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NAVIDRO, a CARES architectural style for configuring drone

co-simulation

LOIC SALMON, ISEA, University of New Caledonia, Nouméa, New-Caledonia

PIERRE-YVES PILLAIN, GOULVEN GUILLOU, and JEAN-PHILIPPE BABAU, Lab-STICC, UBO,
Brest, France

One primary objective of drone simulation is to evaluate diverse drone conigurations and contexts aligned with speciic
user objectives. The initial challenge for simulator designers involves managing the heterogeneity of drone components,
encompassing both software and hardware systems, as well as the drone’s behavior. To facilitate the integration of these diverse
models, the Functional Mock-Up Interface (FMI) for Co-Simulation proposes a generic data-oriented interface. However, an
additional challenge lies in simplifying the coniguration of co-simulation, necessitating an approach to guide the modeling of
parametric features and operational conditions such as failures or environment changes.

The paper addresses this challenge by introducing CARES, a Model-Driven Engineering (MDE) and component-based
approach for designing drone simulators, integrating the Functional Mock-Up Interface (FMI) for Co-Simulation. The proposed
models incorporate concepts from Component-Based Software Engineering (CBSE) and FMI. The NAVIDRO architectural
style is presented for designing and coniguring drone co-simulation. CARES utilizes a code generator to produce structural
glue code (Java or C++), facilitating the integration of FMI-based domain-speciic code. The approach is evaluated through
the development of a simulator for navigation functions in an Autonomous Underwater Vehicle (AUV), demonstrating its
efectiveness in assessing various AUV conigurations and contexts.

Additional Key Words and Phrases: component-based design, co-simulation, Model-Driven Engineering, Cyber-Physical
System, drone

1 INTRODUCTION

In recent years, drones have been increasingly used for environmental observation purposes due to their numerous
beneits in terms of mission planning and coverage rate. For instance, Autonomous Underwater Vehicles (AUVs)
are becoming increasingly popular for hydrographic applications. These vehicles are capable of conducting
underwater surveys and collecting data in areas that are diicult or dangerous for human divers to access.
However, these applications face challenges concerning the estimation of the underwater position of the AUV
due to GPS signal loss [29]. Given the uncertainties and costs involved in testing such a system, simulation has
become a key issue, for instance to evaluate the accuracy of the AUV position computed by a given navigation
function considering a certain AUV coniguration and context [17].

Simulation may be performed at diferent levels of abstraction, such as model-in-the-loop, software-in-the-loop,
hardware-in-the-loop, and processor-in-the-loop simulations, for diferent stages of development process. In this
paper, we focus on model-in-the-loop and software-in-the-loop simulations, where the simulation is based on
running software, modeling the behavior of parts of the AUV and its environment, emulating hardware functions,
or implementing pieces of embedded software.
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Drone simulation faces four challenges [13], as a drone may be considered as a Cyber-Physical System (CPS).
The irst challenge concerns simulation performance. This aspect is mainly addressed by optimizing simulation
modules and by using parallel infrastructure [1]. The second challenge concerns accuracy of results which relies
on the quality of simulations modules. The third challenge concerns CPS modeling [13]:

• Preventing misconnected model components. Indeed, not only because of the type of the components, one
issue is the unit and the reference frame of data that can be diferent from one component to another one.
Standardization of reference frames and units of data is a key element to prevent errors.

• Modeling sensor behaviors and time disparities. The accuracy and the frequency may vary from sensor to
sensor. Each sensor is disturbed diferently by the environment, and has its own sensor noise model.

• System heterogeneity. Integration of heterogeneous domain speciic topics requires to implement principles
of separation of concerns related to modeling system and simulation [14]. Due to diferent data sources,
diferent models and algorithms, diferent simulation conigurations are to be considered.

The fourth challenges pertains to the coniguration of simulation runs and proposing agility in the simulation
design.

Compared to a monolithic simulation, co-simulation allows simulation modules, which represent subsystems,
to be coupled together, providing a more comprehensive simulation of the overall system. This approach brings
many advantages such as reduced development time [43]. Co-simulation is a technique used in simulation to
integrate and orchestrate heterogeneous models while considering modeling and time disparities (third challenge).
In the literature, a lot of experiments show the efectiveness of co-simulation for AUV evaluation (trajectory
tracking [27], safety and performance analysis [44], UAV swarms analysis [4] and communications [2]). One
widely used co-simulation standard is the Functional Mock-Up Interface (FMI) [6]. FMI is a standardized interface
for model exchange and co-simulation of dynamic models across diferent simulation tools. The FMI standard
for Co-Simulation deines a standardized interface for coupling simulation units (called Functional Mock-Up
Unit (FMU)) in a co-simulation environment. FMU are orchestrated by the Master module (orchestrating data
exchange and scheduling).

While the FMI standard provides facilities to integrate and orchestrate diferent simulation modules, it does not
provide any guidelines on how to design co-simulation (how to connect FMUs through a co-simulation graph) and
to conigure it (the fourth challenge). Indeed, the key aspects žpreventing misconnected model componentsž and
"lexible co-simulation design" are software architectural challenges: what architectural style is required to avoid
standardization errors and to ease coniguring co-simulation description and runs. And, considering end-users, the
architecture style has to be supported by an easy-to-use environment to design and run conigurable simulators.
In such a context, complexity of CPS encourages developers to implement co-simulation by using modeling
approaches [13] and more speciically a Component-Based Software Engineering (CBSE) approach [12].

Recently, high-level modeling languages and standards have been proposed to ease the description of simulator
structure and runs [3, 10, 11, 21, 25, 34, 42]. But to the best of our knowledge, there is no approach proposing a
high-level modeling language integrating richness of CBSE and parametrization to build a lexible simulation
environment for designing and coniguring a dedicated drone simulator regarding diferent contexts.
In this paper, we propose irst a model-based framework, called CARES 1, dedicated to the design of drone

co-simulation. The framework provides three high-level modeling languages (based on concepts deined by CBSE
and FMI 2.0 for co-simulation) to consider three modeling layers (deinition of types of co-simulation unit, graph
of co-simulation units and description of co-simulation run). From models, a code generator and a runtime library
allow to build a simulator for a given scenario. Then, to ease design of co-simulation graph, we propose an
architectural style called NAVIDRO. NAVIDRO provides patterns to ease conigurable co-simulation development
for the speciic domain of AUV trajectory tracking. It proposes to implement generic API and adapters to ease

1https://framagit.org/jpbabau/cares
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integration of diferent drone behaviors, sensor conigurations and navigation functions. NAVIDRO is illustrated
through a simulator dedicated to evaluation of AUV navigation functions. At last, the paper presents how to
design and conigure co-simulation runs for diferent conigurations and contexts.

