ν + ν̃)

∂ ν̃

∂x j

)
+ cb2

(
∂ ν̃

∂x j

)2
]
− cw1 fw

(
ν̃

d

)2

(A3)

with the three terms on the right side of the equation being production, diffusion and destruction

terms, respectively. Their components are computed as follows,
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S̃ = fv3Ω+
ν̃

κ2d2 fv2, Ω =

√
1
2

(
∂ui

∂x j
−

∂u j

∂xi

)2

,

fv2 =

(
1+

χ

cv2

)−3

, fw = g

[
1+ c6

w3

g6 + c6
w3

]1/6

g = r+ cw2

(
r6 − r

)
, r = min

[
ν̃

S̃κ2d2
,10

]
fv3 =

(1+χ fv1)(1− fv2)

χ

(A4)

with the constants being gives as

cb1 = 0.1355, σ =
2
3
, cb2 = 0.622, κ = 0.41

cw1 =
cb1

κ2 +
1+ cb2

σ
, cw2 = 0.3, cw3 = 2, cv2 = 5.

(A5)
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