The paper addresses software engineering challenges to ease design of lexible co-simulation. CARES languages
ofer lexibility at diferent levels: a parameter of a co-simulation unit may be modiied when deining the
co-simulation graph or when describing a co-simulation run (at the beginning or at speciic instants), a link
between components may be setup when describing a co-simulation run, a co-simulation unit may be stopped
or restarted at speciic instants. And the NAVIDRO architectural style provides guidelines on how to connect
diferent co-simulation units to ease design of lexible drone co-simulation for a speciic family of applications.
CARES and NAVIDRO experimental results have been presented in a irst paper [38]. This paper details CARES
and NAVIDRO principles. All concepts are presented and integration of FMU is detailed. In addition, the notion
of scenario is described and illustrated using several conigurations.
The remainder of the paper is structured as follows. Section 2 presents the application domain of AUV and

more speciically the navigation function. Section 3 introduces the generic aspects of the model-driven and
component-based framework, called CARES. Section 4 presents the NAVIDRO architectural style proposed to
design a drone simulator. In Section 5, the co-simulation results of the case study are discussed. Section 6 presents
related work before a conclusion in Section 7.

2 CASE STUDY : THE AUV NAVIGATION FUNCTION

We present here the case study used to illustrate CARES and NAVIDRO. An AUV is used to observe and collect data
in a speciic area. To fulill its mission, it requires an evaluation of its position. This is the role of the navigation
function. This section describes the diferent concepts and elements required to simulate the navigation function
of an AUV.
The irst element to consider is the trajectory of the AUV. This trajectory is the reference to evaluate the

accuracy of the navigation function. For simulation, the trajectory can be extracted from a given log ile (replay
of a previous mission) or computed from a trajectory model. For the latter, the trajectory is usually speciied by a
list of way-points. Indeed, the trajectory cannot follow exactly the succession of way-points through segment
lines due to physical constraints: the drone cannot turn directly and the motor control implies some uncertainties
in the trajectory. To simulate a realistic trajectory, diferent models can be used as for instance splines [39]. For
testing purpose, a simple trajectory may be computed as a list of consecutive segments and semi-circles (cf. Figure
1).

Fig. 1. Two diferent simulated trajectories built at the right with lines and semi-circles and at the let with splines.

ACM Trans. Embedd. Comput. Syst.
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The trajectory is impacted by the environment and meteorological conditions. In our case, the AUV evolves in
an environment where current and depth play an important role, disturbing the intended trajectory of the AUV.
To maintain its direction, reacting to the current, the AUV moves using crab steering mode. Moreover, the AUV
may have to respect a given altitude (which is always calculated from the seabed). Then, to simulate a realistic
trajectory, current and depth are a part of the model for drone navigation estimation. The environment behavior
may be extracted from a log ile, given by a forecast ile or computed from an environment model.
For sensors, the following Figure 2 illustrates the diferent elements that can be present in an AUV. Indeed,

each type of AUV is equipped with diferent sensors. In our case these sensors are:

• the GPS provides an estimation of the position of the drone while it is on the surface.
• the accelerometer is a part of Inertial Measurement Unit (IMU) and the linear accelerations.
• the gyroscope is a part of IMU and provides an estimation of the angular speeds.
• the DVL (Doppler Velocity Log) provides an estimation of the linear speeds.
• the barometer provides an estimation of the depth.

Fig. 2. The Kongsberg Munin 1500 AUV and its components.
2

Each sensor is characterized by a level of quality (accuracy) and runs at a given frequency (in Hertz). The
technical speciication of a sensor characterizes its quality through a model of error (white noise, bias, scale
factor, time drift, ...) [49]. Moreover, each data provided by the sensors are given in the frame and orientation
related to itself.
Finally, diferent navigation functions can be used. Some of them use only a few sensors data (GPS on the

surface, gyroscope and DVL integration, gyroscope and accelerometer double integration) [30], while others
use hybrid process merging all data received by the diferent sources (i.e. Kalman Filter). A Kalman Filter needs
parameters’ tuning to provide a correct estimation of the AUV position [5].

In conclusion, the simulation of the navigation function for a drone is highly lexible depending on the chosen
AUV trajectory, the environmental conditions, the quality of the sensors and the chosen algorithm. To test a
simulation coniguration, one can deal with real data logs or models of the diferent elements (environment,
trajectory, sensors, ...), diferent values for parameters of models. Moreover during a mission, at any time, diferent
events may occur, like a sensor failure or a quality loss.

ACM Trans. Embedd. Comput. Syst.
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3 CARES FRAMEWORK

This section presents the CARES3 framework we propose for co-simulation. CARES provides model editors and
tools to develop and run model-driven and component-based simulators.
The model-driven framework CARES proposes to prevent inherent problems of code-centric approaches by

describing a simulator through a set of communicating components, each component simulating one part of
the drone and its environment. At execution stage, CARES follows a time-driven orchestration paradigm and a
co-simulation run is based on a high-level description of a parametric scenario.

3.1 Main concepts

In the following section, we present the main concepts of CARES.
Structure. As usual with component-based approaches, a component is either a leaf component or a composite

component. A leaf component executes repeatedly a speciic task, while a composite component can be composed
of one or several leaf or composite components. The composite components are proposed for structural purpose.
They ease navigation in the system description. From FMI perspective, a leaf component represents a Functional
Mock-up Unit (FMU). It is a co-simulation unit in charge of simulating one part of the system. From implementation
point of view, it is a FMU wrapper respecting the FMI interface.
Parameters. As usual with component-based approaches, a leaf component is characterized by a set of typed

parameters (basic types, records and arrays). Considering the needs of FMI for co-simulation, parameters can be
shared between components (the boolean shared attribute of the shared parameter is by default set to true).
Communication. As usual with co-simulation, communication between components is based on data links

connected to input and output data ports. To ease exchange of complex information between components or
management of components, we propose to add functional services to components. Following classical component-
based models, services are declared using required and provided interfaces of components. Each interface deines
a set of functions. Service links are represented by relying provided interfaces to required interfaces (many to
many relationship). At design stage, a provided interface is not necessarily linked to a required interface, it can
be used later to conigure co-simulation runs (see later).

Data ports and interfaces may be declared for a leaf or a composite component. In case of a leaf component, an
input data, resp. an output data, can be used, resp. produced, by the behavior of the component. And a provided,
resp. a required, service is implemented, resp. can be called, by the behavior of the component. In case of a
composite component, with no speciic behavior, a port or an interface is simply linked to a port or an interface
of an internal component.

Component and communication behaviors. An explicit behavior is described only for leaf components. First, a
leaf component provides an implementation for each function deined by each provided interface. And, to be
FMI compatible, each leaf component has to implement ive functions : initialize(), end(), doStep(), start() and
stop(). The functions have to be implemented in Java or C++ language, depending on the target language of the
simulator.

The initialize() function is used to initialize the parameters of the components and internal services. The end()
function is used to stop internal services. The doStep() function is in charge of computing parameters and outputs
considering inputs. Its execution follows the Run-To-Completion paradigm: the data inputs are considered at the
beginning and the data outputs are produced at the end [15].
To implement diferent modes, when describing co-simulation runs, each component may be activated (by

default at initialization or after a call of start()) or deactivated (after a call of stop()) at a given time. After a leaf
component becomes inactive, the corresponding doStep() function is not executed.

3https://framagit.org/jpbabau/cares
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For data communication, two states of shared parameters and data are managed by the framework: the current
value (timestamp t2) and the previous one (timestamp t1). If a parameter belongs to a component C1 or a data is
produced as an output by a component C1, it is updated after each doStep() execution of C1 (t2 = t1 + period
of C1). If a parameter or data is used by a component C2, when a doStep() execution is performed, simulating
evolution of C2 from instant t3 to instant (t3 + period of C2), C2 may consider the last produced information
(instant t2) or the previous one (instant t1). Thus, for the modeling of a continuous system, a component C2 only
considers data produced before or at time t3.
It is the responsibility of the FMU designer to consider either data computed at the previous instant (a data

dependency is not a timed dependency for continuous processes) or after a co-simulation step (a data dependency
is also a timed dependency to implement data-low semantic). Because the algorithm of data communication
orchestration is generic, it is not described in the model. We just represent data links that rely output ports to
input ports (one to many relationship).
Component types. A composite component does not relate to the deinition of a component type. It has just

a structuring role and then is deined when designing a given simulator. Rather, a leaf component is linked to
the deinition of a component type. The reason is that many leaf components may have the same structure
(parameters, communication ports and interfaces) and behavior. Moreover, instantiating using types allows to
share behavior whereas instantiating using copy/paste requires renaming components and may lead to a behavior
redeinition using an error-prone copy/paste operation.

Master algorithm. Inspired by [22], CARES implements a centralized Master Algorithm (MA). The MA period-
ically launches the function (doStep(timeInterval)) for each active leaf component. The period is based on the
frequency expressed in hertz for each leaf component. The value of timeInterval corresponds to the time used
by the real system (simulated by the component) to produce data. The component outputs are updated after
this delay. New data is then propagated to all components considering that data as input. The communication
mechanism (see above) allows each component to consider the new computed value or the previous one.
For component scheduling, the execution order is based on the partial order deined by the I/O dependency

graph. If a cycle exists, a priority associated to each leaf component is used to deine the execution order between
components. The priority is user-deined, with a value of 0 representing the highest priority level.

Scenario. The scenario modeling step corresponds to a timed sequence diagram modeling process. A scenario
deines:

• start and end time for co-simulation;
• the time step size;
• at the beginning of co-simulation
– a sequence of parameter initialization : each component may be conigured for each co-simulation run.
– binding of required and provided interfaces (if necessary): if at design stage a required interface is linked
to many provided interfaces, when deining a co-simulation run, a required interface has to be linked to
one and only one provided interface. This step is useful to conigure co-simulation by selecting which
component is used to provide a given service.

– a list of components to stop: a unused component (for instance a component providing a unused interface)
can be stopped to improve the performance of the simulator.

– a list of provided function calls: it is possible to perform complex coniguration of a component by calling
dedicated provided functions.

• a sequence of timed events and for each timed event
– a sequence of parameter initialization and a list of provided function calls: a component may change its
coniguration during a co-simulation run.

ACM Trans. Embedd. Comput. Syst.
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– a list of components to stop or to restart: it is possible to simulate a transient component error by stopping
it at a certain instant and restarting it some time after.

• at the end of co-simulation: a sequence of function calls to reinitialize components;
• when components contain random data, a scenario may be played many times.

A scenario deinition provides a high-level description of a given co-simulation run. Using language facilities, it is
then easy to adapt co-simulation to test a given coniguration for a given context (parameter valuation, function
call, component binding, component stop and start).

3.2 Modeling

CARES concepts are implemented through three metamodels:

• ComponentTypemetamodel: this metamodel contains the required elements to describe data types, functional
interfaces and types of leaf components (list of required and provided interfaces, data inputs and outputs,
parameters). Instances of types are described through a textual editor based on Xtext4. A textual description
seems to be adequate to model types of data or components as in programming languages.
An example of declaration of interfaces and a leaf component type is given in Figure 3. CurrentSource
declares a generic interface for diferent sources of current (after setting time and position, if ok, current
data is accessible), while CurrentSource declares a speciic interface to conigure a CurrentModel component.
This leaf component type declares the interfaces as provided and parameters to implement a sinusoidal
model of current.

• ComponentSystem metamodel: this metamodel contains the required elements to describe a graph of
components (leaf and composite components, data and interface links). Figure 4 exhibits an excerpt of
this metamodel. A graphical editor based on Sirius5 allows to instantiate a model of components and links
between them. A graphical description of a simulator is suitable to navigate in the structure of the simulator
(see 4.5).

• Scenario metamodel. This metamodel contains the required elements to describe a co-simulation scenario.
A scenario contains initialization steps and timed events (component initialization, parameter modiication,
function call). A scenario is described through a declarative language, based on a Xtext textual editor.
A textual description seems to be suitable to describe a co-simulation run (see 4.3) as in programming
languages.

The three metamodels are implemented using Ecore6.

3.3 Code generation

From instantiated models, a code generator based on Acceleo7 generates Java or C++ code by analyzing the
whole model (checking typing constraints). The generated code contains all class declarations, the glue code
for all the components and a main function is implemented for each modeled scenario. Data communication
is directly handled by the components by analysing data links. Interface binding is dynamically deined in the
main function considering both models of structure and scenario. A class is generated to declare all the timed
events and is used by the main function to drive co-simulation. Co-simulation execution is based on the CARES
runtime library. The runtime library implements execution facilities and an orchestration module (MA) to run
scenarios. In particular, the CARES scheduler launches each active leaf component by executing the doStep()
function considering its frequency. To run co-simulation, all that is missing is domain-speciic code.

4https://www.eclipse.org/Xtext/
5https://www.eclipse.org/sirius/
6https://www.eclipse.org/ecoretools/
7https://www.eclipse.org/acceleo/
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Fig. 3. Interfaces and leaf component type for current.

Integration of domain speciic code is required for provided interfaces and the three initialize(), doStep() and
end() functions. For each leaf component, a corresponding Java or C++ class is generated declaring all provided
functions and inheriting from a LeafComponent (generic classes deining initialize(), doStep() and end() functions).
Then, the domain-speciic code may be added directly or integrated by implementing the delegator pattern [18]
in the generated class. Once the domain speciic code is added, the simulator is ready to run.

3.4 Discussion

Design choices for CARES are proposed to provide facilities to the simulator designer:

• types are only deined for Leaf components;
• high-level textual and graphical languages ease simulator description;
• components may be conigured at design and run time through modiication of parameters, service calls,
start and stop operations;

• execution semantic is directly implemented by the runtime library and then is transparent for the simulator
designer.

The question is then "how to structure and conigure a given simulator for a given drone with a given simulation
objective?". For instance, considering the case study, we want to develop a simulator to evaluate accuracy of the
navigation function for diferent conigurations of an AUV, considering diferent contexts. Conigurations are

ACM Trans. Embedd. Comput. Syst.
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Fig. 4. CARES component System Metamodel.

here related to sensors quality and the choice of a given algorithm of navigation function. Context is related to
environment conditions.

4 NAVIDRO ARCHITECTURAL STYLE

In the following part, model and architectural elements related to co-simulation of drone evolution are presented
according to the CARES framework described previously. We here outline the main concepts involved in the
NAVIDRO architectural style, illustrated by applying them to build a simulator of an AUV navigation function.

4.1 Application domain

While CARES is a generic model-driven framework for co-simulation, NAVIDRO is tailored to the speciic domain
of co-simulatiion to evaluate AUV architectures with respect to trajectory tracking applications. Within these
applications, a drone navigates a given course while classical embedded sensors, such as the Global Positioning
System (GPS), Inertial Measurement Unit (IMU), Doppler Velocity Log (DVL), compass, and barometer, generate

ACM Trans. Embedd. Comput. Syst.
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valuable data pertaining to drone behavior. This data is subsequently processed to assess the drone position and
attitude.

NAVIDRO exhibits the capacity to evaluate the behavior of aerial, surface, or underwater drones. However, by
using a Real-Time Kernel GPS, the position accuracy is not considered a critical concern for aerial and surface
drones. As a result, the framework is more suitable to underwater drone applications where the sensors quality
directly inluences the analysis of drone trajectory.
Compared to conventional tools (see section 6), NAVIDRO emphasizes the adoption of high-level modeling

techniques, thereby easing the incorporation of various requirements:

• First of all, with NAVIDRO, the speciication of trajectories is performed through either a mission (deined
by a sequence of successive waypoints to reach; each waypoint is described by its position (longitude,
latitude, and altitude) and desired speed) or via an array of timed positions, such as those obtained from a
log ile. For the irst method, the trajectory timed positions are computed using spline techniques, and for
the second, the given positions and times are used directly to replay a given trajectory.

• Secondly, NAVIDRO provides facilities for integration of heterogeneous sensors considering both unit and
referential and coniguration of sensor errors to enable evaluations of speciic technological design choices
in drone architecture;

• Thirdly, NAVIDRO provides facilities for characterizing diverse physical conditions of the environment,
such as current and seabed properties.

• Finally, NAVIDRO simpliies the process of deining scenarios for a speciic usage of a drone within a
particular environment.

4.2 Main principles of a CARES architecture style definition

For a speciic application domain, co-simulation descriptions often share common concepts, and to ease the
design of new co-simulation, we suggest developing an architectural style. An architectural style provides a set
of guidelines on how to deine and connect components. A CARES architecture style deinition follows both
top-down and bottom-up approaches.

4.2.1 Top-down. As usual with CPS control applications, co-simulations are based into a set of classical interacting
subsystems. These subsystems include the Controlled element or plant (the system being controlled or supervised)
, its Environment (external phenomena that afect the behavior of the controlled system), Sensors (elements that
provide information on the controlled system or its environment), Actuators (elements that act on the controlled
system) and a Controller (elements that implement a control or supervision policy). These elements play a
structural role in a co-simulation coniguration and are implemented through CARES composite components.
Additionally, we introduce a User component (modeling user behavior) and an analysis component (which does
not model an element of the system to simulate but is dedicated to computations used for simulation interpretation
purposes). The deinition of a CARES architectural style is achieved by selecting the required components and
specializing them for the target domain:

• naming components
• standardizing inputs and outputs : name and unities

This step establishes the overall structure of the architecture style.

4.2.2 Botom-up. In the context of the targeted application domain, each FMU or simulation module is trans-
formed into a CARES leaf component. For example, a model of sensor behavior (simulating errors) or a sensor
emulation (replaying a given mission) becomes a CARES leaf component. In this case, the inputs, outputs, and
parameters of the FMU are transformed into the inputs, outputs, and parameters of the corresponding CARES

ACM Trans. Embedd. Comput. Syst.
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leaf component. Next, glue components are added to enable component integration and simulation coniguration,
by implementing:

• data type adaptation
• simulation component selection policy to add lexibility

The architecture style deines the way in which glue components and domain-speciic leaf components are
integrated through the use of patterns that can be employed across various applications.

4.3 NAVIDRO global architecture

This subsection describes the main components of the global architecture of NAVIDRO (see Figure 5).

Fig. 5. Global architecture of the AUV simulator following the NAVIDRO architectural style.

The Environment component is used to model and represent the environment in which the drone moves. The
environment of the drone is a composite built with components modeling each aspect of the environment. For
the AUV, these components provide sea current and level of the seabed at a given position at a certain time. In
most of approaches, environment description is implicit or directly implemented in the system description. We
prefer here to model a distinct component to ease environment coniguration (context of the drone) and source
selection. Source selection consists in selecting a certain component emulating the environment behavior or a
component replaying conditions encountered in a mission already executed. The latter is generally based on
extracting data from a log ile.
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A User component represents the user requirements for a given mission. It may also be used to conigure co-
simulation, but we prefer to use scenario modeling for such activity. For the AUV, this component is represented
by the Mission component. It corresponds to a list of way-points that the trajectory of the drone has to follow.

The Controlled element is here a Drone component responsible for generating the drone behavior, a trajectory
of an AUV for the case study. This component is based either on a behavioral model or a replay of a mission
(based on a log reader). Behavioral model may be a very complex process and depends on the targeted system
and simulation objectives. For the AUV, we simulate the trajectory either by lines and arcs or more realistically
by splines.
The Sensors component contains all the components simulating each sensor providing information on the

drone or its environment behavior. Data produced by a sensor are computed considering a given error model
or extracted from a log ile. Moreover, with the facilities provided by CARES, it is easy to add a delay on the
sensor production to simulate timing behavior. For AUV, we have a gyroscope, an accelerometer, a barometer and
a GPS. Depending on the sensor, classical errors like bias, derive, scale factors and white noise are considered.
Implementation of errors is based on a generic error library.

The Actuators component contains all the components simulating each actuator acting on the drone behavior.
Like for sensors, a delay may be added to simulate timing behavior. For AUV trajectory tracking, because behavior
is a pre-computed trajectory and due to targeted objectives (position computation based on sensor production),
actuators are not considered for NAVIDRO.
A domain-speciic Controller component represents the embedded control part. For AUV, the Navigation

component is responsible for simulating the navigation function used to estimate the position of the drone.
Diferent navigation functions can be plugged to assess the trajectory of the drone from the initial point with
information provided by diferent sensors. For instance, a basic navigation function integrating the speed
(measuredDVLSpeed provided by the DV component) and considering the direction by integrating the rotation
speed (measuredIMURotationSpeed provided by the gyroscope component) has been implemented. A Kalman
Filter has been also written in C++.
The last component is not an existing component of the system to simulate. It implements a tool to evaluate

results of co-simulation. For AUV, the Analysis component computes the position uncertainty by comparing
position given by the Drone component with the estimated position computed by the Navigation component.

Data or service communication links between components follows some connection rules:

• the environment component provides data to the drone (the behavior of the drone depends on environment
conditions) and to sensor components (some environment behaviors may be observed);

• the drone component provides data to the sensor components (some drone behaviors may be observed);
• the user component provides information to the drone component (the drone behavior depends on the
user requirements).

• the sensor components provide data to the control part (the programmable part depends on sensors data);
in case of replay (simulation is based on sensor log iles), the drone and environment components, that
provide data to sensor components, are unused and can be stopped;

• the actuator components receive data from the control component (the control part acts on the drone by
using actuators) and provide data to the drone component;

• all components may provide data to the analysis component.

The underlying principles of NAVIDRO global architecture is the classical control loop : (process and its environ-
ment) -> sensors -> process control -> actuators -> process.

As mentioned earlier in the introduction, to ensure that all components are connected correctly, it is important
to standardize both units and referential frames. Therefore, when deining the overall architecture of the system, a
list of referential frames and units must be established. For an AUV, the speed of both the AUV and the current is
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measured in meters per second (��
−1), and the AUV’s position is given according to the NED (North/East/Down)

frame.

4.4 Configuration and heterogeneity integration

When designing simulators, diferent issues have been identiied such as adaptation of heterogeneous frames
and units, speciic component selection for a given co-simulation and integration of domain speciic code in any
language.

4.4.1 Data Source Selection. For a given co-simulation, the user has to select sources of data in a transparent
way. The data source selection from logs, models or forecasts is necessary for the following components of the
global architecture: Environment, Sensors, Drone. To conigure data source selection, several approaches exist:

• The irst idea is to link at design stage the output of the chosen data source component to the corresponding
input.

• The second idea is to plug all possible sources to a switch component. The number of inputs is then the
number of possible sources. Source selection is done when modeling scenario by setting a select parameter
(one value by source).

• The third approach (such as in the Model System Logic (MSL) [51]) proposes to switch the components
during the execution according to a mode deined by the user.

CARES ofers facilities to implement the three possibilities. The irst solution is simple and eicient. This
solution implies that the user has to modify the design model for each source coniguration. However, this
solution may not be very user-friendly for individuals who simply want to conigure a simulator run without
having extensive knowledge of the underlying structure of the simulator. The second solution requires only
to change the value of the select parameter of the switch component for each new input to consider. The third
solution is simple at design stage but requires source selection during scenario modeling. The irst and third
solutions require that all sources respect the same frame and unit standard. They are simpler to implement and to
manage by the CARES designer. And the second one has the advantage of considering heterogeneous data inputs
(adaptation performed by the switch component). All the three solutions imply that all data source components
are embedded in the simulator. But with CARES, in case of heavy simulation, it is possible, when modeling the
scenario, to deactivate the unused components.

We consider now patterns for each component of the global architecture.

4.4.2 Sensor component. For sensor behavior description, we propose the following pattern:

• because data provided by a model of sensor is given in the frame and orientation related to itself, to adapt
to the deined standard by the global architecture, we propose to provide a library of adapter components
that make conversion and referential changes;

• a component is then in charge of error modeling by deining a set of generic error parameters (bias, scale
factor and white noise for any dimension) to provide realistic sensor data;

• a log reader component is in charge of considering log iles for replaying missions; frame and unit adapta-
tions are also necessary according to the log ile format and is speciic to each reader component;

• a component is used to select a component source to consider during co-simulation.

Figure 6 illustrates the use of such pattern. The picture corresponds to the composite component DVL, a part
of the Sensor composite component. This component is responsible to produce DVL data. Data may be either
simulated by a model error (myErrorDVL component) or real data (myReaderDVL component). The latter produces
data by reading a log ile, whereas the irst one simulates classical measurement errors. For this component,
adaptations are necessary for inputs and outputs. Firstly, it is necessary to adapt data provided by the Drone
component to the body frame of the sensor since data is computed in the body frame of the drone. This is the role
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Fig. 6. DVL composite component.

of the myBodyToDVL component. Furthermore because the frame and units of log data are based on technical
sensor choice, required adaptation is performed by myReaderDVL.

In the example, as illustrated in Figure 6, the component mySourceDVLAdapter implements the third approach,
the data source selection is not set at design stage but when deining the scenario (see later).

DVL is an example of the pattern used for each sensor: local adaptation of the frame, error modeling, standard-
ized log reader and source selection. Indeed, several reference frame Earth-Centered, Earth-Fixed), NED, body
frame of the drone or of the sensors) adaptations are proposed by the framework. The proposed pattern allows
then to easily integrate heterogeneous sources of data.

4.4.3 Drone and environment components. As with sensors, a drone or environment component is a choice of a
simulation model, except that errors are not considered here.

For the AUV, we use a switch component myMissionAdapter as depicted by the Figure 7. We consider here the
second approach where the switch considers both data sources. The boolean parameter isSpline is set to conigure
the data source. In this igure, the MissionInterpreter component considers splines while the SimpleMission

component considers lines and semi circles (see results on Figure 1). The latter is useful for testing purposes
while the spline allows to model a more realistic trajectory.

4.4.4 Control component. First, sensor data must be converted in the body frame of the drone to be processed.
For the AUV, this is the role of the myDVL component (see Figure 8 of the composite Navigation component)
modeling the DVL driver of the system.
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Fig. 7. Excerpt of the Drone composite component.

The last required coniguration for the simulator is the choice of a speciic algorithm for the control component.
The idea is here to declare a select parameter,myNavFunctionNumber for the AUV, set when deining the scenario.

Fig. 8. Navigation composite component.

4.4.5 Integration of legacy code. To integrate domain-speciic code, we require that the code respects a given
interface composed of three functions (initialize(), doStep() and end()) derived from FMI.
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If legacy code is developed with the same language as the generated language, we propose to use the delegator
design pattern. We add a wrapper to the legacy code to implement the same interface as the generated component.
Then, the generated component is instrumented to call the corresponding services provided by the wrapper.

If legacy code is developed with another language, we propose to implement the delegator design pattern by
using either FMI facilities or language adaptors. Using FMI, legacy code is irst encapsulated in a FMU. A FMU
is a co-simulation unit and can be developed from a few programming languages. To deal with FMU, libraries
propose Java (javaFMi8) and C++ (FMI4cpp 9) wrappers. An FMI wrapper respects the FMI interface and can be
called directly by the CARES generated component. We provide in the Figure 9 a pseudo-code based on javaFMI
to drive FMU simulation by a leaf component FmuLeafComponent. FMU is declared through its corresponding
FMU ile fmuFileName. In the constructor, the Simulation element is created. The element is then initialized by
calling init() function. In the doStep() function, the inputs are sent to the FMU (write call), the FMU is executed
for a delay of a period (doStep()) and the result is recovered to set the outputs (read call). The wrapper calls are
inserted in speciic portions of code (between Acceleo comments Start of user code / End of user code). These
portions of code are protected when regenerating code from the model (Acceleo facilities). For the case study, we
also develop a language adaptor to integrate C++ code in a Java simulator. The original C++ code (a Kalman ilter
for the navigation function) has been irst extended to implement the initialize(), doStep() and end() functions.
Then a language adaptor has been implemented by using JNI facilities.

Integration of legacy code to implement provided functions is based on the same delegator design pattern.
Except that FMI wrapper cannot be used in this case because the FMI wrapper is limited to a generic interface
(initialize(), doStep() and end()).

4.5 Scenario definition

Deining a CARES scenario allows to conigure a speciic co-simulation sequence. In particular, the scenario
serves as a space to describe dynamic behaviors and specify failures.

The NAVIDRO architectural style imposes just that all unused components are stopped in the irst coniguration
part of the scenario (irst begin section). A unused component is a component that produces unused data and
does not provide required interfaces.
For AUV co-simulation, an example of scenario AuvSimulation is presented in Figure 10. It simulates half

an hour considering steps of 1 ms. In the initialization part, irst, each data source is selected and conigured
depending on the pattern used for data source selection. For Environment, models of seabed and current are
selected. The model of current is then initialized by calling the setSpeed(speed=1.0,direction=45.0) function. For
DVL, the dvlSpeed data is computed considering the error model. So the required interface of the adapter is
connected to the provided interface of myErrorDVL and the unused component myREaderDVL is stopped. A DVL
misalignment is deined (15 °) for this co-simulation by setting the theThetaDVL parameter. By setting isSpline to
false, the SimpleMission component is selected to provide the trajectory, so the MissionInterpreter component is
stopped. Position is estimated by using data provided by DVL and gyroscope components. The DVL misalignment
is not considered by the navigation function. The scenario is the place to specify failures. Fisrt, to evaluate the
impact of random errors performed by the sensors (simulated by the myErrorDVL component), the scenario is
played 10 times. For each scenario execution, the initial drone speed is set to 2.5��

−1. After 45 minutes, the
drone speed is reduced to 2.0��

−1 due to engine limitations. At last, a transient DVL error (no sent data during
0.5 second) is simulated by stopping the DVL component after 10 seconds and restarting it after 10.5 seconds.
During co-simulation, the estimated positions are stored each ms in a DronePosition.csv log ile.

8https://bitbucket.org/siani/javafmi/wiki/Home
9https://github.com/NTNU-IHB/FMI4cpp
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Fig. 9. Java pseudo-code based on the javaFMI 2.26 API to drive a FMU simulation from a leaf component.

This scenario illustrates the multiple possibilities provided by CARES to conigure a co-simulation run by
modifying parameters, binding interfaces, calling provided function and activating or deactivating components.

ACM Trans. Embedd. Comput. Syst.



18 • Loic Salmon, Pierre-Yves Pillain, Goulven Guillou, and Jean-Philippe Babau

Fig. 10. A co-simulation scenario for the AUV navigation function.

5 EVALUATION

In order to evaluate the ability of our approach to simulate an AUV navigation function, co-simulations are
performed on realistic conigurations considering diferent contexts.

We perform irst co-simulations to qualify the performance and the quality of the simulator itself. We consider
here a drone following a straight line during 20 km with a constant speed of 5 m/s (duration of 4000 seconds,
a little bit more than 1 hour). We simulate ideal sensors (no error) acting at a frequency of 1000 hz. The drone
and the navigation function are also simulated at the same frequency. With a PC i7 of 3.6 GHz CPU speed
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with 8GB RAM, co-simulation takes less than 47 seconds and the position error is under 5 mm. The error is
computed between the positions of the emulated trajectory (the straight line) and the computed trajectory based
on simulated sensor data. Considering this ideal coniguration, the simulator performance and accuracy is quite
acceptable. Then we consider some classical scenarios.

Considering the mission contained in a csv ile specifying a list of way-points characterized by their position
and desired speed, a drone trajectory is computed using spline technique. After applying a model error on
sensors, to qualify the quality of the navigation function, we draw the two trajectories produced by the Drone
component and by the Navigation component. Figure 11 depicts the results obtained for a speciic mission with a
DVL misalignement (the DVL has a diferent orientation from the drone and the navigation function does not
considered it), the yellow (bright color) trajectory corresponds to the estimated one while the green (dark color)
one represents the trajectory of the drone.

Fig. 11. Example of co-simulation with a DVL misalignment.

Diferent cases have been studied to test and validate the capacity of the simulator to consider diferent conigu-
rations and contexts. The simulator allows co-simulation of realistic sensors considering diferent conigurations
of error models. For another aspect, the simulator allows the re-execution of a real mission performed by an
AUV by reading sensor data logs. In this scenario, sensor data is not simulated but rather replayed. For those two
diferent cases, several navigation functions have been tested. For instance, one integrates data from the DVL
and the gyroscope. Another one is based on the application of a Kalman ilter. In this case, we had to test a lot of
parameter values to tune the performance of the Kalman ilter. The last presented example (Figure 12) is obtained
with real data logs and a navigation function based on the integration of the DVL speed, taking into account
orientation through the gyroscope data. Co-simulation shrinks in 20 seconds a duration of thirty minutes for a
2.5km trajectory length (average speed of 1.39��

−1). For this scenario, the obtained maximal error between real
trajectory position and estimated position using a Kalman ilter for navigation function is about 13.5 m (drift of
0.5 % after thirty minutes of mission). Depending on the environmental condition (underwater visibility ranges
between 10 and 30 meters depending on the depth and water turbidity) or on the mission goal (observation allows
for a positioning error, unlike the docking process), this distance may be acceptable or not .

6 RELATED WORKS

The literature proposes a lot of works promoting usage of CBSE paradigm for architecting CPS. [12] shows that
the main concerns handled by CPS component models are those of integration, performance, and maintainability.
The instruments to satisfy those concerns, while architecting CPS, are ad-hoc software/system architecture,
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Fig. 12. Example of navigation function evaluation with real data.

model-based approaches, architectural and component languages. Our approach concerns model-based ad-hoc
architecture for integration purpose. The main diference with the literature is that we target co-simulation while
most focus on design and veriication of CPS [16, 19, 23, 24, 48].
As an example, Ulgen [50] proposes a framework for autonomous cyber-physical systems (CPS). Although

Ulgen focuses primarily on the design and programming of the control aspect of autonomous CPSs, we share
several key concepts with Ulgen. These include the use of high-level models and domain-speciic languages,
decomposition into blocks with dynamic links controlled by a switching mechanism, and an architectural style
guiding the combination of blocks to implement the modules.

The literature proposes also a lot of works on how to use a General Purpose Modelling Language (GPML like
UML, AADL and SysML) for FMI co-simulation [22, 28, 35]. The main idea of these papers is to integrate FMI
concepts in a dedicated proile of the considered GPML, to target classical co-simulation environments. The goal
of CARES is to deine high-level concepts to ease design, coniguration and execution of FMI co-simulations.
These concepts are proposed through a Domain Speciic Modeling Language (DSML) and a framework to hide
GPML complexity but, the manipulated concepts could have been deined with a GPML and bridges may be
developed between CARES and GPML. These aspects would be investigated later but are out of scope of this
paper.
In concurrent way, DirectSim [10] proposes a framework to develop agent-based simulators. It provides a

run-time library, coniguration and observation facilities, a set of bricks to model diferent kinds of vehicle, to
model errors and 2D and 3D monitors. It is an open-source project but it does not propose an architectural style
or guidelines on how to build a simulator of a drone or integrate FMUs.

CoSim20 proposes a modeling language to deine a correct coordination of diferent executable models for co-
simulation, which can be distributed at execution stage [33]. [26] proposes a language and platform independent
framework for running distributed FMI co-simulations, based on RPC (Remote Procedure Call) technology. [46]
proposes a tool to execute distibuted FMI co-simulation using a ixed or variable step algorithm, based on the
REST API. If distribution is not necessary for the targeted application domain, one could imagine distributed
implementation of CARES models, which would require extending CARES, code generator and runtime library
with component allocation features and integration of distributed communication and orchestration mechanisms.

FIDE is an Integrated Design Environment (IDE) for FMI [11]. It allows the modeling and design of co-simulation
by integrating FMUs and considering discrete events. It proposes to implement a deterministic Master Algorithm.
DACCOSIM NG proposes a Graphic User Interface (by describing a co-simulation graph) and a Command-Line
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Interface (to drive co-simulation run) to run FMI 2.0 co-simulations based on both centralized and distributed
architectures [21]. Experiments show correct performances for DACCOSIM.
As DACCOSIM and FIDE, CARES proposes high-level graphical interface to describe co-simulation graphs.

CARES implements a similar Master Algorithm as FIDE without considering roll-back. Moreover, CARES provides
facilities to consider parametrization and Client/Server interfaces for component description. In addition CARES
proposes an architecture style and a high-level declarative language to ease the description of diferent co-
simulation runs (the CARES scenarios).
The SSP standard provides a tool-independent XML format for the description, packaging and exchange of

system structures and their parameterization [34]. The standard integrates notions of units, valuation, adapters
and mapping between parameters and components. SSP can be used to precisely describe co-simulation system
setting. In the same idea, CARES ofers the possibility of parameterizing co-simulation, but by providing high-level
modeling languages. Moreover, with CARES, modiication of parameters may be programmed at speciic instants
by using the scenario language, bringing dynamics in the description of co-simulation runs.
Based on FMI, MOKA [3] proposes an Object-Oriented co-simulation framework for development, integra-

tion and co-simulation of FMU. The main contribution of MOKA is to provide a generic FMU API to ease
integration. The idea of a built-in orchestrator is shared with CARES. But CARES proposes a more high level
modeling component-based language integrating facilities to conigure co-simulation (parametrization, types
of co-simulation units, dynamic binding of components). It also proposes an architecture style and a high-level
language to program co-simulation runs.
Vico [25] is an entity-component-system (ecs) based co-simulation framework. The ecs architecture coming

from gaming world is well suited to achieve performance. The approach is suitable to launch a 3D simulation
but, as the authors said, FMU are diicult to it into an ecs architecture. Using ecs, behaviors and data have to be
separated. The solution is here to propose a generic FMU interface as Moka. At execution stage, [25] proposes to
program scenarios using the Kotlin programming language. [25] is ecs-based to promote performances while
CARES is component-based to promote application of software engineering principles (architectural style,
high-level languages, coniguration facilities).

Because the manual coniguration of complex large-scale co-simulation scenarios can be error-prone, MOSAIK
[45] proposes an approach for assisting the user in the development of co-simulation scenarios. MOSAIK provides
a simpliied FMI-based API to build (component selection and connection), to parameter and to execute co-
simulations. MOSAIK is code-oriented whereas CARES with the same objective is based on a high-level modeling
language. From orchestration point of view, we propose a similar Master Algorithm to execute a co-simulation
unit step (get inputs/ doStep/write outputs). Based on MOSAIK, to prepare complex co-simulations, [42] proposes
an ontology that is used to get assistance in the process by getting recommendation of suitable co-simulation
units. CARES covers the co-simulation part of the simulation process proposed by MOSAIK.
There exists diferent ways to implement a Master Algorithm to orchestrate FMU execution [8, 22, 32]. For

this speciic aspect, [47] proposes a DSL to design Master Algorithms. The proposed DSL eases integration of
FMU considering diferent orchestration policies. It also eases parallelization and optimization. This work is
complementary to ours, CARES proposes a DSML for all aspects of co-simulation except for the orchestration
part. The modeling and coniguration of Master Algorithm is a perspective for CARES.
The orchestration of multi-periodic simulations raises some semantic issues. Base on the work of Caspi et al.

[9], CoCoSim [7] introduces a framework that tackles the issue of data transfer semantics with multi-periodic
Simulink blocks. The idea is to transfer the most recently produced data between blocks, even when the production
period varies. CARES implements the same semantic but for simulation purposes.
FMI provides a FMU interface speciication, but it does not ensure that FMUs interact with in a semantically

correct manner (diferent references, units, models of computation or accuracy). [20] proposes a language that
allows for the descriptions of common semantic adaptations that can be used in FMI co-simulation. This paper

ACM Trans. Embedd. Comput. Syst.



22 • Loic Salmon, Pierre-Yves Pillain, Goulven Guillou, and Jean-Philippe Babau

shows the importance of mastering co-simulation unit integration through a high-level language. Our paper
addresses this adaptation challenge through three aspects: services deined by components may implement
adapters inside generated FMUs wrappers, the architectural style deines common references and units and data
communication protocol allows diferent models of computation. CARES should be extended to ease description
and integration of more adaptation policies.

Regarding programming frameworks, some solutions exist for drone simulation like the open source OpenAUV
testbed [41]. The simulator is proposed as extensive physical testing can be expensive and time consuming
because of short light times due to battery constraints and safety precautions. This approach remains code-centric
and is dedicated to Multirotor Unmanned Aerial Vehicles. In the same domain, Aerostack [40] proposes a layered
architectural style to design and simulate controllers of Unmanned Aerial Systems. Even if this work addresses a
diferent domain, we share with it the idea of deining an architecture style, the development of domain-speciic
library and the idea of designing a system by coniguring existing blocks.
The literature proposes also speciic simulators for AUV. UWSIM [36] integrates a mechanical model of a

submarine drone for simulation of its movements. Diferent sensors can be simulated as well as the sea state.
However, this work focuses on visualization rather than simulating the sensors and the environment. Navlab [17]
proposes a software with the same objective as the case study of the paper: the simulation of navigation function
of AUV. The solution is code-centric, developed with MATLAB. As with NAVIDRO, the architecture style is
based on three layers (trajectory simulation, sensors and navigation function). In addition simulated sensors
(integrating noise) or real data may be considered. However, this project is not open-source and developed as a
black-box.

AVS [31] is an architectural style that has been proposed to develop simulators for autopilots of racing sailboats.
Some concepts of AVS inspire the deinition of CARES and NAVIDRO like the ability to integrate heterogeneous
models. But CARES and NAVIDRO ofer a more mature and powerful framework (interface adaptation, scenario
deinition, FMI integration).

In conclusion, compared to the literature, the main originality of CARES and NAVIDRO is to propose high-level
modeling languages, independent of technologies and platforms, easing the description and coniguration of
co-simulation and co-simulation runs. The proposal is based on two levels of abstraction. At the irst level, CARES
components and scenarios deine the generic concepts for easy-to-conigure co-simulations. The co-simulation
implementation code is then generated from the models, which eases co-simulation development. At the second
level, the NAVIDRO architecture style shows how to use and combine CARES concepts for a speciic application
domain, here trajectory tracking applications.

7 CONCLUSION

In this paper, the CARES framework and the NAVIDRO architectural style have been presented. The CARES
model-based approach combines classical CBSE concepts and FMI 2.0 for co-simulation paradigm for the lexible
design of drone co-simulation. NAVIDRO helps to standardize units and deals with heterogeneity of data source.
It eases integration of legacy code like FMI co-simulation units. The approach has been tested by developing a
simulator to evaluate diferent AUV navigation functions, considering diferent AUV conigurations (trajectories
and sensor behaviors) and contexts (sea current and level of seabed).
The paper addresses software engineering challenges while future works concern improving performance

by adding parallelism to the execution stage. Each component can be executed in parallel and according to the
dependency graph, each iteration can also be parallelized. This perspective requires developing new models,
languages and runtime library to enable the distribution of components, ensure their interactions and coordinate
their execution.
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Another classic optimization consists in integrating multivariate frequencies for co-simulation units. In this
case, to avoid simulation errors, a rollback mechanism should be implemented, which is not the case in the
current version of CARES where a small co-simulation step is the only way to provide realistic, but not eicient,
simulations.
CARES has been deined to integrate FMUs following the FMI 2.0 Co-Simulation standard. The FMI 3.0 Co-

Simulation standard ofers new facilities to consider initialization, coniguration and events [37]. CARES has to
be extended to ease the driving of co-simulations integrating FMU following the FMI 3.0 Co-Simulation standard.
We also work on developing bridges between CARES models and GPML languages (to reuse existing modeling
techniques and tooling) or other simulation languages (to ease reuse of legacy code).

Finally, we are working on developing a design space exploration tool that drives co-simulations with diferent
conigurations to compare the impacts of some parameters on the simulation objective. The exploration tool has
the objective to deine, for instance, what is the impact of a certain level of a sensor error on the performance of
the navigation function. This work may be related to research on hyperparameter optimization.
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